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Preface

During the last decade, urban modelling has generated a momentum in 
Britain which has been unparalleled anywhere else in the world. In one 
sense, it is perhaps surprising that so ' North American' a phenomenon as 
the building of mathematical models of cities and regions should have 
caught the interest of researchers in Britain; in hindsight, this is all the 
more remarkable given the rather uncertain prospect for the first genera 
tion of urban models constructed in the early 1960s in North America, 
which preceded and promoted the British experience. Yet conditions in 
Britain have especially favoured urban modelling in recent years. Both 
the theory and practice of modelling have been stimulated by the develop 
ment of an explicit 'Systems Approach' to urban research and land-use 
planning, and the presence of a highly developed institutional planning 
system has been of enormous significance in providing a natural focus for 
research efforts in this field. The importance of the planning system in 
fostering such research cannot be stressed too much, for the continuing 
demand by planners for better tools to explore urban problems has 
helped to increase the relevance of urban modelling research; and it has 
meant that urban models have been largely built as aids to conditional 
prediction, rather than solely as aids to a greater understanding of urban 
phenomena.

This book is a direct outcome of my contact with this movement since 
1967. It reflects my particular interests in urban modelling and it attempts 
to synthesise some of my research writings over this period. Although I 
have organised the book around what I believe is a consistent framework 
which developed along with my research, I leave it to the reader to make 
his own interpretations of the material presented here. Clearly this book 
is not intended to be a comprehensive treatment of urban models, and 
thus it is no substitute for a review of the field. But I have tried to emphasise 
the process of modelling rather than the models per se and in this sense 
the treatment is of more general import. However, my personal biases, 
which are reflected in the book, date back to earlier interests.

I was much influenced by my undergraduate schooling in the Depart 
ment of Town and Country Planning in the University of Manchester, and
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I was fortunate in being taught by a strong and impressive but diverse 
group of people led by Roy Kantorowich. Although my interests were 
originally and continue to be in the three-dimensional attributes of cities, 
I was frustrated by the lack of explicit method in planning, and thus I 
became interested in the so-called systems approach which was being 
advocated in the department by George Chadwick and Brian McLoughlin. 
In particular, I owe George Chadwick a great debt, for it was he who 
persuaded me into research rather than professional practice. My initial 
research into design method evolved into an interest in the system being 
designed and I was supported and guided during these early days by 
George Chadwick, whose perspective on this field has helped me formu 
late a realistic research strategy.

Although a little of the work reported in this book was carried out in 
Manchester, most of it was made possible by an appointment in the 
Urban Systems Research Unit at Reading University. In 1968, Peter Hall 
obtained a substantial grant from the Centre for Environmental Studies in 
London, and then set up the Unit at Reading to undertake urban modelling 
research. An optimistic and ambitious programme was initiated and 
much of the work which is reported here stems from my personal involve 
ment in this programme. From my experience with the Unit, I learnt the 
conventional wisdom that theory is barren without practice, and a great 
enthusiasm for modelling was sobered by the realisation that in Georgescue- 
Roegen's phrase 'there is a limit to what we can do with numbers, as there 
is a limit to what we can do without them'.

Many people have helped me in writing this book and it goes without 
saying that I wish to thank all of them. But some have played a very 
special role. From my Manchester days, 1 have mentioned the influence of 
George Chadwick and Brian McLoughlin but my friend and colleague 
Duncan Thomas, who subsequently took an alternative path to landscape 
architecture, had a great feeling for this area and he taught me a great 
deal. Dave Foot deserves a special mention, for not only did he teach me 
my rudimentary but essential knowledge of computer programming but 
he continues to guide me in the arts of the possible in urban modelling. 
At Reading, Erlet Cater, Roger Sammons, Eric Cripps and Jane Read 
have all helped me to clarify my ideas, and the influence of my M.Sc. 
students over the years has been considerable; indeed, Chapter 9 is the 
outgrowth of a project originally started by the 1971-2 M.Sc. students in 
Urban and Regional Planning at the University of Reading. Stewart 
Mackie of the Local Government Operational Research Unit originally 
collaborated on Chapter 8, and lan Masser of the University of Liverpool 
on Chapter 10. I am especially indebted to these authors for letting me 
include work which they were instrumental in implementing. I realise
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that I have also been a perpetual nuisance to the staff of the Computer Centre 
at Reading. Urban modelling is a young field and enthusiasm often out 
strips common sense especially in the area of computation. Thus I am 
greatly indebted to Tony Hewitt and his staff for the generous amount of 
computer time and programming advice they have given. All of these things 
would not have been possible at Reading without the support of Peter 
Hall, whose boundless energy and enthusiasm for the field has been a 
great source of inspiration.

I must also mention several people who have helped me on technical 
questions: Dick Baxter, Andrew Broadbent, Martyn Cordey-Hayes, 
Marcial Echenique, Geoff Hyman and Alan Wilson. All of these people 
have taken time out from their own researches to advise me on different 
points and I am grateful to them. Lionel March has helped me con 
siderably over publication and I must thank Sheila Dance who drew the 
diagrams, Ann Watts for much of the early typing and Jennifer Preston 
for typing the manuscript. My wife Sue has helped me on all aspects of 
the book and only she knows the frustration of putting up with an untidy 
academic whose home is littered with papers. I dedicate this book to her.

Kitchener-Waterloo, Ontario MICHAEL BATTY 
October 1974
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It is said that science will dehumanise people and turn them into
numbers. That is false, tragically false... 

Science is a very human form of knowledge. We are always at the
brink of the known, we always feel forward for what is to be hoped.
Every judgement in science stands on the edge of error, and is
personal. Science is a tribute to what we know although we are fallible.

Dr Jacob Bronowski in 
The Ascent of Man, London, 
1973



Introduction

Thomas Kuhn (1962), in his stimulating book The Structure of Scientific 
Revolutions, advances and demonstrates the theory that the history of 
science is not characterised by a gradual accretion of knowledge, as is 
assumed by the community at large, but is dominated at any one time 
by a set of fundamental ideas or a paradigm which can only be changed 
by scientific revolution. Most scientists spend their lives working within 
the recognised limits of the paradigm and only when anomalies become 
too significant to disregard will scientists endeavour to search for a new 
paradigm. This view of science is appealing and is readily endorsed by 
a study of major revolutions in thought such as those due to Newton and 
to Einstein. Moreover, there appear to exist a hierarchy of paradigms from 
the most general to the most specific. Kuhn's ideas can also be traced in 
the social sciences although such paradigms are more difficult to identify 
and somewhat more ill-defined than the paradigms of science.

Because the paradigms of social science are so elusive and so pervasive, 
scientific revolution is less easy to recognise in these fields. Yet it appears 
that during the last two decades, the study of man in general and the 
social sciences in particular have been affected by a profound transforma 
tion in approach and method akin to a scientific revolution. Although it 
is too soon to take a long view, the last two decades have seen the emer 
gence of more rigorous argument in social science characterised by some 
semblance of experimental design and a much greater realisation of the 
nuances and biases of the subject matter. There is little doubt that the 
development of large-scale computational facilities has made these new 
approaches both possible and necessary. Despite the present-day view 
that technology presents more of a hindrance than a help to resolving the 
dilemma of man, it is worth remembering that many of the newer and 
perhaps more exciting developments in science and social science are 
inextricably linked to the rise of the modern computer. Nowhere is this 
more evident than in those fields dealing with the phenomena of man in 
social as well as biological and physical terms - in the fields where psych 
ology, linguistics, computer science and engineering merge in the quest to 
develop 'artificial intelligence'. Immense strides have recently been made
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in these fields which are totally dependent on the computer, and the 
optimism and conviction of their scientists suggests that man is firmly 
set on the road to establishing what Simon (1969) has called 'The Sciences 
of the Artificial'.

Urban modelling, the subject of this book, is an integral part of this 
revolution in thought in which the boundaries between traditional 
disciplines are blurring in response to the need for interdisciplinary co 
operation. In short, the field of urban modelling is concerned with de 
signing, building and operating mathematical models of urban phenomena, 
typically cities and regions. There are many reasons for the development 
of such models: their role in helping scientists to understand urban 
phenomena through analysis and experiment represents a traditional goal 
of science, yet urban modelling is equally important in helping planners, 
politicians and the community to predict, prescribe and invent the urban 
future. In education too, in its narrowest and widest senses, urban 
modelling can help by demonstrating the limitations of theory and the 
potential of simulation.

This quest is truly interdisciplinary, drawing directly and by analogy 
from all the sciences, and making use of mathematics, that best-developed 
language of science. But there are inevitable dangers in the development 
of such a field and two distinct dangers can be immediately recognised. 
First, in an era when the body of' new' knowledge is as great or greater 
than the body of 'existing' knowledge, there are severe difficulties in 
evaluating the relevance of new theories, techniques or methodologies. 
There is a further dilemma in that those who know the least about the 
subject matter are often expected to ponder and evaluate its relevance to 
education, and that those who know the most about any line of research 
are often the least willing to speculate on its importance. These comments 
are not only applicable to urban modelling but to all areas of knowledge 
where the traditional boundaries are changing in response to new lines 
of inquiry. Yet perhaps the second danger is more serious. In any field 
where new modes of thought are not built up from knowledge already 
acquired in that field, it is likely that the new ideas become the prerogative 
of very few; this is evident in the development of urban modelling where 
the use of mathematical technique favours those who have acquired skills 
not in the social but in the physical sciences. This danger cannot be over 
estimated and it is well to keep in mind the old adage 'In the country of 
the blind, the one-eyed man is king.' Thus the approach in this book is 
tentative and is pursued with the view that it will take many years to 
evaluate the true relevance of urban modelling: hopefully this work might 
contribute a little to this longer term endeavour.
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A new analytical tradition
Prior to these new developments in social science hinted at above, the 
traditional form of theory-building and testing revolved around classical 
analysis. For example, in economics, one of the first areas where theory 
was formulated in mathematical terms, analysis was usually restricted to 
mathematical manipulation in the quest to determine the relevance of the 
theory. Similarly in locational analysis, theories explaining city size and 
form were tested primarily using mathematical deduction. This classical 
tradition, although still existing today in various forms and still having 
some importance, has been largely supplanted by a more conscious process 
of theory development and testing through modelling, utilising the power 
of the computer to store and manipulate the large number of observations 
essential to the process of model design. Apart from the discipline which 
has come from developing a more explicit scientific method in social 
science, the computer has also made possible the design of theories and 
building of models from simple modules whose interaction through 
replication has produced an added dimension of complexity, commensu 
rate with the mechanisms at work in urban and regional systems.

Although this new analytic tradition represents a breakthrough, it is 
more exploratory than the old; in some senses, it is less sensitive and less 
elegant, more ambitious and more straightforward. Its reliance on com 
putation gives it a bias towards the' number crunching' or' sledge hammer' 
approach to theory-building. Yet it has also brought greater opportunities 
to social science in that many more researchers can participate in the 
process of theory-building. It has, in short, brought science and mathe 
matics to the realm of everyday affairs. But with these advantages have 
come a harder, less tolerant evaluation of these new ideas in practice, thus 
implying that these tools can never be solely valued for their pedagogical 
use. As this book will hope to establish, a great deal can be learned from 
urban modelling but one of the dilemmas which will appear time and 
time again in these pages concerns the content of what is learned. Many 
critics of urban modelling hold the view that model-builders are learning 
more and more about their models but less and less about the real world 
which they are attempting to model. Such a view will always provide food 
for thought but it illustrates that model-builders walk a fine line between 
theoretical acceptability and practical feasibility. Outside these narrow 
limits, respectability is lost and so precarious an existence is perhaps 
untypical of other fields. Nevertheless, this is part of the challenge which 
makes this field so exciting and although it is too soon to establish prin 
ciples for urban modelling, there are some ground rules which dominate 
the present state of play.



xxii INTRODUCTION

Ground rules for urban modelling

Simplicity is the hallmark of any good theory and apparent complexity 
is often simplicity in disguise. Many of the models to be introduced here 
reflect this observation, and the idea that more complex models can be 
constructed out of building blocks based on simple postulates, is a theme 
which is recurrent throughout this book. As far as possible, this rule 
has been adhered to and it is unlikely that readers will accuse the author 
of over-complexity, more likely the reverse. A second rule reflects the 
related idea of parsimony. Simon and Chase (1973) elaborate on this 
rule in stating: 'If, in order to explain each new phenomenon, we must 
invent a new mechanism, then we have lost the game. Theories, gradually 
modified and improved over time, are convincing only if the range of 
phenomena they explain grows more rapidly than the set of mechanisms 
they postulate.' This rule of parsimony relates to a further rule based on 
the idea of using Occam's razor to prune unnecessary embellishments to 
theories and models which seek to mystify rather than explain.

The rule of clarity is especially important in urban modelling. It is 
essential to lay bare the assumptions upon which such models are 
founded for only then can any attempt at objective evaluation be made. 
Much of the early literature in this field coming from North America is 
shrouded in mystique. The fact that so much of the early development of 
the field was pioneered by researchers working in a private rather than 
public capacity has added further to the confusion, and like many recent 
developments in social science, these ideas have often been dismissed by 
social scientists as 'sorcery' (Andreski, 1972) and by physical scientists 
as precocity. But perhaps the most important rule of all relates to com 
promise, that quality which removes much of the glamour from both 
theory and practice. In what follows, there is little mathematical elegance 
in the classical sense, and little of the pure empiricism which characterises 
present-day planning and government for such qualities must be impossible 
to synthesise in any complete sense. Thus, a strong element of pragmatism 
is coupled with a desire to build strong theory. The strategy to achieve 
this however has some fairly unconventional turns and it is because of these 
twists that some apologies need to be offered, especially to mathematicians, 
in advance.

Apologies to mathematicians: terminology and notation

The approach to urban modelling adopted here lies toward the end of the 
spectrum beginning at theory and research and terminating at practice
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and development. Thus most of the mathematics is of a finite kind with 
special emphasis upon algorithms, accounting frameworks and some 
rough and ready numerical analysis. There is little of the more elegant 
analysis characterising the calculus or statistical distribution theory, 
although there are small chunks of such analysis generally included in 
referring readers to other work. This is pragmatic mathematics reflecting 
a pragmatic approach and those with an eye to formal mathematics may 
encounter equation systems and explanations which set their teeth on 
edge. Nevertheless, all of the equation systems given in this book are in 
a form which makes their programming for a large-scale computer com 
paratively straightforward without recourse to any intermediate form; 
at least, all of these equations have been programmed from these descrip 
tions, at one time or another and in various computer languages, by the 
author.

With regard to terminology, much will be familiar to those working 
in the fields of statistics and operational research from which a wide 
variety of terms have been drawn. Hopefully, no new terms have been 
devised in this book although readers might recognise a North American 
influence for much of the early work in this field originated in the United 
States. Terminology is introduced gradually as each idea is developed and 
definitions are given where necessary. In a similar way, the mathematical 
notation used is defined when introduced but is constantly redefined to 
keep the reader continually aware of the problem. An attempt has been 
made to keep notation completely consistent throughout the book, but 
because of the very large number of variables and parameters introduced, 
some redefinition is necessary in parts. In particular, the pre- post- sub- 
super-scripting of variables has been mainly restricted to the integer 
range, i, j, . . ., n, and because of the narrowness of this range, certain 
redefinitions are occasionally necessary. However, key variables such as 
population, employment, distance, etc. are given a constant notation 
throughout the book. High-level computer language notation has been 
avoided.

An outline of the book

Among the many themes around which this book is organised, the 
strongest relates to the process of model design reflected in the subtitle 
as Algorithms, Calibrations, Predictions. Each chapter emphasises specific 
parts of the process of model design from theory through to operation 
and prediction in a planning context. Yet there are several subsidiary 
themes, three of which stand out. The material included in each chapter
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and the relation of the chapters to one another reflect a very approximate 
chronological order of research which is also embodied in a second theme 
concerned with the level of complexity. The material introduced proceeds 
from the simple to the more complex, a progression which matches the 
order in which various problems were defined and tackled. For example, 
this theme involves progression from partial to general, from aggregated 
to disaggregated, and from static to dynamic modelling. A third theme is 
less dominant but relates to the phenomena being modelled. An attempt 
has been made to include models of a wide range of urban systems and 
subsystems dealing with residential location, shopping, transport and, to 
a lesser extent, industrial location.

The first chapter is devoted to providing a context for urban modelling 
and a classification of models in terms of their origins, traditions, early 
history in North America, and scope. In the second chapter simple models 
of urban subsystems based on both the generation and allocation of 
activities are introduced and are assembled into systems of equations for 
more general models in Chapter 3. In Chapters 4 and 5, the task of getting 
such models operational is outlined using two examples from the British 
subregions of Central Lancashire and Nottinghamshire-Derbyshire. But 
the more important role of these two chapters is to demonstrate how these 
models can be used in a planning context, in impact analysis and in the 
evaluation of alternative plans.

Chapters 6-9 are concerned with developing and resolving problems 
of operational modelling concerning calibration and spatial system design, 
first identified in Chapters 4 and 5. The problem of calibration is explored 
tentatively in Chapter 6 using a shopping model, and in Chapter 7, the 
calibration problem is treated as a problem of non-linear optimisation, 
demonstrated by shopping and transport models. These calibration tech 
niques are applied to a more general model of the Northampton subregion 
in Chapter 8 which also serves to introduce problems of zoning and the 
relationship between the system and its environment which is treated 
extensively in Chapter 9.

Chapters 10-12 attempt to extend the models of the previous chapters 
in two ways: by disaggregation of variables such as population and by the 
design of dynamic models which explicitly treat the concept of time. In 
Chapter 10, a series of disaggregated residential location models based 
on explicit ideas about the housing market are developed and tested on 
the Reading subregion. Chapter 11 sets the context for dynamic modelling 
by reviewing the concepts involved in making models dynamic and by 
introducing certain hypotheses relevant to the behaviour of urban sys-
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terns. Finally, Chapter 12 presents a design for a dynamic model which 
is explored and tested on the Reading subregion. From these various 
experiences conclusions are then drawn which comment on the limitations 
of urban modelling but more optimistically suggest ways in which the 
potential of urban modelling might be realised in future work.





1. The art of urban modelling

The art of urban modelling, which has evolved during the last decade, is 
part of a much wider revolution in thought within the social sciences, a 
revolution which began in North America over twenty years ago and 
which is continuing apace today. In the quest to infuse both rigour and 
quality into disciplines such as sociology, political science and urban 
studies, social scientists have turned to fields such as modern physics in the 
hope that powerful analogies might exist, thus pointing the way to more 
sophisticated and relevant theories of human behaviour. In the early years 
of this endeavour, the emphasis was on abstraction in the form of simple 
theories of social and economic organisation although the importance of 
testing such theories was quickly realised and the concept of modelling 
the system and manipulating the model in the hope of gaining new insights 
became firmly established. Models of social and economic systems in 
volving the essential idea of simplifying reality to a point at which it is 
understandable hardly embody new ideas, but the formalisation of what 
was previously implicit involves a realisation that modelling is funda 
mental to the rigorous development of all the social sciences. It is in fact 
this realisation which distinguishes modern social science from its 
ancestry.

The development of urban research which is closely linked to urban 
modelling is founded upon the conviction that urban phenomena 
exhibit a degree of complexity which only formal study can hope to 
unravel. The complexities and ambiguities surrounding the mechanisms 
sustaining and altering the modern city have become more and more 
difficult to understand as urban society has become more diverse, more 
mobile and more diffuse. Thus, urban modelling has developed as a direct 
response to such complexity although such developments have also been 
tied to advances in large-scale computation without which urban modelling 
could never really have begun. Modern theories of the city such as those 
involving the spatial organisation of land use and related activities and 
the economic behaviour of different locators in the city require symbolic 
models in their testing and refinement against real world data; such use 
of models as media through which the science of urban organisation can

1
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be refined and evolved represents the first important role for urban 
modelling, a role which is a relatively pure expression of the goal 
involving the search for a greater understanding of urban phenomena.

There is a second and perhaps more fundamental role for urban 
modelling and this involves the use of urban models in physical planning. 
Indeed, the short history of urban modelling which is to be outlined in 
this first chapter suggests that most of the large-scale numerical models 
already developed in an urban or regional context were based on the 
notion that better forecasting could only result through their use. In some 
senses, the two roles for models just outlined are both required in plan 
ning studies, and frequently the need to use models in forecasting can be 
an essential complement to models designed to achieve a better under 
standing of reality, and the reverse is also true. Most of the models re 
ferred to in this book are based on the requirement that such models need 
to be operational: that these models can be implemented using real data 
on large-scale computers and can thus be manipulated in both analytical 
and predictive contexts. This is in contrast to a large number of models 
which are essentially theoretical in nature, such as those models explaining 
the structure and behaviour of urban markets. Although these models 
are critical to the development of computer simulation models, for all 
intents and purposes in this book, they will be regarded as theories upon 
which the art of urban modelling is based.

Science and design in urban modelling

The need to produce more coherent and suggestive theories of urban 
structure and growth has been the prerogative of urban researchers 
drawn from the fields of urban economics, geography and sociology as 
well as planning, architecture and engineering. As in most branches of 
the physical sciences, the development of theory is implicitly based upon 
the commonly accepted cycle of scientific method involving hypothesis 
formulation, observation, experiment and hypothesis refinement, tasks 
which can be and have been carried out in more or less any order. Urban 
modelling involving the construction of models based on particular 
hypotheses is largely concerned with the experiment and refinement stages 
of the cycle in which the theory or hypothesis is translated into a testable 
form. A most pertinent definition of an urban model formulated by one 
of the sages of the field, Britton Harris, is based upon this scientific focus. 
Harris (1966a) defines an urban model as 'an experimental design based 
on a theory', thus recognising the role of modelling in the search for a 
relevant understanding of urban structure. 

Yet it is necessary to dispel the myth that urban modelling and indeed,
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any branch of scientific endeavour, is mechanistic and technocratic. The 
popular view of science is based on the notion that science is an inevitable 
outcome of rigid narrow thinking, but that is far from the truth. Science 
like any other area of knowledge is largely based upon insights which 
occur through intuitive processes (Medawar, 1969). Despite Poincare's 
dictum that 'discovery favours the prepared mind', many an analysis 
of the history of science, for example that by Kuhn (1962) described 
briefly in the introduction, reveals that science does not progress con 
tinuously and mechanistically but advances in discrete jumps based on 
fundamental insights and intuition. The idea of science as a process of 
conjecture, then refutation of problems, followed by tentative solutions, 
error-elimination and the redefinition of problems (Popper, 1972) is 
reflected in the development of urban theories and models as will be 
illustrated later. But perhaps the most important change which has taken 
place in the development of urban theory and modelling in the last decade 
is in the gradual switch which has occurred away from inductive style 
towards deductive analyses. Stronger grounding in a priori theory building 
has been largely responsible for this change but the development of facili 
ties for large-scale computation has also helped this trend.

It is no exaggeration to state that electronic computers have made 
urban modelling possible. The testing of urban theories requires such an 
enormous amount of data concerning the most simple of hypotheses 
describing the workings of cities, that such experiment is only possible on 
large-scale computers. Thus the big number crunching exercises charac 
teristic of urban models are now a reality. Furthermore, the hybrid 
nature of urban models in terms of their somewhat crude mathematical 
design often involves solution procedures which are approximate, which 
in short involve iteration. Such trial and error solution procedures repre 
sent the forte of the high-speed computer, thus enabling solutions to prob 
lems, which hitherto would probably never have been formulated and 
certainly never resolved, to be found. A further note on the development 
of urban theory is relevant here: urban models now represent the means 
for testing theory in a spatial context, and it appears that many of the 
newer theories of urban phenomena are model-based. No longer is it 
satisfactory simply to propose theories to be tested by others. More 
empirical support is required in formulating theory, and this has led to 
new developments in urban theory going forward under the guise of urban 
models. Thus urban modelling is not just a reflection of urban theory 
formulated elsewhere; it is now an essential part of theory in the fields of 
urban economics, geography and planning.

The rationale for developing models of the urban system is equally as 
strong in the fields of urban design and physical planning. The idea of
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designing a working model of the city with the notion that future plans for 
the city can be simulated and evaluated on the computer is an appealing 
and immensely exciting concept. The analogy between such computer 
application and the physical scientist's laboratory has been drawn many 
times (McLoughlin, 1969), and the use of such models in an experi 
mental context seems to provide one of the foundation stones in the 
development of urban science. Yet despite the optimism of the planners 
concerned with the use of models in this way, the role of models in plan 
ning remains extremely crude and has never been systematically thought 
through. Such models appear to fit into any of the stages of the planning 
process - into planning analysis, the design of alternative plans, their 
evaluation and even their implementation - and thus the role of existing 
models can be tentatively ascribed as neutral. Certainly questions of the 
effect of models on design and optimisation in planning have hardly been 
broached although there are signs that designers are now coming to grips 
with the role of modelling in this field (Martin and March, 1972). The 
relationship between the use of models in hypothesis testing and in a 
predictive, possibly prescriptive context involves an inevitable source of 
conflict in the empirical development of this field. In some senses, every 
application of a model is unique and requires special adaptation to the 
problem in hand, and thus there is an element of hypothesis testing in 
every predictive model design. Such conflicts have been and continue to 
be a feature of urban model development. To trace the implications of these 
problems, however, it is first necessary to dig a little deeper into the origins 
of urban modelling, thus charting its recent history and setting the context 
for a more technical appreciation.

The Quantitative Revolution and the Systems Approach

The revolution in the social sciences and in related fields such as geography 
and the sciences of the built form which began in the late 1950s, was 
founded on the belief that progress in the development of knowledge 
could best be achieved by rigorous theory-building rather than by loose 
speculation. There was a genuine feeling among researchers that the bene 
fits of the physical sciences would be bestowed upon the social sciences if 
more fundamental approaches could be developed. But this view was also 
coloured by the desire of social scientists to achieve a degree of respect 
ability in the eyes of their fellow scientists and in the community at large. 
This change in approach which has pervaded almost every social science 
during the last two decades has been referred to in various ways, but two 
of the best-known cliches summing up these developments are termed 
the 'Quantitative Revolution' and the 'Systems Approach'.
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The Quantitative Revolution is clearly demonstrated in the development 
of modern geography where concern for describing the nature of geo 
graphical space has involved the widespread use of mathematical and 
statistical description. The geometry of space and the statistical variation 
of spatial phenomena in locational terms have formed the basis for a new 
science of human geography, quite different in method and scope from 
the rather introverted regional geography which it has replaced. For 
example, the development of spatial abstractions such as idealised urban 
economic landscapes has led to the use of sophisticated mathematical 
analysis in the search for relevant theory. In economics, too, the descriptive 
tradition has been almost totally replaced during the last thirty years by 
analytical approaches which seek to explain, as well as describe the 
mechanisms governing the behaviour and structure of economic institu 
tions and organisations.

The Systems Approach, on the other hand, appears to have been more 
formally adopted by disciplines whose content is less amenable to quanti 
tative description. In response to the blurring of disciplinary boundaries 
in science and the realisation that many sciences use the same basic 
methodology, this approach was spurred on by the obvious relevance of 
General System Theory (Von Bertalanffy, 1971), and Cybernetics defined 
by Wiener (1948) as 'the science of control and communication in the 
animal and the machine', to almost every facet of human existence. 
Furthermore, the success of Operations Research as a common quantita 
tive medium for analysis of a host of different 'human' problems was 
regarded by many as the arm of General System Theory which made the 
subject operational and usable in practice. The idea of systems being 
described in terms of structure and behaviour, in terms of input and 
output, and the notion of purposeful control of such systems in terms of 
negative and positive feedbacks, appeared to many social scientists an 
ideal description of their systems of interest and thus the approach has 
come to be used in more-or-less all of the social sciences.

The appeal and relevance of the system model can be formally traced 
through the work of Easton (1965) and Deutsch (1963) in political science, 
through Parsons (1952) to Buckley (1967) in sociology and less formally in 
a proliferation of works in economics, social psychology and geography. 
An excellent review article by McLoughlin and Webster (1970) lists 
pertinent literature from the social sciences and the reader is referred to 
this for further study. The Systems Approach however has been highly 
explicit in the fields of planning and design where the concept of control 
as well as system is of utmost importance. In physical planning, researchers 
and academics have been acutely conscious of the somewhat pragmatic 
nature of the subject and its lack of theory, and this has proved to be
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fertile ground upon which the Systems Approach has grown. Recently, 
this approach has been formally embodied in theoretical texts by Mc- 
Loughlin (1969), Catanese and Steiss (1970) and Chadwick (1971) who 
have all brought their particular blend of Systems Theory to planning. 
Moreover, it is clear from these works that these authors regard urban 
modelling as one, if not the most important, medium through which the 
Systems Approach can be implemented in practice. In some senses, this 
is a posteriori reasoning for the origins of urban modelling go back further 
than the formal expression of planning as a Systems Approach.

The origins of urban modelling

The pioneer developments in urban modelling came almost exclusively 
from North America where two traditions were fused in response to the 
need for more systematic planning and better forecasting. Increasing car 
ownership during the 1940s and early 1950s led to the growing realisation 
that cities with their traditional physical form could simply not cope 
with the new mobility. Out of these problems came the first transportation 
studies in which planners and engineers sought to understand and solve 
congestion and by the late 1950s, the rudiments of the transportation 
planning process had been established. Part of this process involved fore 
casts of future trip generation and its spatial distribution and to meet 
these needs, trip generation was modelled using linear regression analysis, 
and distribution was modelled using the 'gravity model', so called because 
of its analogy with Newton's Law of Gravitation. These modelling tech 
niques were widely used and in the absence of evidence to the contrary, 
these techniques appeared successful in that they were fairly manageable 
and simple to operate. Yet the transportation studies neglected many 
important questions concerning land use and it was inevitable that trans 
port engineers should attempt to take such questions into account by 
extending their ambit to encompass land-use forecasting. The interrelation 
ship between traffic and land use was a subject of much practical and 
academic debate during these years and the pioneering work of Mitchell 
and Rapkin (1954) in their book Urban Traffic: A Function of Land Use 
did much to convince engineers and planners of the need for integrated 
land-use and transportation planning.

The immediate success in operational and academic terms of transporta 
tion planning and modelling naturally led those concerned to begin to 
think about the possibility of building land-use models, and by 1960 
several such models were under construction. But another tradition apart 
from transport planning had an effect upon such developments and this 
concerned research activity in urban and location economics. Two im-
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portant research projects involving theoretical models of urban structure 
were nearing completion at this time. The intra-urban location model 
designed by Wingo (1961), and the similar but slightly more theoretically 
oriented economic model proposed by Alonso (1960) established an 
economic theory for urban systems, comparable to existing theories of 
economic location in regional systems. These models together with other 
more empirically based research in urban economics being initiated at the 
RAND Corporation (Rain, 1962) had a profound influence on the 
development of the first generation of urban models in the early 1960s, 
and this work is so important that it warrants further explanation.

The synthesis achieved by Alonso and Wingo at this time grew out of 
certain simple and long-established ideas concerning location and the 
price of space around a market centre due to Von Thunen (Hall, 1966). 
In 1826, Von Thunen suggested that around a market centre, the rent 
paid for agricultural land plus the cost of transporting agricultural produce 
from the land to the market would equal a constant value. At the margin 
of development, rent would be zero and the total cost incurred to the 
producer would be equal to the transport cost to the market. From this 
statement, it is not hard to deduce that rent would decline with distance 
from the market centre, and subsequent empirical evidence bore out this 
simple result. Von Thunen's work was largely neglected in the subsequent 
years although it became apparent that not only rents but other activities 
such as population density and trip-making also declined with distance 
from the centre (Clark, 1951). Wingo's achievement was to design a model 
based on Von Thunen's work but integrating detailed transport costs and 
explaining population density, and Alonso took this work a stage further 
by setting the whole model within the micro-economic theory of consumer 
behaviour based on utility-maximisation. A major restriction of these 
analyses concerned the fact that only one centre could be treated - the 
monocentric assumption; but it was clear that the trip-distribution model 
which treated many centres was consistent with these theoretical models 
and thus the way lay open for ambitious land-use modelling integrating 
theoretical elegance with operational feasibility.

A short history of first generation urban modelling

The first generation urban models were designed and implemented in 
North America mainly during the years 1959-68, years which coincided 
with the launching of large-scale land-use-transportation studies in major 
metropolitan areas. There are some excellent reviews of model construc 
tion during this period and in particular the reader is referred to the work 
of Lowry (1968), Harris (1968), Kilbridge, O'Block and Teplitz (1969),
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Brown, Ginn, James, Kain and Straszheim (1972) and Lee (1973) who 
have all provided useful summaries of the modelling experience. Boyce, 
Day and McDonald (1970) in a fine review of metropolitan plan-making 
also present pertinent material on the planning environment within which 
these modelling projects were initiated; although this section will draw on 
these works, the discussion is in no way a substitute for reference to these 
reviews but is an interpretation of the most important facets of the North 
American modelling experience.

One of the striking features of urban modelling during these years 
was the almost exclusive development of models in practical planning 
situations. Apart from the work of Chapin and his colleagues in North 
Carolina (Chapin, 1965), most of the fundamental research into urban 
modelling was carried out under the auspices of metropolitan planning 
agencies or consultants, a situation probably due in part to the practical 
need for better forecasting, the continuing tradition of transportation 
modelling and the availability of federal funds. Yet an extensive variety 
of approaches was utilised involving a diverse selection of techniques 
ranging from linear regression and gravity modelling to mathematical 
programming. Emphasis on theory ranged from the pragmatic to the pure, 
and the approach to modelling from the most partial to the most general. 
The models can best be grouped according to the techniques used. Con 
ventional and well-established linear statistical techniques were used as 
a basis for several models, in particular the Greensborough model (Chapin 
and Weiss, 1962), the EMPIRIC model of the Boston Region (Hill, 1965) 
and the Baltimore and Connecticut models (Lakshmanan, 1964, 1968). 
Non-linear models such as the Delaware Valley (Penn-Jersey) Activities 
Allocation model (Seidman, 1969) were constructed in a similar fashion 
and most of these attempts reflected a somewhat inductive approach to 
modelling with little a priori theory. In contrast, the many models built 
around the gravity model suggested a more deductive approach in which 
specific mechanisms at work in the urban system were simulated. The 
Pittsburgh model (Lowry, 1964) and its successors, the Pittsburgh Time- 
Oriented Metropolitan Model (TOMM) designed by Crecine (1964) and 
the Bay Area Projective Land Use Model (PLUM) designed by Goldner 
(1968) as well as the Upper New York State model (Lathrop and Ham 
burg, 1965) are good examples of the gravity modelling approach, an 
approach which appears in retrospect to have produced the most successful 
urban models during this time.

Models based on mathematical programming such as the residential- 
location model originally proposed for Penn-Jersey by Herbert and 
Stevens (1960) and subsequently developed by Harris (1972) at the 
University of Pennsylvania, and the South East Wisconsin Land Use
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Date

Model

1959 1968

Greensboro

Boston: EMPIRIC 2

Baltimore

Connecticut

Bay Area: PLUM 5

Bay Area: BASS

New York State

S E Wisconsin

San Francisco

Washington 10

Pittsburgh LowrV 11 
TOMM 12

LJO -I Q

Penn Jersey AAM ^

REFERENCES TO MODELS:
1 : Chapin and Weiss, 1962, 8
2 : Hill, 1965, 9
3 : Lakshmanan, 1964, 10
4 : Lakshmanan, 1968, 11
5 : Goldner, 1968, 12
6 : Wendtefa/., 1968, 13
7 : Lathrop and Hamburg, 1965, 14 

A: abandoned; C: calibrated; P: used in prediction.

Schlager, 1965, 1966,
Robinson era/., 1965,
Hansen, 1959,
Lowry, 1964,
Crecine, 1964,
Herbert and Stevens, 1960,
Seidman, 1969.

Fig. 1.1. Urban modelling projects in North America during the 1960s.
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Plan Design models built by Schlager (1965, 1966) show how optimisation 
techniques can be used in urban modelling although there has only been 
limited success with these techniques. More hybrid modelling schemes 
such as the Bay Area Simulation Study (BASS) initiated by Wendt et al. 
(1968), and the San Francisco Housing Market Model (Robinson, Wolfe, 
and Barringer, 1965) which attempt to link several different techniques 
were also tried although a large measure of arbitrariness is often a feature 
of such schemes. Figure 1.1 presents a chart of model developments in 
North America from the years 1959-68, and from this chart, it is evident 
that the peak in modelling activity occurred in the early- and mid-1960s. 
Although only a sample of models developed during these years is pre 
sented on the chart, most of the important applications described in easily 
available publications are included.

Although a great deal was learnt from the first generation of urban 
modelling, the experience was somewhat unprecedented in that several 
fundamental factors affecting the whole process of modelling were only 
discovered after the model construction had begun. Reactions to the rela 
tive failure of these early models differ quite widely: for example, Lee 
(1973) considers the experience to have been a salutary warning of the 
dangers of technocracy whereas Ingram, Kain and Ginn (1972) regard 
these early attempts as vindicating the view that modelling is a large 
complex affair which requires far more resources than were then and are 
now available. The first major problem confronted by most of the early 
models involved questions of size. Many of the models were so ambitious 
in terms of their scale, the data required and computer time and capacity 
needed, that real time and money ran out and the models were then 
abandoned or drastically pruned. Classic examples of such failures were 
the San Francisco Housing Market Model and the original Herbert- 
Stevens model for Penn-Jersey. At the same time in North America, disillu 
sionment with technology began to grow as planners and politicians began 
to realise that long-term planning of transportation and land use had little 
or nothing to do with more immediate problems of poverty and inequality. 
One by one the funds available for such long-term projects were diverted 
to more critical and pressing problems. Optimism among model-builders 
and planners turned to pessimism and bitterness and after the mid-1960s 
'sharp criticism forced the movement to go underground' (Lee, 1973).

It is easy to blame excessive ambition, lack of time and money, and 
changing priorities for the failures in first generation urban modelling, 
but the quality and limitations of the models also had a great deal to do 
with the situation. At the beginning of the decade, urban modelling 
seemed to present a means for cutting through and tackling the complexity 
of the modern metropolis. Lee (1973) sums it up nicely in the following
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way: ' Everything seemed to be an urban problem, and everything seemed 
interrelated; the whole world was a jumble of secondary and iterative side 
effects. Some way of integrating it all was needed without giving anything 
up.. .and computers and models held out this promise.' But the modellers 
failed to recognise the limitations of their models in helping to sort out 
ill-defined planning problems. Such models based on fairly well-defined 
formal structures had to rely upon fairly sparse theory, thus often 
appearing arbitrary and somewhat mechanistic in structure. The ill- 
defined nature of reality and the lack of behavioural content combined 
to limit the use of models to a much greater extent than was realised at 
the time. As many land-use-transportation studies were model-based, 
such limitations had severe repercussions upon the projects as a whole.

A more fundamental problem of urban modelling was realised at this 
stage. The problem of observing the mechanisms of cause and effect 
in urban systems is compounded by the fact that such observation 
is clouded by a host of different factors. It is unusually difficult to test 
specific theories in the social sciences for it is impossible to hold all 
variables but one constant and trace the effects on the system. This is a 
problem which is basic to theory in the social sciences and there is little 
doubt that it is the major limitation on urban modelling. The problem 
was only partly faced during the first generation of modelling for it was 
obscured by the other, more immediate difficulties outlined above. A fur 
ther problem, which will only be alluded to here and dealt with in greater 
detail in later chapters, concerns the use of these models in planning. The 
question of modelling, optimisation and design was never really considered 
in most studies, and land-use-transportation plans were largely based on 
trend projection, thus implicitly endorsing an assumed optimality, in the 
eyes of the planners and modellers, of the present situation. The lessons 
from this first generation experience are hard and long and provide the 
basis for a detailed investigation of the role of models in planning. But 
before this is done, it is worth while outlining the variety of possible 
urban models through classification schemes, thus introducing, at the same 
time, some of the terminology essential to further discussion of urban 
modelling.

Classification and terminology

Hardly a book or paper is written on urban modelling which does not 
contain some reference to a classification of models. Useful classifications 
are provided in the review papers cited earlier and these schemes reveal 
the difficulties of devising classes which are mutually exclusive of each 
other and the difficulties caused by having to place a model in one particu-
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lar class or another. Before embarking on a simple classification for 
models, it is worth reflecting upon these problems and recognising that 
the value of classification is in terms of abstraction and simplification, 
not only in terms of constructing a taxonomy for families of models. The 
proposed classification is based upon the author's experience in urban 
modelling rather than upon any particular theoretical stance, and thus, 
the scheme is likely to reflect personal biases and interpretations. More 
over, the classes are based upon dichotomous groupings which reflect 
extreme limits, and consequently, many of the models discussed here will 
fall between classes. Therefore, the essential purpose of this classification 
is to introduce certain concepts and techniques rather than providing an 
exhaustive set of boxes into which individual models can be placed.

A simple distinction between substantive issues based upon the system 
being modelled and design issues reflecting techniques and styles of model 
ling serves as the basis for the classification. It is worth dealing with these 
two issues in turn, then integrating them into the overall classification. 
With regard to substantive issues, a distinction between partial and general 
models is useful. In the sense implied here, partial models deal with 
models which simulate one subsystem of the urban system whereas 
general models attempt to simulate two or more subsystems. For example, 
the retail shopping model designed by Lakshmanan and Hansen (1965) 
is taken to be a partial model whereas the Upper New York State model 
(Lathrop and Hamburg, 1965) which simulates residential, retail, and 
industrial subsystems is clearly general. Although traffic (trip-distribution) 
models are not usually included in discussions of land-use modelling, in 
this context such models would be partial.

A second important substantive distinction relates to the behavioural 
focus of the model. Most of the urban models discussed here are based 
upon non-optimising behaviour, in the sense that activities locate in a non- 
optimum way. Yet certain types of model attempt to simulate optimising 
behaviour; for example, the Penn-Jersey residential location model 
designed by Herbert and Stevens (1960) was based upon an operational 
statement of the land market drawn from Alonso's theory which assumed 
that consumers maximised their utility. This model was set up to maximise 
the consumers' aggregate rent-paying ability, the proxy for utility. This 
distinction in terms of optimisation relates to other notions such as the 
normative or non-normative emphasis in classification and the continuum 
from descriptive to predictive to prescriptive modelling. Classifications 
based upon these concepts have been constructed by various researchers 
(Harris, 1968; Lowry, 1965) but these distinctions really reflect the role 
of the model, as a descriptive tool useful in understanding and as a tool 
used as a predictive or even prescriptive generator in the planning and
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design processes. For some time social scientists have distinguished 
between these two roles implying that different models would be required 
for each but it appears that the concept of optimisation can be applied 
to all models, thus opening up the possibility that any kind of urban 
model has potential within the design process. If this argument is accepted 
then urban models can be regarded as independent of any optimum or 
normative framework. For example, the land-use plan design model built 
by Schlager (1965) in which urban development is allocated by linear 
program, thus minimising total location cost, is based upon a very crude 
model of the urban system but incorporating a sophisticated optimisation 
routine. This is in contrast to models such as the Pittsburgh model (Lowry, 
1964) which are less crude simulations of reality but with no optimisation 
characteristic whatsoever.

A third substantive distinction which has been widely debated during 
the short history of urban modelling relates to the question of time. 
Whether or not a model reflects static elements of urban structure or 
dynamic elements depends largely upon the theory around which the model 
is based. Most urban economic and geographic theory is static, describing 
structure at one cross-section in time or at best, comparative static in 
corporating some long-term and often imputed equilibrium. Therefore 
most urban models simulate the static observable structure of cities. Yet 
the Systems Approach has brought in its wake the concept of dynamics 
in that any system has a structure, and a behaviour which changes the 
structure through time. It is interesting to note that those urban models 
which are dynamic or quasi-dynamic in character, are based on much 
more meagre rations of theory than their static equivalents; the model 
designed by Forrester (1969) and regression-based models such as the 
EMPIRIC (Hill, 1965) bear out this observation. A final substantive 
distinction concerns the classic economic divide between micro and 
macro. Questions of spatial scale immediately come to mind in this regard, 
and the term urban rather than regional, city, or land-use model has been 
chosen in this book precisely to neutralise these questions of scale. Yet 
micro and macro also relate to the level of activity aggregation. The most 
micro of urban models involve theories attempting to explain the be 
haviour of individuals whereas macro-models deal with groups, institu 
tions or larger aggregations of activity. In this sense, the distinction is 
based on micro- and macro-economic considerations, and is often a useful 
general indicator as to the amount of data required for calibration of an 
urban model.

Design characteristics of urban modelling mainly involve technical 
factors concerning the mathematical formulation and solution procedures 
used. There are many possible classifications for the field of mathematics
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is rich in concepts, and thus, only those most familiar to the author and 
those which involve the models described here will be used. A division into 
linear and non-linear models based upon the intrinsic non-linearity or 
otherwise of the equation systems involved is relevant. But there are limi 
tations to this distinction: a model might be both linear and non-linear at 
different levels of specification or in its different parts. For example, the 
discrete state, discrete time ergodic Markov process can be solved as a 
system of linear difference equations although the equations describing its 
transition probabilities might be non-linear. However, this classification 
is useful for most of the statistically-based regression models are linear in 
contrast to the intrinsic non-linearity of gravity-type models. Another 
distinction due to Harris (1968) is in terms of whether or not the system is 
solved simultaneously or sequentially. This frequently relates to whether 
or not the model is static or dynamic for in static models, cross-sectional 
relationships require simultaneous solution whereas temporal behaviour 
is clearly sequential. However simultaneous relationships often have to 
be solved sequentially in an iterative or trial and error fashion due to 
the intractable structure of the system. Lowry's Pittsburgh model provides 
such an example, for a stable distribution of activities cannot be derived 
simultaneously but is the result of an iterative process in which outputs 
are fed back as inputs until a convergence limit is attained.

Classification according to the solution procedure can also be framed 
as analytic solution or simulation. Analytic solution procedures do not 
involve any form of iteration: such procedures are relatively direct in 
comparison with simulation in which the solution is gradually reached 
in stages. Clearly, analytic solution and simulation often relate to simul 
taneous and sequential processes. Typically, the parameters of simultaneous 
linear systems can be derived analytically whereas sequential models such 
as those involving time based on linear difference equations, are solved 
recursively or sequentially by simulation. In actual fact, most of the 
urban models to be introduced here involve some degree of simulation in 
that they are based upon hybrid algorithms, and thus they are often 
referred to as simulation models, although this usage is somewhat more 
general than the precise technical interpretation of the term. The final 
distinction presented here relates to classification of model variables, and 
follows conventional mathematical terminology. Variables are often 
classified as dependent or independent of each other in the system; more 
specifically, variables might be exogenous to the system, that is originating 
outside the system or endogenous, that is predicted by the system itself. 
Each of the models mentioned earlier could be classified using the distinc 
tions outlined above. This is sometimes a difficult task and although it 
can be quite illuminating, the reader is referred to the seminal papers of
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Lowry (1965), Harris (1968) and Wilson (1968) where the first generation 
urban models are reviewed in these terms. In later chapters, models will 
be mainly referred to using the notion of partial and general, static and 
dynamic generalisations which seem to be the most important features of 
the models introduced in this book.

The process of model design

Harris's definition of a model as ' an experimental design based on a theory' 
contains the essence of the model-building process. In theory, urban models 
are designed according to a formal process which can be stated in the 
following terms: hypothesis formulation; observation, data collection, 
programming; calibration, parameter estimation; testing, verification, 
evaluation; prediction. This process is self-explanatory and embodies 
elements similar to other design processes such as architectural and 
engineering design (Asimow, 1962). It contains a strong theme relating to 
the scientific method in which hypotheses are conjectured and refuted by 
experiment, by new observation but most importantly by insight. Most 
modelling ventures coincide to some degree with this formal process but as 
with any seemingly closed system, it must be seen within a wider context. 
The basic question involving the choice of theory upon which the 
hypothesis and model is structured and the goal of refuting the hypo 
thesis by calibration, testing, verification and evaluation is meaning 
less if seen as one single project: the choice of hypothesis rests on a more 
fundamental paradigm which in any one period of time, governs develop 
ments in the field (Kuhn, 1962). The same comment applies to refinement 
or refutation of the hypothesis: only through time can a model be 
'verified' in any conventional sense of the word, and thus the terms used 
here to describe the modelling process may appear somewhat presump 
tuous; this is reason enough for the reader to be a little tolerant of 
terminology in a field as new as this one.

If it is hard to disentangle longer-term goals from shorter-term attempts 
at hypothesis testing and evaluation, it is equally hard to separate out the 
model design process from wider processes such as planning and urban 
design. It appears that for any one process, it is always possible to find a meta- 
process within which the original process sits, thus implying a hierarchy of 
processes like a set of Chinese boxes. This is particularly difficult when it 
comes to extracting scientific method from model design and model design 
from plan design. This problem has been admirably discussed by Chad- 
wick (1971) who contrasts the similarities and differences between the 
search for truth in a scientific sense, the solution of problems in an em 
pirical sense, the design of artifacts in a mechanical sense, and the planning
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of adaptive teleological systems to which the designer belongs. An 
attempt to contrast urban model design with science on the one hand and 
planning on the other is presented diagrammatically in Figure 1.2. Between 
these three processes lie shifts in outlook and goals which are encountered 
when trying to find a common thread linking all three. Suffice it to say 
that urban model design draws from and hopefully contributes to both 
planning and science, and thus elements of these two streams are to be 
found implicitly and explicitly throughout the field of urban modelling.

Model design and plan design

The process of model design within the meta-process of plan design has 
already been discussed and the role of existing models in planning was 
ascribed as neutral. This conventional wisdom is based upon the notion 
that analysis, design and evaluation of any urban or regional system can 
be aided and amplified through modelling. Although few would dispute 
the need to design a model relevant to each particular stage of the planning 
process, in actual fact similar models have been proposed and used at 
every stage. The role for modelling in understanding and analysis is 
perhaps the most straightforward but the use of models in forecasting, 
design and evaluation needs careful and sensitive foresight. This difficult

The scientific method The process of modelling The process of planning
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The many feedbacks which can occur during these processes are 
too complex to portray and thus have been excluded.

Fig. 1.2. Scientific method, planning method and the method of model design.
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and hazy area involving the balance between what can and should be 
optimised in planning and the restrictions on optimum values imposed 
by the existing reality are somewhat perilous subjects to negotiate with 
models. Often, control over the model's input may not coincide with 
the elements which can and should be controlled by the plan and this 
has repercussions which are difficult to resolve.

In the analysis and understanding stages of the plan design process, 
urban models can be calibrated and evaluated against the system of 
interest and the propriety of the model can be thus determined. As the 
model can be seen as a mechanism which generates a response to a particu 
lar stimulus, such responses being determined by the structure of the 
model, it is largely up to the planner as to whether or not such stimulus- 
response mechanisms serve to help in design or plan-evaluation. If the 
planner judges the stimulus to be capable of control, and the responses 
not, then the model might be an eminently useful design tool. If the 
planning process is seen as a process of matching and integrating optimality 
with reality, then the model might be more useful as an evaluation tool. 
For example, Echenique, Crowther and Lindsay (1972) have used a simple 
urban model to predict a series of indicators measuring the accessibility 
of activities to one another. For a series of new town plans, the model is 
applied and indicators predicted and compared with the set of indicators 
predicted from a naturally evolving town. In this way, an implicit evalua 
tion of the efficiency of a series of urban forms is made.

Apart from the use of models to sketch the implications of alternative 
plans, the use of such models in a conditional sense has been widely 
exploited (Lowry, 1965). In particular, models designed to test the impact 
of a major change in the urban system on the existing structure have been 
used; such impacts are usually predicted in a one-shot fashion to some 
often unspecified future date by which time the system is assumed to have 
reacted and moved to a new equilibrium. This long-term impact analysis 
can be useful both for assessing the effect of large-scale changes and for 
assessing the sensitivity of the model. Moreover, it suggests that the real 
use of these models in prediction is not in any absolute way but in a relative 
fashion contrasting different possibilities. In terms of the planning process, 
a final note should be made of the suggested use of such models in implemen 
tation, specifically in monitoring the trajectory of the system. Much has 
been made of these suggestions by planners with little experience of 
modelling, and it does appear that although these sentiments are laudable, 
urban models are as yet too crude to apply in this fashion. In time the 
planning process may become more systematic and the models easier 
to develop, but until then, the hope of using models in monitoring will 
very much remain in the realms of speculation.
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This whole question of model design and plan design is fraught with 
difficulties, often due to a lack of understanding between model-builders 
and planners. Indeed, Lee (1973) sees one of the major stumbling blocks 
with regard to the development of first generation models as due to the fact 
that model-builders had little appreciation of the planners' design tasks 
whereas planners had little idea of the model-builders' limitations in 
constructing models with a comprehensive capability. This problem is 
probably more severe in North America than in Britain, where there is 
a strong tradition of planning as a design science. Yet the problem 
exists and only the education of planners and model-builders in each 
others' science and art will help resolve these conflicts.

Style in urban modelling

The fact that so many different traditions and disciplines are reflected in 
urban modelling means that many different styles have developed. In 
particular, the styles originating from engineering and economics are 
quite different and worthy of some comment. The engineering style is 
perhaps deterministic and typically mechanistic, with less emphasis upon 
theory and more upon operationality. Thus, there is a certain measure of 
arbitrariness in such models which has led to poignant criticism and the 
accusation that modelling is technocracy. In contrast, the style charac 
teristic of economics, in particular of micro-economics, is found in much 
more theoretical, less operational models of the urban system. Such 
models tend to be less comprehensive than their mechanistic counter 
parts and they are dominated by the search for behavioural under 
pinnings. A variety of models has developed around these two major 
traditions, many of them attempting to build upon both traditions and 
styles, although there are very few models which appear to have captured 
an essence of theory together with an operational formulation. Hopefully, 
this synthesis is being attempted in developments in Britain (Batty, 1972a) 
and in the second generation wave of models at present being constructed 
in North America. Some of the models presented in later chapters of this 
book will attempt to capture some of this flavour.

Differences in approach are often transmitted as differences in presen 
tation and formulation of the model. The engineering tradition has led to 
many models being expressed as algorithms rather than systems of equa 
tions in formal algebra. Theoretical economic models of the urban system 
are usually expressed in such formal terms, but several hybrid models 
especially those based upon linear regression, are treated in statistical 
terms. This diversity in style ranging from systems analysis to formal 
algebraic presentation has led to an openness of mind in urban modelling
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which is a rare combination of circumstances in any field. Some synthesis 
has been attempted, for example in the work of Wilson (1970a) and in the 
work of Ingram et al. (1972), but there is an urgent need for comparative 
work. Too often this synthesis has reflected a blunt coupling or stringing 
together of models, thus laying open such schemes to criticism based on 
error propagation and arbitrariness. Progress can only occur through 
more sensitive integration where both theoretical and operational criteria 
are considered.

In the quest to improve urban models, advances are needed in both 
theory and practice, in research and development. An attitude of mind 
in which the intrinsic difficulties of modelling ill-defined systems are 
recognised must be cultivated, in contrast to the extreme prejudice which 
has dominated the development of the field in the last decade. In some 
senses urban modelling represents the frontier between the clash of cul 
tures, science versus art, and the clash of temperaments, rigour versus 
speculation. In these terms urban modelling must be regarded as both 
science and art, a combination which although not new must now be 
regarded as essential in the application of the phenomena of science to 
the phenomena of man. One of the major goals of this book is to try to 
weave a middle way between the theory and practice of urban modelling. 
The presentation of modelling ideas will be organised in the following 
chapters from the simple to the more complex, which necessarily means 
from partial to general, from static to dynamic, from aggregated to 
disaggregated. In the next two chapters, the elementary theories and 
algorithmic forms of several well-established partial and general modelling 
strategies will be explored, as a necessary preliminary to the operational 
development of such models in later chapters.



2. Models for generating and allocating 
urban activities

This chapter is perhaps the most important in this book, for here the 
foundations are laid upon which all the urban models to be discussed in 
later chapters are built. Many of the techniques and theories central to 
this approach to urban modelling are presented here in their most ele 
mentary form and this chapter also suggests how certain principles of 
model design described in the first chapter can be applied. The models to 
be developed are partial rather than general in two senses. First, several 
of these models attempt to simulate the structure and behaviour of single 
subsystems of the urban system such as the residential or retail sectors of 
activity although these models may account for the influence of other 
sectors on the particular sector of interest. The general approach to 
modelling adopted in this book begins with such partial models and treats 
these models as the basic building blocks used to construct more general 
and more complex models. Second, some of the models presented are 
more general, thus dealing with two or more subsystems of the urban 
system, but are partial in the sense that these models simulate only one 
facet of the system; some of the models described treat the generation of 
urban activities independently from the location of these same activities, 
and are therefore partial in this respect.

Another distinction needs to be made here between static and dynamic 
approaches to modelling. Although this has already been discussed in the 
previous chapter, it is important to emphasise that most of the models 
dealt with in this book are essentially static in that they describe the 
structure of the urban system at one cross-section in time. As all the 
variables pertaining to such models are measured at the same instant of 
time, the various mathematical forms associated with these models are 
not notated with regard to time. A further point needs to be made con 
cerning the types of equation systems developed in this chapter. Such 
equation systems for partial models are relatively simple and can usually 
be understood without resort to various mnemonics such as flow charts. 
This is in direct contrast to the equation systems of the next chapter which 
are complex, and such a progression from simple to complex follows the 
process of constructing more general models from partial models.

20
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Apart from the categories into which urban models can be classified 
outlined in the previous chapter, an understanding of models can be 
developed from two specific standpoints which, although somewhat 
arbitrary, do find an expression in practice. Models can be discussed in 
terms of the generation or the allocation of activities or land uses in the 
urban system. This distinction reflects the way in which the spatial dimen 
sion is handled; in considering models which generate or derive activities 
from other activities, the spatial dimension is implicit, whereas in treating 
models which allocate activities, space is explicit for activities which are 
allocated to different subdivisions of the space. To show that this distinc 
tion is not as unrealistic as might first appear, two examples are pertinent. 
The general regional input-output model (Isard et al, 1960) is a model 
which is designed solely to generate activities, and although this genera 
tion occurs in a space such as a region, such activities are not allocated 
within the space. On the other hand, the residential model of Greens- 
borough (Chapin and Weiss, 1968) is designed to allocate a given residen 
tial population to discrete subdivisions of a town. The residential popula 
tion is not generated by the model but is exogenous to the simulation.

There are of course several models which both generate and allocate 
activities but, in general terms, such models are usually more complex 
than models which only generate or allocate. Although this division be 
tween generation and allocation serves to simplify the presentation of 
urban models, it also reflects ways in which various hypotheses or theories 
about the workings of the urban system are derived. More complex 
models are formed not only by synthesising partial models of different 
urban subsystems but also by integrating methods for allocating and 
generating activities. In this chapter, the distinction between models which 
generate and models which allocate is rigidly maintained and this helps 
to highlight the way in which very different hypotheses about the system 
are built up. In the next chapter, however, the distinction between 
generation and allocation is relaxed as more complex models are built up 
from these partial models. But first, before these partial models are 
described, it is worth while providing a general orientation to the approach 
taken in developing various hypotheses and theories concerning the 
workings of the urban system.

An approach to urban systems theory

In outlining this approach, the classical distinction between macro-analysis 
and micro-analysis as it is perceived in economics is retained, for this dis 
tinction helps to clarify the argument. This approach to modelling follows 
the tradition of economics in the broadest possible sense, and in particular
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of macro-economics. The theories which form the basis of the models 
presented here mainly relate to economic relationships within the urban 
system which are described statistically; for example, hypotheses such as 
those governing the patterns of trip-making behaviour, and the processes 
whereby changes in activities affect other activities, are measured using 
methods of statistical analysis. This approach is in contrast to the micro- 
economic viewpoint where the causes and effects of urban structure and 
behaviour are more rigorously sought. The micro-theoretical approach 
is often richer and more complex than the macro-approach although it is 
usually easier to develop macro-theory which can be tested in a formal 
sense against the real world.

It is important not to overplay this distinction between macro and micro 
for many theories appear to contain elements of both approaches. Perhaps 
a more fruitful way of describing these approaches to analysis is through 
the concept of aggregation. The concept of aggregation can be applied to 
the way in which the urban system is treated in time and space as well as 
in terms of its critical variables. Many researchers, notably theoretical 
geographers such as Berry (1964), have identified the key features of urban 
theory in terms of the system's attributes or variables, and its spatial 
and temporal dimension. The theories and models discussed here can 
be described in these terms according to their level of aggregation. 
Concerning the attributes of the urban system such as its structural 
characteristics - activities and land uses, the theories are highly aggregated; 
activities such as residential or retail populations are not partitioned by 
income or economic group or by indices such as social class. In terms 
of the spatial dimension, the theories are disaggregated rather than 
aggregated, for the space to which the theory or model refers is partitioned 
into subspaces or zones. However, the particular level of spatial aggrega 
tion is usually determined by various operational characteristics which 
are discussed in later chapters. With regard to the temporal dimension, 
theories and models which treat time both in an aggregated and in a 
disaggregated way are presented: most of the models to be described are 
static but later these models are made dynamic by disaggregation of the 
temporal dimension.

A general approach to the classification of theories and models which 
exhibits a close correspondence to this argument has been suggested by 
Lowry (1968). In reviewing urban development models, Lowry suggests 
'a theory of the urban land market in paradigm'. By the term paradigm, 
Lowry means a conceptual frame of reference useful for contrasting and 
comparing models of the urban system. Lowry's approach to modelling 
presents the urban system as a mechanism for resolving conflict between 
various groups who require land for their various purposes. The paradigm
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is specifically related to the processes for resolving such conflict by clearing 
the market of any excess demands or supplies of land. Lowry defines the 
urban system as consisting of sites and establishments and transaction 
periods - the necessary prerequisites to the operation of the land market. 
By aggregating sites to locations, establishments to activities and transac 
tion periods to discrete time units, Lowry shows how many different models 
can be compared using the paradigm. In this view, there is no conflict 
between macro or micro, or between aggregate and disaggregate, for 
different theories and models simply express different ways of building 
up an understanding of the urban system.

This approach to urban modelling is certainly partial in the sense that 
only one of many approaches is developed but there are important 
reasons why such a macro approach has been adopted. To construct 
operational models, such an approach appears at the present time to 
be most relevant although eventually other approaches may gain the 
ascendency: this is a matter for future research. Yet although this 
approach is partial, the treatment of the urban system is intended to be 
as comprehensive as possible. Most of the major subsystems, residential, 
retail, manufacturing and transport, are modelled singly and jointly in 
this book. Of the few attempts at organising the diverse elements of the 
urban system into comprehensive theories, the work of Chapin (1965) 
is of relevance. Chapin's approach to the study of spatial phenomena is 
based on two complementary abstractions: the first involves a behavioural 
interpretation of the urban system and focuses on the definition of activi 
ties and interactions. Any set of particular activities and their associated 
interactions is called an activity system and Chapin defines activities as 
within-place interactions. This view is similar to the view of activity alloca 
tion developed later in this chapter which considers activities as summa 
tions or integrations of interaction. The second abstraction concerns the 
physical adaptation of these activity systems. Space is adapted to accom 
modate these activities, and channels are constructed to contain the 
interactions between these activities. Chapin also relates this descriptive 
classification to the processes of change through time, the concept of lags 
between the location and spatial adaptation of these activities, and the 
changes in interactions and channels.

Many of the theories presented in the following pages are elementary 
and obvious. The construction of intricate and complex theoretical 
structures is not a feature of this macro-approach for here the emphasis 
is upon the development of hypotheses which can be efficiently modelled 
in an operational context. Consequently, there is little discussion of 
theory per se and the origins of such theories are only briefly indicated. 
The focus is upon the techniques used to model theory and upon the analy-
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tical methods necessary to fit hypotheses to the real world. To introduce 
such theories of the urban system, methods for generating urban activities 
will be described first.

The generation of urban activities

The generation of urban activities is sometimes considered as part of that 
body of techniques known as forecasting. Such forecasts usually treat 
space implicitly and are time-dependent in the sense that activities are 
generated or derived from other activities during some period of time. 
Probably the best-developed forecasting techniques in a planning context 
are those used to derive estimates of population and such techniques are 
usually based upon the following relationship

P(t+l) = (l+b-d+m)P(t) = qP(t). (2.1)

Population P(t+\) is generated at time / + ! from population at time t 
called P(t) using a growth factor q. This factor is derived from the birth 
rate b, the death rate d and the net migration rate m. There are many 
forecasting schemes based on equation (2.1) and the reader can find 
a detailed treatment in the works of Keyfitz (1968), Rogers (1968), and Rees 
and Wilson (1976). Population-forecasting models of this type will not 
be considered further for, in this chapter, methods for generating activities 
at one cross-section in time are required.

The type of model described in this section relates the population sector 
to the employment sector at any particular point in time. Unlike popula 
tion-forecasting methods, such models are based on the assumption that 
both sectors are necessary to explain the structure and behaviour of the 
urban system. The employment sector is subdivided into a basic sector 
and a non-basic or service sector and the approach implied by these 
distinctions is known as economic base theory. The basic sector of em 
ployment is usually defined as export-oriented employment, embracing 
industries and production processes in which the final product is exported 
out of the particular system of interest. It is assumed that the location of 
basic industries is not dependent upon other activities in the system and 
that the overall growth path of the system is directly linked to change in 
the basic sector. Such industries have been called by Alexandersson (1956) 
city-forming in contrast to the city-serving industries of the service sector. 
As the name suggests, the service sector depends upon the basic sector 
and upon the population.sector in that this sector provides the services 
for these other sectors. Furthermore, the location of these service industries 
is assumed to relate to the locational patterns of other sectors.

There are many problems of defining and measuring the economic base
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and a useful discussion of these problems is given in a paper by Massey 
(1973). Although this problem will not be discussed in any detail in this 
book, it will be considered further in later chapters, particularly Chap 
ters 4 and 5. For the purposes of this chapter, it is sufficient to note the 
distinction between service and basic employment. An elementary form 
of the economic base hypothesis can be succinctly stated by the following 
functions p = f(^ (2 2)

S=f(P). (2.3)

In (2.2), population P is expressed as some function of total employment £ 
and in (2.3), service employment 5 is some function of population. 
Equations (2.2) and (2.3) highlight the essential structure of the economic 
base method and an explicit form for this hypothesis is derived if linear 
functions are adopted. The hypothesis can now be completely stated in
three equations

^ P = aE, a > 1, (2.4)

S = j3P, 0 < A < 1, (2.5) 

E = E* + S. (2.6)

Equations (2.4)-(2.6) are the fundamental identities of the economic 
base hypothesis which must hold in any closed system of regions or 
towns. Equation (2.6) is an accounting relation in which E*> is basic em 
ployment. The constants a. and /? have the following interpretation. 
Rearranging (2.4), it is clear that a. must be an inverse activity rate defined

P 
- = -E . (2-7)

In a similar fashion, ft is called a population-serving ratio which is defined 
as

P = -p. (2.8)

There are two major methods for analysing the identities of the economic 
base hypothesis. First, there is a direct method of analysis which is called 
the analytic form and second, there is an indirect method which is called 
the expanded form. These two methods of analysis will now be discussed 
in turn.

The analytic form of the economic base method

The objective of economic base method is to express the derived variables 
of population and service employment in terms of basic employment.
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By substituting (2.6) into (2.4), population can be expressed as
P = OLE = a£b + aS. (2.9)

Rearranging (2.9) and expressing service employment S in terms of 
population from (2.5), population can be generated from basic employ 
ment in the following way

P-ot.pP = a.E°, (2.10) 

P = aE*(l-a/3)-\ (2.11)

Equation (2.11) is usually referred to as the reduced form of (2.4) and, in 
a similar way, reduced forms can easily be calculated for (2.5) and (2.6) 
(Beach, 1957). In (2.11), the term (1 -a/?)-1 acts as a scalar which converts 
basic population a.Eb to total population P in one step. In short, this is 
the multiplier which contains both the direct and indirect effects of 
changes in basic employment on other activities. From the previous 
definition, it is obvious that (1—a/?)-1 > 1 when 0 < a/? < 1. The 
commonsense of this assertion is seen by expanding a/? from (2.7) and

(2 ' 8) a ?S S A S 1^ = EP = E' Q< E <L

The multiplier in (2.11) acts in exactly the same way as the income multi 
plier in macro-economics (Alien, 1967) and this economic base multiplier 
is similar to the multiplier in input-output economics (Artle, 1961) which 
is examined later.

It is possible and indeed desirable to disaggregate the service sector 
further in this simple model into consumer services S^ and producer 
services S2 . As services refer both to employment and to population, it is 
reasonable to suppose that this distinction is realistic. There are now four 
rather than three fundamental identities; equation (2.4) is as before, and 
(2.5) and (2.6) are rewritten as

51 = PJ, 0 < A < 1, (2.12)
52 = &E, 0 < & < 1, (2.13)
E= Eb + Si + S^. (2.14)

/?! and Pz are population-serving and employment-serving ratios respec 
tively. By undertaking a similar process of manipulation and substitution 
to that outlined above, a new reduced form is derived,

(2.15)
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(a/?i+A2)]-1 - (2-16)

By dividing (2.16) by a, total employment E can be generated, and by 
multiplying E by /22 and adding the product of /^ and (2.16), total service 
employment 5 is derived. The multipliers in (2.11) and (2.16) are equiva
lent; in other words /, /> 0« A + Pi = a£
as can easily be shown by making the appropriate substitutions. The 
indirect effects of the multiplier are implicit in the above equations yet 
it is possible to derive the multiplier by tracing through these indirect 
effects explicitly. In the next section, the expanded form of the economic 
base method demonstrates the process which is generated by these 
indirect effects.

The expanded form of the economic base method

From an input of basic employment Eb, the indirect effects of this input 
on other activities can be traced by applying the identities (2.4), (2.12) 
and (2.13) in a sequential fashion. First, basic population P(l) can be 
derived from basic employment using (2.4)

/>(!) = a.E°. (2.17)

The consumer services associated with /"(I), called 5^(1), and the producer 
services relating to E°, called S2(l), are calculated using (2.12) and (2.13) 
respectively

S2(l) = &£». (2.19)

Adding (2.18) and (2.19) gives the first increment of service employment 

5(1) = faE*+pt E* = £Wi+A)- (2-20)

This sequence of operations in (2.17)-(2.20) is now repeated by generating 
a second increment of population P(2) associated with S(l). Second incre 
ments of producer and consumer services are then derived from P(2) in a 
similar manner. These equations are listed below, thus demonstrating the 
iterative nature of this process

P(2) = «5(1) = «£»(«/?!+&), (2.21)

5i(2) = A/>(2) = /?1a£b(a/?1 +/?2), (2.22)

52(2) = /?85(1) = fltEPWi+fo. (2.23)
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Adding (2.22) and (2.23) and rearranging gives

5(2) = &P(2) + &S(1) = £»(a/?i + A)8 - (2.24)

Working through this process it is clear that the increment of population 
or service employment on any iteration m can be derived using the follow 
ing recurrence relations

P(m) = a£»(a/?1 +/?2)'»-1 , (2.25) 

S(m) = £b(«/?i+/?2)m- (2.26)

To calculate total employment E, basic employment £b and the incre 
ments of service employment S(m) must be summed,

E = £» + (a/?1 + /?2)£b + (a/?1 +/?2)2£b + . . . + (a/?1+ /?2)">£b. (2.27)

Then as m -*• oo, total employment E and total population P can be ex 
pressed as follows

E = £b («/?i+ A)m, (2.28)
m=0

(2-29)

where (aAi+Aa)0 = 1. Examining (2.28) and (2.29) as m -> oo, it is clear 
that these summations converge to a limit for 0 < (a^+yffg) < 1 as 
shown previously. Therefore

lim(a/?1 +/?2)™ = 0. (2.30)
m— >oo

In (2.28) and (2.29) there is a converging geometric series whose summation 
can be expressed analytically as

. (2.31)

Although the convergence implied by (2.31) is intuitively obvious, formal 
proofs can be found in most books on elementary algebra (Parry-Lewis, 
1964). Substituting (2.31) into (2.28) and (2.29) gives the analytic expres 
sions for total employment and population which were derived in the 
previous section

(2.32)

P = aE»[l -(<*&+ fa]-1. (2.33)



Input data: activity 
rate a, population-and 
employment-serving ratios 
/3 1 and 02 and basic 
employment

Generate population from 
increment of employment

Generate services from 
increment of population

Generate services from 
increment of employment 
(employment-serving services}

Calculate cumulative 
totals of services and 
population

Fig. 2.1. The sequence of operations in generat 
ing population and services from basic 

employment.
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The equivalence of the analytic and expanded forms of the economic base 
method is obvious from a comparison of (2.33) with (2.16).

The sequence of operations contained in equations (2. 1 7)-(2.29) is easily 
grasped from the flow chart presented in Figure 2. 1 . This flow chart shows 
the essential structure of the solution method: the importance of this 
diagram cannot be overemphasised, for this method of presenting the 
economic base hypothesis forms the basis of several models presented in 
later chapters. Both the analytic and expanded forms of method are used 
as part of more general models in Chapter 3, but in terms of the expanded 
form, it is important to investigate the rate at which the procedure con 
verges. If the rate of convergence is slow, it may be necessary to speed up 
the process by approximation.

To examine the rate of convergence, the actual percentage and the 
cumulative percentage of activity generated at any iteration m can be 
derived. Taking first the population P(rri) as a percentage of total popula 
tion P, this percentage called i/r can be written as

t = ?r = («A + A)"-1 [i - («A + A)]. (2.34)

Equation (2.34) can be simplified to

0 < ifr < 1. (2.35)

If the same process is carried out with the service employments, identical 
equations to (2.35) are derived. The cumulative percentage of population 
called T can be calculated by summing the total increments generated up 
to iteration m and dividing by total population. The expression for *F is 
as follows

Y = ^—— = S («&+&)* [!-(«&+&)]• (2.36) 
r fc=o

Equation (2.36) can be simplified to

Y = I -(<*&+ fom, 0 < T < 1. (2.37)

Equations identical to (2.37) can also be derived for the cumulative per 
centage of service employments. From equations (2.34)-(2.37), convenient 
convergence limits for the iterative process can be worked out. For 
example, it is clear from (2.37) that the percentage error £ between the 
predicted and actual quantity of activity is

£ = Wt+pj*. (2.38)
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Given any £ within which convergence of the process is required, then the 
minimum number of iterations m to achieve this can be directly calculated 
by transforming (2.38) as follows

m = Ing
(2.39)m ia/Ji+/J2J

Equation (2.39) is an extremely useful expression for finding out how 
quickly the process converges.

o
a

0.0

01234 5 

Iterations (m)

Fig. 2.2. Graphical analysis of the economic base method.

Before this section is concluded, it is worth while examining the con 
vergence properties of a real example. Using data from the Reading sub- 
region, a plot of equations (2.35) and (2.37) is made in Figure 2.2. As can
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be seen from this graph, these simple difference equations converge quite 
rapidly. Table 2.1 records data pertinent to this example and also lists 
the percentages and error term computed from equations (2.35), (2.37) 
and (2.38).

TABLE 2.1. Convergence of the expanded form of 
economic base method

Iteration 
m

\
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Percentage 
^•from 
(2.35)

0.3520
0.2282
0.1478
0.0957
0.0620
0.0402
0.0260
0.0168
0.0109
0.0070
0.0045
0.0029
0.0019
0.0012
0.0008
0.0005
0.0003
0.0002
00001
0.0001

Cumulative 
percentage 

Tfrom 
(2.37)

0.3520
0.5801
0.7279
0.8237
0.8857
0.9260
0.9520
0.9689
0.9798
0.9869
0.9915
0.9945
0.9964
0.9977
0.9985
0.9990
0.9993
0.9995
0.9997
0.9998

Error g 
from (2.38)

0.6479
0.4198
0.2720
0.1762
0.1142
0.0739
0.0479
0.0310
0.0201
0.0130
0.0084
0.0054
0.0035
0.0022
0.0014
0.0009
0.0006
0.0004
0.0002
0.0001

NOTE: activity rate a = 2.9941, population-serving ratio ft = 0.2164, multiplier 
(!-<*/?)-! = 2.8405.

Alternative models of the economic base

An alternative yet complementary approach to analysis of the economic 
base hypothesis involves the specification of slightly more complex re 
lationships which are usually fitted using statistical methods. Where com 
parisons of several different regions or towns are required in terms of 
the economic base relation, linear regression analysis is often used and 
the models are formulated accordingly. The work of Weiss and Gooding 
(1968) provides a useful example of such an approach. Weiss and Gooding
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formulate a simple two-equation economic base model in the following 
way; they use (2.6) which is repeated below and a variant of (2.13)

[(2.6)] 

S = a+gE. . (2.40)

a and g are parameters of the equation. The reduced forms for (2.6) and 
for (2.40) are derived by substitution and are given as

g)-\ (2.41) 
S = a(l -g)-i+gE*(l ~g)-\ (2.42)

From (2.41) and (2.42) it is clear that (1 -g)~l is the multiplier; Weiss and 
Gooding suggest that such a model can be fitted using regression 
analysis, although they maintain that it is preferable to fit (2.42) rather 
than (2.41) to data so that the bias caused by including basic employment 
in total employment is avoided.

As a further example of this approach, Isard and Czamanski (1965) 
have fitted a more complex economic base model to data for several 
different-size classes of a North American city. The identities for this 
model are listed below with the accounting relation (2.14) repeated

P = ai + gl E, (2.43) 

S, = az +g2 P, (2.44)
(2.45) 

[(2.14)]

alt a2 , a3 , glt g2 and g3 are parameters of the model. Isard and Czamanski 
have fitted a reduced form of this model by regressing population against 
basic employment and have found that the population multiplier varies 
widely between different classes of city. However, more constant multi 
pliers were derived by fitting the model to marginal changes in population 
and employment over a ten-year period. These kinds of analyses illustrate 
fairly elementary approaches to the use of economic base analysis but 
many researchers have attempted to improve the economic base hypothesis 
by the use of input-output analysis.

Artle (1961) has shown that there are obvious relationships between 
economic base and input-output analysis, and these are worth stating 
here. The general input-output model organises the production-consump 
tion process into intermediate and final products or demands; intermediate 
products are required to produce final products and such processes set up 
commodity flows between the various sectors of the economy. In relation
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to economic base theory, the products may be measured in terms of em 
ployment required in each sector but often products are measured in 
neutral indices such as monetary units. The economy might be divided 
into K sectors and the gross output or product of sector i called xi can be 
written as K

(2-46)

where x^ is the commodity flow from sector / to sector 7' (i,j = 1,2,..., AT) 
and yf is the final product in sector /'. The commodity flow x{i can be 
expressed as a proportion of gross output Xj by

% = Xf- (2-47) xi
The proportions a{i are usually called the technical input-output coeffi 
cients and indicate the quantity of product i required to produce one unit 
of product/ Using (2.47), equation (2.46) can be rewritten as

K 
Xi = S ayXj+yr (2.48)

As in economic base analysis, it is possible to derive a reduced form for 
(2.48) expressing xt in terms of the final product yt .

It is more convenient to write the input-output equation using matrix 
notation, for the basic structure of the model can thus be clearly observed. 
Rewriting (2.48) in matrix terms gives

x = Ax + y, (2.49)
where x and y are K x 1 column vectors of gross output and final product 
respectively and A is a K x K matrix of technical coefficients. The reduced 
form of (2.49) can be derived as

x = (I-A^y, (2.50)
where I is a Kx K identity matrix. The inverse matrix (I- A)"1 is the input- 
output multiplier which shows the direct and indirect output requirements 
per unit of final product. The similarity between economic base and input- 
output analysis is demonstrated by a comparison of (2.50) with (2.11). 
The input-output model has become the basis of more general techniques 
of urban analysis such as social accounting and activity analysis and in 
Chapter 3 this method of analysis is further discussed in relation to urban 
modelling. All the necessary concepts involved in the generation of activi 
ties have been introduced and in later chapters, these ideas will be taken 
further. In the following sections, models for allocating activities to the 
zones of an urban system, will now be outlined.
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The allocation of urban activities
To introduce the concept of allocation, it is worth while starting by 
defining certain terms and notation. The terms allocation and location are 
used interchangeably in the text, and the process of allocating or locating 
urban activities involves the placement of activities in different subdivi 
sions or zones of the spatial system. Spatial interaction is defined as the 
flow of activity between different zones and the summation of various 
flows or interactions gives rise to the location of activities, as will become 
clear below. All variables which refer to different zones are subscripted by 
i or j or both; for example, the general flow of activity between zones i 
and j is called Ttp where the subscripts fall in the ranges i = 1,2, ...,/, 
and j = 1,2, ...,/. Summation over / or j throughout the whole range is 
defined below as

S Tt} = Til +Ti,+ Tis +...+ Ttj, 
j = i

S TH = TV+TV+TV+...+ TZi .

Throughout the rest of this book, where the range of summation is not 
explicitly indicated, summation is implicit over the whole range.

Perhaps the best-known model of spatial interaction is the gravity model, 
so called because of its analogy with the Newtonian concept of gravity. 
The traditional gravity model is based on the hypothesis that the interac 
tion between any two masses varies directly with the product of the masses 
and inversely with some measure of the spatial separation or cost between 
the two masses. The model has an interesting history in the social sciences 
having been adapted to many kinds of spatial phenomena and the reader 
is referred to an excellent article by Carrothers (1956) for a review of some 
early versions. A general form of the gravity model can be stated as

Ti} = GOtDjflcJ. (2.51)

T{j is the interaction between zone i and zone j, Oi is the activity in the 
origin or production zone i, D;- is the activity in the destination or attrac 
tion zoney,/(cy) is some function of generalised travel cost or impedance 
between / and j, and G is a constant of proportionality. A well-known 
form for the function of generalised travel cost has been an inverse power 
function of distance

where A is a parameter of the function and rfy is the distance between i 
and/ The model has been applied widely, using this inverse power func-
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tion, especially in geographic research, and Olsson (1965) argues that it is 
preferable to treat this form of model as a type of regression analysis. By 
manipulating and transforming the inverse power model, a linear form 
of equation is derived which can be fitted using linear statistical method

ln<?-Aln<V (2.52)

The gravity model is closely related to the potential model first introduced 
by Stewart (1947). The potential model is based on an attempt to measure 
the ' potential ' of any activity which is exerted on surrounding activities. 
Stewart first outlined the concept in relation to the potential of population 
but the model has since been applied to other kinds of spatial phenomena 
(Stewart and Warntz, 1958).

A form of the potential model can be derived from the gravity model 
if equation (2.51) is summed over/ By summing interaction over j, the 
'potential' amount of interaction at i is calculated.

i} = G0i S^/(c«). (2.53) 
i i

The potential at / per unit of activity in zone /, called Vt , is calculated as

(cii). (2.54) 
i i

This measure of potential has been called a measure of competition by 
Wilson (1970a) and forms the basis of the normalising factors in the 
modern gravity model. In fact, the first attempts at allocating activity to 
zones of the urban system were based on simple measures of potential; 
for example, in the model designed by Hansen (1959), new residential 
activity is allocated in proportion to a weighted index of employment 
potential.

A general framework linking spatial interaction and location models has 
recently been designed by Wilson (1970a) and the importance of this frame 
work is based on the consistent way in which the level of constraint on 
interaction and location is treated. From this framework has come the 
development of a family of spatial interaction and related models (Cordey- 
Hayes and Wilson, 1971) but perhaps the most interesting way of inter 
preting this approach is through the concept of accounting. The matrix 
of interaction can be displayed as a table of trips whose rows and 
columns refer to the zones of the urban system. The summation of the trips 
across the columns or down the rows leads to estimates of activity originat 
ing or terminating in different zones, and such a table of accounts is pre 
sented in Table 2.2. There can be many different degrees of constraint on
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the origin or destination of activities in such a schema, and Wilson (1970a) 
has provided a systematic approach to classifying the family of models 
which is set up by this framework.

TABLE 2.2. The interaction matrix as a table of accounts

Destination 
zones... 1 2 3 ... j ... J

Origin 
zones

T2i 
T3i 03

Ti3 TtJ

7/2 7/3

D,
TU Oj

A family of spatial interaction models

The concept of a family of spatial interaction models is also due to Wilson 
(1970a, 1971a) and this discussion leans heavily on his work. The family 
of models has also been related in a general sense to variants of the gravity 
model as used, for example, in geographic analysis and in transportation 
planning, and Cordey-Hayes and Wilson (1971) demonstrate how models 
such as the intervening-opportunities model can be regarded as special 
cases within this family. Following Wilson (1970a), four models within 
the family are characterised and the discussion is centred around the 
degree of constraint to which each model is subject.

The traditional gravity model presented in equation (2.51) represents 
an extreme case in the family; the model is called unconstrained for there 
are no constraints on the origin or destination of activities in the urban 
system. For convenience, equation (2.51) is repeated

r-r< /-* /-\ r\ ff \ ff} C 1 \1Tti = GOtDjfiCij). 1(2.51)] 

However, the model is usually subject to an overall accounting constraint
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of the form
;, = T, (2.55)

i ]

where T is the total amount of interaction in the system. In other words, 
although the origin and destination of activity is in no way constrained, 
the model is constructed so that the predicted amount of total interaction 
is equal to the observed amount. To evaluate the constant G, (2.51) is 
summed over i andj and substituted into (2.55) giving

G = T (2.56)

Although (2.51) has been developed in analogy with Newton's^ gravity 
equation, Isard et al. (1960) have developed a version of this uncon 
strained model using a probabilistic approach.

At the other extreme in the family, there is the production-attraction 
constrained model which is essentially a distribution model. The model 
has to satisfy constraints on both the origins and destinations, and in 
terms of Table 2.2, the column and row sums have to be satisfied by the 
model. These constraints can be stated as follows

Sr<y = Ot , (2.57) 
i

Di> <2 - 58>
and note that _ _ _2j2j-'y — 2jui — LI UJ — 1 -

i } i i

The appropriate model satisfying constraint equations (2.57) and (2.58)
is written as „ n ,. . ,0 ,m TH = Ai BjOi Dj f(cij). (2.59)
In this case the terms At and Bjt which are called balancing or normalising 
factors, replace the constant G in (2.51). Ai and Bj can be found by 
summing (2.59) overhand i respectively, and these terms are evaluated as

- (160)

The production-attraction constrained model has been used extensively 
as a trip-distribution model in transportation planning and many variants 
of this model exist. Good examples of this model are the Bureau of Public
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Roads model (Bureau of Public Roads, 1968), the SELNEC traffic model 
(Wagon and Hawkins, 1970), and the time function iteration model 
(Furness, 1965).

Between these two extremes in the family of models lie many models 
which are subject to some constraints but not others. Two important types 
can be identified: the production-constrained gravity model and the 
attraction-constrained gravity model. The production-constrained model 
is subject to constraint equation (2.57) and is written as

TV = AtOiDjftCi,), (2.62)

As there are no constraints on the destination of activity in (2.62), then in 
general the predicted and actual amounts of activity iny are not equal, that
18

In a similar way, the attraction-constrained model is only subject to con 
straint equation (2.58), and the model is written as

Tti = BjOtDflctj), (2.64)

B> - - (165)
These two models in (2.62) and (2.64) are usually referred to as location 
models, for by summing the model equations over the constrained zone 
subscripts, the amount of activity locating in different zones can be cal 
culated. In the partially constrained models presented above, the con 
straints to which these models are subject refer to the full set of origin 
and/or destination zones. It is however possible to develop models which 
are only constrained over certain sets of zones and to illustrate such 
a model, the production and partly attraction-constrained model developed 
by Wilson (1969a) for the residential subsystem will be outlined. An outline 
of this model is helpful here for, in Chapter 3, this partially constrained 
model is embedded in a more complex urban model.

To ensure a general treatment, the set of zones is divided into two 
subsets Zl and Z2 . Z1 refers to that subset of zones in which the quantity 
of activity is constrained by physical limitations on location such as 
capacity constraints or by policy decisions. Z2 is the subset of zones 
which is not affected by such constraints. Then

Z = Zj U Z2>



40 URBAN MODELLING

where Z is the total set of zones in the urban system, and from the 
definitions, it is clear that

0 = Zi n z2,
where 0 is the empty set. The constraints on activity can now be written 
using this notation

£ TV = 0,, /eZ, (2.66) 
jtz
2 Tti = Dit jeZ,. (2.67)

ieZ

Equation (2.66) is the usual production constraint but note that (2.67) 
refers only to the subset of zones Zj. Two linked submodels, one for each 
subset of zones, can be developed to account for constraint equations 
(2.66) and (2.67). First, for the case where j e Z±

TV = Ai Bj Oi 0,/(cy), I'eZ, yeZ1; (2.68) 
and second, for the case where j e Z2

TV = AtOfDjftcn), ieZ, jeZz. (2.69)
Although equations (2.68) and (2.69) have an identical form to (2.59) and 
(2.62), the balancing factors A{ and Bf are slightly different, thus accounting 
for the differences in the constraints. Making the relevant summations 
and rearrangements, the balancing factors are evaluated as

Ai= ' /ez> (2'70)

ieZ

There are other kinds of partially constrained models, accounting for 
trips external to the system for example; several of these models will be 
discussed in Chapters 8 and 9 and the book by Wilson (1970a) contains 
a detailed discussion of related developments. Having outlined the family 
of spatial interaction models, it is now appropriate to discuss the various 
location models which are part of this family, in greater depth, and to 
outline certain applications which have been made.

Location models based on gravity and potential models
Already the potential model has been mentioned in the context of location 
models, and one of the first attempts at modelling the urban system was
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made by Hansen (1959) using such a model. Hansen's model is designed 
to allocate the change in the residential population called AP, in a specific 
time period, to zones of an urban region in proportion to a weighted mea 
sure of employment potential. Hansen assumes that employment potential 
reflects the hypothesis that more people tend to live near their workplace 
but Hansen recognises that land availability is also a factor which affects 
residential location. As land availability increases, the potential for resi 
dential location is likely to increase, and Hansen weights employment 
potential by land availability. The model has the following form

AP3. = GL,2W« A. (2-72)
i

where AP3- is the new increment of population in j and Ei is the employ 
ment in i, Lj is the land available in j for residential development, dy is 
the distance between i and j, G is a constant of proportionality and A is 
a parameter. Equation (2.72) is subject to the constraint

= AP, (2.73) 
i

and the constant G can be evaluated by summing (2.72) over j and sub 
stituting into (2.73)

<2 - 74)
i i

This method of allocating activity is mathematically equivalent to sum 
ming the interaction estimates given by the unconstrained gravity model 
presented in (2.51). The potential model has also been used as part of 
larger modelling frameworks, and in Chapter 3 its use in the original 
Pittsburgh land-use model designed by Lowry (1964) will be outlined.

An attraction-constrained gravity model has been formulated by Wilson 
(1969a) for problems of residential location. The model computes interac 
tion between residential origins and workplace destinations, and is sub 
ject to the following constraint

Sr,, = Et. (2.75)
i

A simple form of model satisfying (2.75) is derived as an interaction model 
with a negative exponential function of travel cost

-ACiy), (2.76) 

- (2 '77)

3-2
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In equations (2.76) and (2.77), Wi is a measure of locational attraction of 
the residential zone i. Residential population can be found by summing 
(2.76) over7' and scaling by an inverse activity rate a

Pi = a£7tf = aWt^BjEj exp (-Ac^.). (2.78) 
i i

This type of model is explored further in the next chapter, where it is 
formulated as a production-constrained model.

Perhaps the best-known example of a production-constrained model is 
the retail location model first applied by Lakshmanan and Hansen (1965) 
to Baltimore and derived by Huff (1963) and Casey (1955) from the work 
of Reilly (1929). The model allocates consumer expenditures from resi 
dential zones / to shopping centres/ subject to the constraint

Sfy = c{Pt . (2.79) 
i

Sti are the sales made by vendors in j to consumers in /, and ci is the per 
capita expenditure on consumer goods in /. The model is formulated

Sff = A^PiW^d^, (2.80) 

1 CT.- (2-81)

Wj is a measure of shopping centre attraction in j and A1; A2 are parameters 
of the model. In the original version of the model by Lakshmanan and 
Hansen, Ax was set to unity. Sales in shopping centre j can be calculated by 
summing (2.80) over i

S . = xsy = WpZAtcffd-^. (2.82)

In Chapter 6, this shopping model is explored in some detail and several 
applications in Britain are compared. A useful review of the problems in 
developing such models is contained in the report by NEDO (1970).

The final model to be discussed in this section is called the intervening- 
opportunities model, first suggested by Stouffer (1940) in a study of resi 
dential migration. Stouffer argued that a person's propensity to migrate 
was not necessarily dependent upon the distance between two zones i and j 
but more likely to be directly proportional to the opportunities perceived 
at a destination/ and inversely proportional to the number of intervening- 
opportunities between / and/ Stouifer's hypothesis was formulated as

TV = G-. (2.83)
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G is a constant of proportionality and Vit_^ is the number of intervening- 
opportunities between / and j and is denned in terms of the opportunities 
at any zone j as j_ v

where the summation i->j—l is over the zones falling on the travel path 
between i and j. Since Stouffer's original hypothesis, the model has been 
extended theoretically by Schneider (1959) and Harris (1964) and the form 
of the model is now usually given as

Ti} = Ai Oi [exp (- A K«_0 - exp (- A Vti)}. (2.84)
The normalising constant Ai is likely to be near unity if the model is applied 
to a bounded region with small external interaction. Wilson (1969a) has 
also shown that (2.84) can be approximated by a production-constrained 
gravity model of the form

Ti} = A&ID, exp (-AJV,). (2.85)
So far, this chapter has been largely concerned with presenting a variety 

of allocation models and little has been said on the methods used to con 
struct such hypotheses. In the next section, several methods for construct 
ing these kinds of model will be briefly discussed.

Methods for constructing spatial interaction models

The purpose of this section is to introduce various methods and concepts 
which have been devised to construct theories and models of spatial inter 
action and location; no formal presentation of these methods is attempted 
for only the conceptual development of such techniques is required. The 
models which have already been discussed, have been presented without 
recourse to any theoretical derivation, for such models have been stated 
heuristically. An example suffices to demonstrate the difference between 
the approach adopted and more formal methods. The various constraints 
or normalising factors introduced into many of the spatial interaction 
models described above are designed to ensure that the models satisfy 
different sets of constraints. The precise form of these factors was calcu 
lated by standard mathematical techniques of substitution and rearrange 
ment of variables and equation structures. However, there exist more 
formal approaches which attempt to interpret the elements of such models 
as part of more rigorous theories.

The first of these methods which has been used quite widely in interpre 
tation, if not in derivation of spatial interaction models, is largely due to 
Huff (1963). Huff interprets production-constrained location models in
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terms of probability and he uses concepts from utility theory to explain 
the substantive content of such models. Huff assumes that any person 
living in a zone / perceives a certain utility Uy in travelling to any zone j, 
and that this utility can be expressed as a percentage of the total utility of 
travelling to all zones j. Such an assumption suggests that every person in 
the system has a certain probability pti of making a trip from i to j which 
can be written as

= ° < Pti < l ' Pii = L (186)
In the case of a shopping model, for example, the utility of travel between 
i and j could be hypothesised to be directly proportional to some index of 
shopping centre attraction W}* and inversely proportional to a function 
of cost or time incurred by travel between / and./, </7/ 2 . Then the probability 
in (2.86) can be rewritten as

^'** (2 - 87>
The shopping model presented earlier in (2.80) and (2.81) can now be 
written in terms of probabilities using (2.87)

w*.i d~l* 
= ct Pt . (2.88)

Just as Huff has interpreted the probability of interaction as a relation 
ship between specific and total utility, Wilson (1970a) has described the 
balancing factors of spatial interaction models as measures of competition. 
In the case of the shopping model, the denominator of the right-hand 
side of (2.88) can be regarded as a measure of the competition of all 
shopping centres acting on the decision to shop in a particular centre. 
Isard et al. (1960) have also derived the unconstrained interaction model 
using a probabilistic approach which seeks to modify a hypothetical 
pattern of trips by introducing the effect of spatial cost or distance; the 
reader is referred to Isard's work for further details.

A completely new and general theoretical derivation of the gravity 
model based on the concept of entropy as used in statistical mechanics 
has recently been put forward by Wilson (1970a) and this method is 
quickly becoming the basis of the accounting framework for spatial 
interaction modelling, discussed earlier. The method is based upon a 
definition of the states and distributions which characterise the system of 
interest and Wilson's argument can be illustrated in relation to the interac-
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tion matrix shown in Table 2.2. A state of the system is defined as an 
assignment of individual persons to the pairwise links in the system which 
does not violate any of the constraints on movement. In terms of Table 2.2, 
many different sets of individuals can be assigned to make up the trip 
volume Tit on any link without changing this volume. The pattern of trips 
in the system is called a distribution, and it is clear that many states are 
associated with each distribution. On the assumption that each state is 
equi-probable, the method is based on finding the most probable distribu 
tion of trips subject to any constraints.

The equation describing the frequencies of different trip distributions 
can be interpreted as an entropy of the system, and Wilson's method is 
referred to as the method of entropy-maximising. Entropy is maximised 
subject to accounting constraints such as those in (2.57) and (2.58) and also 
subject to a constraint on the cost of travel C. In the case of the produc 
tion-attraction constrained model, this constraint is of the form

SS70Ctf = C,
i i

and in the case of production- or attraction-constrained models, this cost 
is offset by a measure of locational benefit W*j

The models which result from this maximisation procedure are similar to 
the family of models outlined earlier but the general function of travel cost 
is replaced by a negative exponential function, and the balancing factors 
have a mathematical interpretation. Perhaps the most important contri 
bution which this theory makes involves the role of the constraint equa 
tions. To the model-builder, such equations represent the amount of 
information known about the system, and thus the approach is sufficiently 
general to mean that consistent models can be generated in situations 
where information about the problem is limited.

Although the original application of this approach was in the field of 
transport, Wilson has extended the method in two directions; first, dis 
aggregated interaction models for the transport and residential sectors 
have been proposed and second, the method has been used to derive 
models which are consistent within an overall accounting framework. 
Wilson has developed a comprehensive set of models dealing with 
residential location behaviour. These models disaggregate employees by 
occupation and industry, and housing by physical type; furthermore, 
constraints are developed relating to the household budget available for 
housing, and such constraints bring into these models explicit data about 
wage rates and rents. In Chapter 10, such disaggregated models will be
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explored in greater depth in a practical context. In a wider sense, Wilson 
has shown how his approach can be used to design models which are 
consistent with accounting frameworks, such as those implicit in input- 
output analysis. These developments have been synthesised in a useful 
book by Wilson (1970a) and the reader is strongly advised to refer to this 
work which is complementary to much of the material presented in this 
chapter. Other methods for deriving spatial interaction models which are 
linked to the entropy-maximising method have been used; for example, 
interaction models can be derived using statistical techniques such as the 
method of maximum-likelihood and in Chapter 7, some of these alternate 
techniques will be discussed in the context of model calibration.

Alternative approaches to spatial allocation

Although most of the allocation models to be developed here are based on 
the concept of spatial interaction, there are other approaches to allocation 
and for completeness, two important processes need to be noted. In the 
terminology of the previous chapter, spatial interaction models are non- 
optimising in contrast to certain optimising models which have been 
used in allocation. Perhaps the best-known optimising model is based on 
the technique of linear programming and the structure of such a model 
can be clearly seen in relation to a production-attraction constrained 
interaction model. The model described above in (2.57)-(2.61) can be 
expressed as a problem in linear programming in which it is required to 
find a distribution of non-negative trips Ttj which minimise the cost of 
transportation C. Like the spatial interaction model, the linear program 
ming model is subject to I+J constraints of the following form

S Tv = 0{ , Oi > 0, i = 1,2, ...,/, (2.89) 
i=i

£ Ty = Dp Ds > 0, j= 1,2, ...,/. (2.90)

The objective function which is to be minimised subject to (2.89) and (2.90)
/ j- 

C = min S S TyCy. (2.91)
can be stated as /

The particular type of linear programming problem given in (2.89)-(2.91) 
is called a transportation. problem and if such a problem is formulated 
consistently, a unique optimal solution to the problem has a maximum 
of 7+J-l variables (Ti}) different from zero (Hadley, 1962). 

Linear programming has been used in several cases to allocate urban
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activities but there are some fundamental problems involved in applying 
the technique. Apart from problems caused by the linearity and additivity 
assumptions, the fact that only I+J— 1 variables are positive in any 
solution to problems of the type given above is somewhat unrealistic for 
urban systems. In the case of a trip model, only a small proportion of the 
total links in the system would have positive trips. However, great strides 
are being made in adapting such models to more realistic problems and 
linear programming techniques are likely to become more widespread in 
urban allocation in the future. Yet there is no dearth of linear pro 
gramming models and several applications can be mentioned. The Detroit 
model, designed by Ingram et al. (1972) at the National Bureau of 
Economic Research, employs a linear programming model to allocate 
employees to residential areas. The original Penn- Jersey housing market 
model proposed by Herbert and Stevens (1960) and since modified by 
Harris (1972) is based on a linear program which allocates persons to 
housing by maximising aggregate rent-paying ability ; this model has been 
fitted to data from Hartford, Connecticut and to the Los Angeles region 
(Harris, Nathanson and Rosenberg, 1966). The Harris-Herbert-Stevens 
model is also the basis of a more general linear programming model 
which allocates several types of employment and population to zones of 
an urban system by maximising a generalised welfare function (Ben- 
Shahar, Mazor and Pines, 1969).

Another class of models used to allocate urban activities is based on 
linear models which are usually fitted by regression analysis. Such models 
are typically used when the model-builder has little a priori information 
on which to base a structured hypothesis. A good example of the use 
of this technique is in the Greensborough model (Chapin, Weiss and 
Donnelly, 1965) where population was allocated using a function of the 
following form n

Pi = *„+ S a**iy- (2-92)

Xki is a measure of some independent variable Xk in zone j, and ak and a0 
are parameters of the model. In the Greensborough model, several tests 
were made to find the best combination of the independent variables Xk 
which explained the maximum amount of variance in the residential popu 
lation. A final set of four independent variables was culled from an initial 
set of sixteen, and these four variables were based on accessibilities to work, 
to elementary schools, to the nearest major highway and to the availability 
of sewerage facilities. Other models such as the EMPIRIC model (Hill, 
1965) are based on linear forms of allocation equation and the use of 
such equations in allocating basic employment to zones is examined in 
Chapters 11 and 12 in the context of dynamic modelling.
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So far only allocation models dealing with the residential, retail or 
service and transport sectors of the urban system have been outlined, and 
no models allocating basic employment have been presented. There are 
considerably fewer models of the basic sector, for this sector of activity is 
not easy to model in a formal sense because its locational requirements are 
difficult to specify quantitatively. A useful review of some basic employ 
ment models which have been developed in North America is presented 
in a paper by Massey (1969) and the main feature of these models seems 
to rest on the distinction between growth and decline of various types of 
employment which have been treated by separate submodels. Several of 
the models have been based on linear forms such as that given in (2.92).

In concluding this chapter, it is worth summarising the main themes 
which have been developed. From discussion of models to allocate urban 
activities, these activities have been mainly regarded as summations or 
integrations of activity flows or interactions. The distinction between 
allocation and generation, which has served to introduce many partial 
models, will no longer be retained in Chapter 3 when these partial models 
are stitched together to form more general models. The stitching process 
involved in the next chapter will attempt to set the simple equation systems 
of this chapter in more complex structures which will later be developed 
as operational models.



3. Urban models as systems 
of equations

The fundamental concern of this chapter is with the design of equation 
systems for urban models. Equation systems will be discussed and pre 
sented in terms of the assemblage of partial models and with regard to 
methods for effecting fast and efficient solutions to the modelling problem. 
The synthesis of various partial models described in the previous chapter 
into more general models involves questions of assessing the degree to 
which the model's structure reflects the workings of the urban system, 
for such questions are basic to an evaluation of the model's relevance. 
Although various equation systems may be excellent structural analogues 
of the real world, such systems are sometimes intractable and therefore of 
little use in operational modelling. In contrast, there are models based on 
systems of equations which imply efficient solution methods but are poor 
analogues of reality. Looked at in this light, the problem of model design 
is to invent equation systems which are good representations of reality 
and which are soluble in a fast and efficient way.

Although the models to be outlined here all spring from the approach 
to urban systems theory outlined in the last chapter, there is still a wide 
diversity in modelling styles which have been developed within this narrow 
field. Of interest here is the fact that style is usually reflected by the way 
in which the model is assembled as a system of equations. Before such 
models are presented however, it is worth while stating and defining certain 
pertinent characteristics of equation systems: the following commentary 
is in no way exhaustive and must not be regarded as a comprehensive 
summary of the factors influencing the design of equation systems, for the 
intention of this section is solely to introduce certain features pertaining to 
the urban models discussed later in this chapter.

The design of equation systems

Perhaps the most basic distinction between equation systems involves the 
various methods used in solving such systems. Harris (1968) has identified 
both simultaneous and sequential methods of solution and, in terms of the 
classification given in Chapter 1, equation systems which are solved

49
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simultaneously use analytic solution methods, whereas sequential solution 
methods are based on simulation. As pointed out previously, there is 
another interpretation of simultaneous and sequential methods which 
involves questions of statics and dynamics. It is logical to suppose that 
static models which attempt to describe the structure of the urban system 
at one cross-section in time are formulated as systems of simultaneous 
equations, whereas dynamic models are formulated using sequentially 
linked equations. Although static models may attempt to describe the loca 
tion of various activities simultaneously, frequently such systems are not 
tractable using analytic methods, and sequential iterative methods must 
be employed. In this chapter, both types of method are illustrated in 
connection with the design of static models.

There is a classic rule of model design which although obvious, is 
essential to the design of any equation system. A necessary but not 
sufficient condition for the solution of a system of equations states that 
there must be as many equations as unknowns. This condition is best seen 
in the solution of simultaneous equations, and the condition is elaborated 
in most books on elementary and linear algebra (Hadley, 1961; Stephen- 
son, 1961). There are of course other conditions involved in the solution 
of equation systems relating to interdependence and consistency within 
the set of equations. These matters will not be pursued here but they are 
briefly mentioned at a later point in this chapter. Although it is often 
a trivial matter to check by a count of equations and unknowns, whether 
or not the equation system is determined, this is sometimes a useful method 
to highlight the structure of the equation system. In three of the models 
introduced here, a count of equations and unknowns is made, although 
these equation systems are presented in a way which makes their deter 
mination fairly obvious.

Systems of simultaneous equations which cannot be solved using 
standard linear methods, such as the Gauss-Jordan method or CrameYs 
rule, can often be solved by sequential methods such as iteration. Methods 
of iteration involve the calculation of new and hopefully better solutions 
to a problem based on information obtained from earlier solutions. In 
this chapter, first-order iteration is used to obtain solutions to several of the 
models, and such an iterative process can be written as

xm+l = J\xm)>

where xm+l is the solution derived on iteration m+ 1 which is some func 
tion of the solution on the previous iteration m. Whether or not such a pro 
cedure converges depends upon the particular properties of the equation 
system under study; such concepts of convergence will be examined for 
each of the equation systems presented later. A further important distinc-
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tion which was made in Chapter 1 is relevant here; the distinction between 
linear and non-linear equation systems usually affects the method of solu 
tion. Linear systems can generally be solved using standard methods 
whereas non-linear systems are more difficult to handle, and often require 
extensive iteration.

Linear equation systems have been extremely well developed in 
economic analysis for problems involving demand and supply, and econo- 
metricians have built up a large body of statistical technique involved in 
fitting such equation systems to data. There are many treatments of the 
classic econometric problem of correctly identifying and specifying the 
variables to be included in such systems and it is of interest to note that 
there is a class of urban models which has been based on such econometric 
methods. The EMPIRIC model of the Greater Boston region is the model 
around which several similar linear models have been developed (Hill, 
1965), and an excellent discussion of the problems in developing this kind 
of model is contained in an article by Masser, Coleman and Wynn (1971). 
To show the particular forms of model which have been developed, a 
simple two-equation model is presented below.

A/>,. = fljj+^A^+ 0,^ + 6,, 
AS,. = b0 + b1 bPi + b2 X.i + eg .

APj, AS}- and A£y are changes in population, service employment and 
basic employment respectively, in zone.; over a given time period, Xj is an 
exogenous variable measured in zone./, a0 , alt a2 » b0, bt and bz are coeffi 
cients which are estimated by some statistical method, and ep and es are 
the respective error terms for the population and service employment 
equations. If Af)* is exogenous to the model, then this simple econometric 
model reflects the economic base hypothesis explained in Chapter 2 and 
it can be regarded as the econometric equivalent of the Lowry model pre 
sented later in this chapter. This model has been formulated as a triangular 
or recursive system (Walters, 1968; Christ, 1966) and the coefficients can 
therefore be estimated using Ordinary Least Squares.

These kinds of econometric model will not be discussed further in this 
book, but it is important to note that such models are formulated as fairly 
simple systems of equations to which fast and efficient solution methods 
can be applied. Such models reflect very simple hypotheses about the 
functioning of the urban system, much simpler in fact than the hypotheses 
contained in the models to be presented here which are structurally more 
complex and somewhat harder to solve. In contrast to the econometric 
urban models, the models presented here are non-linear and techniques of 
solution and calibration are based on methods such as iteration and 
search.
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There are two ways in which the partial models of the last chapter can 
be assembled into more general models and these reflect the relative 
strengths of the coupling together of submodels. Firstly, there are models 
which are built up as a series of allocation models and these models are 
referred to as loosely-coupled. In such cases, the partial models are simply 
arranged in sequence with some simple link between each submodel. 
Secondly, there are models which are strongly-coupled in the sense that 
the generation of activities is used as a device to link the partial models. 
Such generation models are in themselves strongly-coupled and different 
partial models can be mapped onto their structure. In loosely-coupled 
models, constraints on the location of activity are usually easier to handle 
than in strongly-coupled models and although most of the models dealt 
with here are strongly-coupled, the first model to be presented is by con 
trast loosely-coupled.

An opportunity-accessibility model

An urban model allocating different activities to zones of a region and 
based on Stouffer's concept of intervening-opportunities has been designed 
and tested in Upper New York State by Lathrop, Hamburg and Young 
(1965). The model is designed to allocate activities given at a set of origin- 
centres in the region to a set of destination-locations. There is no submodel 
dealing with the generation of these activities which are loosely-coupled 
through the intervening-opportunities concept. The activities are allocated 
according to a particular order in which activities are ranked by their 
ability to compete with one another. Given M activities each referred to as 
Om , the structure of the model can be presented as

01 _> 02 ^ ^ Om ^ ^ QM,

where the arrows indicate the order in which activities are allocated. Oppor 
tunities are defined as the product of available land and the density of 
activity, and as each activity is allocated, available land is reduced and the 
opportunity surface is recomputed. Therefore, the first activity has the 
greatest choice of locations in the region and the last activity has the 
least choice.

The structure of this type of model can best be presented as a formal 
system of equations and the following outline is based on the description 
given by Lathrop and Hamburg (1965), and by Walker (1968). The set of 
activities at each origin centre /, 0'" is exogenous to the model and each 
activity is allocated to destination-locations / Without loss of generality, 
it is assumed that the total number of origin zones / is equal to the total 
number of destination zones J, and that these sets are in one-one corre-
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spondence. For any activity Om, the opportunity surface is first derived by 
computing intervening-opportunities on the minimum time path for each 
i-j link in the system

VTj-i = '^^k(m). (3.1)
k = l

VTi-i is th£ cumulative number of opportunities for activity m between / 
and j, 8™ is the density of activity m in zone k expressed in unit area, and 
Lk(m) is the land available in zone k on iteration m of the model. It is 
important to note that the superscript m refers to activity type whereas 
the bracketed postscript (m) refers to the iteration ; as a different activity is 
allocated on each iteration, these indices are in practice equivalent. The 
activity Of is allocated using the intervening-opportunity model devised 
by Schneider (1959), presented previously as equation (2.84). Then

Am _

= AfOf exp (- AKJJ_0 {1 - exp [-XSfL^ni)}}, (3.2)

• -______ ______
[l-exp(-AKy)]'

T™j is the flow of activity m from / ioj and (3.2) and (3.3) are simplifications 
of (2.84). The total quantity of activity m locating aty, called Df, is found 
by summing (3.2) over i

Df = 271J, (3.4)
i

and the land required for Df called Lf is found by applying an inverse 
density function to (3.4)

Lf = (Sf)~lDf. (3.5)

The land available for activity allocation on the next iteration m + 1 is 
found by subtracting (3.5) from the land presently available

fcri) -Lf. (3.6)

To ensure that (3.6) is never negative, the land available is checked as
follows. If • n fit\< 0, (3.7)

= 0. (3.8)

The model now proceeds to allocate activity Om+l ; Lk(m + 1) is substituted 
forLfc(m) in equation (3.1), and (3.1)-(3.8) are reiterated until all activities 
have been allocated. A flow chart of this procedure is presented in 
Figure 3.1.
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Fig. 3.1. Generalised flow chart of the Lathrop-Hamburg opportunity- 
accessibility model.
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It is clear that the coupling of activities is accomplished through (3.6) 
above and that this coupling is the device used to establish the 'pecking 
order' assumed by each activity. Although this competitive order may 
partially reflect the mechanics of the urban land market, the method used 
to allocate activities is somewhat rigid and the equation system is much 
more of a solution method than an analogue of the workings of an urban 
system. Although the model could be elaborated in several ways, for 
instance by refining the constraints procedure or by incorporating a sub 
model to predict densities, this simple form has already been used to 
evaluate a wide range of land-use strategies in the Buffalo-Niagara Falls 
area. A version of this model has also been used by the Cleveland-Seven 
Counties Transportation Study (Walker, 1968) and in this particular 
application, the opportunity surface was derived from rank-ordered 
indices of accessibility computed from a potential formula similar to (2.54). 
Both non-residential and residential land uses were allocated by the model 
and a set of ' passive' land uses such as transportation, local open-space 
etc. were calculated as a simple proportion of the allocated uses. The 
paper by Walker (1968) contains a worked example of this model.

These models have been used to allocate the changes in activity rather 
than the total stocks of activity in Upper New York State and Cleveland, 
although it is conceivable that total stocks could be allocated. Further 
developments of this framework, however, are likely to involve stronger 
couplings between the various activities and some means to generate such 
activities. The models presented hereafter all attempt to integrate methods 
of allocation with means for generating these same activities.

The Lowry model
One of the first models to couple the generation with the allocation of urban 
activities was designed by Lowry (1963, 1964) for the Pittsburgh urban 
region. The Lowry model, as it has come to be called, organises the urban 
space-economy into activities on the one hand, and land uses on the 
other. The activities which the model defines are population, service em 
ployment and basic (manufacturing and primary) employment, and these 
activities correspond to residential, service and industrial land uses. The 
model's major operations are carried out at the level of activities and these 
activities are translated into appropriate land uses by means of land-use/ 
activity ratios. The division of employment into service and basic sectors 
is required because the model uses the analytic form of the economic 
base method, as described in Chapter 2, to generate service employment 
and population from basic employment. It is worth while repeating the 
definitions of these activities. Basic employment is defined as that employ-
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ment which is associated with industries whose products are exported out 
side the region, whereas the products of service employment are con 
sumed within the region. It is assumed that the location of basic industry 
is independent of the location of residential areas and service centres, and 
although this assumption appears to be weak, it is taken as a point of 
departure in the Lowry model.

Besides deriving population and service employment, this model also 
allocates these activities to zones of the urban region. Population is 
allocated in proportion to the population potential of each zone and 
service employment in proportion to the employment or market potential 
of each zone. Constraints on the amount of land use accommodated in 
each zone are also built into the model. The model ensures that population 
located in any zone does not violate a maximum density constraint which 
is fixed on every zone. In the service sector, a minimum size constraint is 
placed on each category of service employment, and the model does not 
allow locations of service employment to build up which are below these 
thresholds. Service employment is disaggregated into three types: neigh 
bourhood, local or district, and metropolitan, each reflecting a different 
scale of activity in the urban region.

Having located the various activities in accordance with the predeter 
mined constraints, the model also tests the predicted distribution of popu 
lation against the distribution used to compute potentials to find out 
whether the two distributions are coincident. Lowry argues that it is neces 
sary to secure consistency between these distributions because the model 
uses distributions of population and employment to calculate the poten 
tials which indirectly affect the predicted location of these same variables. 
Consistency is secured by feeding back into the model predicted popula 
tion and employment and reiterating the whole allocation procedure until 
the distributions input to the model are coincident with the outputs.

To firm up the structure of this model and to emphasise the solution 
method adopted by Lowry, the model will be presented as a formal system 
of equations. This interpretation of the model adopts a different notation 
from that used in the original formulation, and this particular notation 
and method of presentation used, is necessary so that the various models 
outlined in this chapter can be contrasted. The model divides up the 
spatial system into four sets of zones which differ in regard to the con 
straints imposed. Zx is the set of zones in which there are no locational 
constraints, Z2 the set in which there are only residential constraints, Z3 
the set in which there are only service constraints and Z4 the set in which 
there are both residential and service constraints. During the operation 
of the model, zones may be continually shifting between these four sets 
if the locational constraints are violated. The diagram opposite shows
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an abstracted division of the spatial system into these four sets.

Z, no constraints

?3 service constraints

Z2 residential 
constraints

Z4 residential and 
service constraints

The total set of zones is called Z and, from the definitions above,

Z = U Zs.
8 = 1

It is also obvious that the intersection of these four sets is equal to the 
empty set 0 4

0 = n zs.
s = l

Each variable will be defined as it appears in the text, although the 
notation is the same as in the previous chapter; the index m refers to the 
inner iterations of the model necessary to ensure that the locational con 
straints are satisfied, whereas the index n refers to the outer iterations 
necessary to ensure a stable co-distribution of input and output variables. 
At the start of the model's operations, m = 1 , and n = 1 , and it is im 
portant to note that Z = Z1( and that Z2, Z3, Z4 s Zt . Also total employ 
ment in zone i, £,-(!) is equal to the basic employment E\, and the total 
land for service uses Uj(\) is equal to zero. The zonal subscripts / and j 
fall in the range i,j = 1, 2, ..., /, and the superscript k is in the range 
k = 1,2, ..., K.

Total population is first calculated using the analytic form of economic 
base relationship given in Chapter 2 as

P(m) = oi (3.9)

P is the total population in the region, a is the inverse activity rate and
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Pk is the ratio of service employment k to total population, called here 
the kih population-serving ratio. Total land use available for housing Lf(ri) 
is now calculated from

Uf(n) = Li -[Lf+L^+LIj(n)], JeZ. (3.10)
LJ is the total amount of land in each zone and the superscripts u and b 
on LJ denote unusable land and land used for basic industry respectively. 
Population is allocated to zones in proportion to a normalised population 
potential defined as

Py(in,n) = P(m)

Pj(m,ri) is the population allocated to zone j, and/1^) is a function of 
generalised travel cost. At this point, population in each zone must be 
tested against the density constraint. If

P//W.H) > S^(n), jeZlt Z» (3.12)

then
P3.Cw,«)eZ2) Z4 . (3.13)

Sj is a density coefficient which converts L^(n) into population. In the 
constrained sets Z2 and Z4, population is set equal to the maximum popu 
lation allowed. The index m is increased to m + 1 and

P/m+l,«) = <^(«), yeZ2,Z4 . (3.14)
The population to be reallocated is found by taking the constrained 
population in Z2 and Z4 from total population

P(m + 1) = P(m) - £/>,. (m + 1 , n), je Z2, Z4 . (3.15)

Then, P(m+\) is substituted into (3.11), and (3.11)-(3.15) are reiterated 
until

*£ S^(n), jeZ. (3.1 6)
When equation (3.16) is satisfied, the allocation of population is in 
accord with the residential constraints, m is set equal to 1, and service 
employment in each class k, Sk, is now calculated

S* = pZPfari), jeZ. (3.17) 
i

Service employment is now allocated to each zone i, Sf, in proportion to 
an employment or market potential defined as
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!,n- \V\ca)-KfE,(ri)

On the first iteration of the full model (« = 1), Pj(m,n—\) is equal to the 
observed population P^. gk and qk are empirically-determined coefficients 
showing the relative importance of population and employment in the 
index of market potential. /2(ci3-) is a function of generalised travel cost. 
The quantity of service employment located in i must now be tested against 
the minimum size constraint minS*. If

/ \ , and „ im(m,n)< . otv , . „ (3.19)v ' ' = ,n), zeZ, v '

Sf(ifi,/i)eZ8,Z4, (3.20) 

6 021,
i

j, Z2 is substituted into equation (3.19), and (3.19) and 
(3.20) are reiterated until

S*(m + 1 , n) > min Sk, i e Z. (3.22)

At this point in the model, all activities have been allocated. The index n 
is increased to n+l, and service employment is converted to land use, 
using the ratios ek,

L\(n + 1) = SefcSj(m, n), i e Z. (3.23)
k

A test for residential land availability on the next iteration is now re 

quired. If Ufa+l) > Lt-W+Ify, feZ, (3.24)

fez. (3.25)

Total employment is now calculated as

(m,«), i e Z. (3.26)

The predicted distribution of population Pj(m,ri) must be tested against 
the distribution Pj(m,n—\) which is used to compute the market poten 
tials. The aim is to generate a consistent distribution of input and output
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variables and if the predicted distribution is within a certain limit £p of 
the input distribution, the two distributions are judged to be consistent. 
In other words,

P/m,«) = P/ffi, n - 1) + gp , 7 e Z. (3.27)
If (3.27) is not satisfied, then L\(n + \) and E^n + l) are substituted into 
(3.10) and (3.11) respectively, and (3.8)-(3.26) are reiterated until (3.27) 
is satisfied. A similar test on the predicted distributions of employment 
E^ri) and E^n — 1) could also be incorporated in like manner. At the 
beginning of each outer iteration of the model, the inner iteration m is 
set equal to 1, and Z± = Z as before. A diagrammatic interpretation of 
this sequence of operations is presented in Figure 3.2. The model has been 
presented following the method used to solve the equation system but it is 
worth while listing the major equations, thus high-lighting the essential 
structure of the model. In Table 3.1, seven equations are listed and a count 
of the number of equations in the expanded system is made. By counting 
the number of endogenous variables in equations (3.9)-(3.27), it is clear 
that the number of equations equals the number of unknowns and the 
system is therefore determined. The method used to establish consistency 
between input and output variables is a device used to reflect the simul 
taneous nature of relationships in the system, thus emphasising the strong 
coupling between the submodels.

TABLE 3.1. Structural equations of the Lowry model

Equation 
number Form of equation

(3.9) P(m) = <x££? (1 - aS/?*)"1, i € Z 
i k

(3.10) Ifyn) = Lj-lL'j+L'j+Ljfa)], jeZ 

nm P.tm tf\ P(m\-- i ir7 i r 7. 7

Number
of 

equations

1

j
i i

(3.17) Sk = P^Pj(m, n), jeZ K
i

n,n-l).r(Cij) + 
(3.18) Si (m, n) = Sk -J, —— k , i,jeZ Kl

i j i



Input data: basic 
employment, travel time 
matrix, population-serving 
and inverse activity rates, 
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Fig. 3.2. Generalised flow chart of the Lowry model.
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The model outlined above is based on a widely accepted theory of 
spatial structure, and is perhaps one of the best expressions of the para 
digm governing the development of the field of urban modelling alluded 
to in the Introduction. The economic base mechanism which is used to 
derive service employment and population from basic employment, and 
the allocation of activities according to potentials reflect important deter 
minants of spatial structure. Although it is obvious that the model is based 
on a highly simplified interpretation of the urban system, the model is so 
organised as to permit further disaggregation of its variables. This flexi 
bility means that the detailed structure of the model can be closely 
matched against available data, and this is frequently a critical factor in 
spatial forecasting. In North America, several land-use models have been 
proposed which take the development of this model further, and at this 
stage it is worth while reviewing some of these as they provide additional 
insights into the theory and application of the model.

Development of the Lowry model
The first development of Lowry's model was made by the CONSAD 
Research Corporation as part of the Pittsburgh Community Renewal 
Program (Crecine, 1964). This model, called the Time Oriented Metropoli 
tan Model (TOMM), adopted the basic structure of the model outlined 
above but also permitted a disaggregation of population into different 
socio-economic groups. It was felt that by disaggregating the model in 
this way, the explanatory power of the model would be increased. Further 
more, this model was restructured to account explicitly for the time 
element in forecasting. In using the Lowry model for forecasting, there is 
an assumption that all activities respond to changes in potential in a given 
projection period. This is obviously not the case because a certain propor 
tion of activity will be stable during the forecast interval. The model was 
therefore revised to account for such inertia.

At present, three versions of the Time Oriented Metropolitan Model 
exist. Following on from the Pittsburgh version, Crecine (1968) has sug 
gested a further revision. The structure of the revised model is basically 
the same as the original model although the allocation mechanisms have 
been made more realistic. Population and employment potentials are 
fairly crude measures of locational attraction, and Crecine has proposed 
that these be replaced by linear equations relating site rent, transport cost 
and other site amenities such as the availability of schools. The latest 
version of the model has been calibrated to data from East Lansing, Michi 
gan (Crecine, 1969), and the model is also being used as an educational 
device in the METRO gaming simulation exercise at the University of
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Michigan (Crecine, 1967). The model is used to show participants in the 
game the consequences of their decisions in terms of the spatial distribu 
tion of population and employment. This modelling effort is discussed in 
more detail in Chapter 11, when problems of building dynamic urban 
models are encountered.

Another major development of the Lowry model in which the potential 
models are replaced by gravity models has been suggested by Goldner 
(1968). Goldner's model, called the Projective Land Use Model (PLUM) 
has been designed for the San Francisco region, specifically for the Bay 
Area Transportation Study Commission, and this model allocates services 
and population using intervening-opportunity models. Instead of disag 
gregating the population or service sector, Goldner disaggregates the 
parameters for each of the nine counties in the Bay Area. Goldner also 
builds into his model zone specific activity rates and population-serving 
ratios to account for differences in population and employment structure. 
This necessitates the introduction of additional sets of scaling factors to 
adjust zonal populations and employment so that these activities sum to 
their respective regional totals.

Perhaps the most important development of the Lowry model is a 
theoretical one. Garin (1966) has reinterpreted the Lowry model in two 
ways; first, the potential models have been replaced by production- 
constrained gravity models and second, the expanded form of the 
economic base mechanism has been substituted for the analytic form. 
In this way, Garin has succeeded in strengthening the coupling between 
allocation and generation, and this model is presented formally in the 
following sections. At this point, it is worth while outlining the procedure 
used by Garin's model in simple terms as an introduction to the particu 
lar developments described later. The structure of the model can be pre- 
sentedas E^P^S,

where basic employment £b is the primary input starting the process of 
generating population P and service employment S. These activities P 
and S are dependent upon each other in the following sense.

From a given distribution of basic employment, the model first finds 
the residential location of these workers who are employed in the basic 
sector, and then finds the population associated with this employment by 
application of an inverse activity rate. The first increment of service em 
ployment is derived from this basic population using a population-serving 
ratio, and this employment is then allocated to service centres. These 
workers require residential locations and this leads to a further increment 
of population and in turn to a further increment of service employment 
and so on. Continued application of this sequence of operations results
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in the derivation of smaller increments of population and service employ 
ment, and eventually a threshold is reached below which any further 
increments are small enough to ignore. This process is then said to have 
converged; the values of the inverse activity rate, and population-serving 
ratio ensure that these increments of population and service employment 
sum to their respective totals.

A version of Garin's model which incorporates constraints on allocation 
is presented in the following section. This model demonstrates the way in 
which the expanded form of the economic base method is used as a frame 
work for synthesising the partial models of spatial allocation; the parti 
cular model outlined does not treat land uses explicitly, although it would 
be a simple task to translate activities into land uses using simple land-use/ 
activity ratios as in the original Lowry model.

An Activity Allocation model
The full model will be outlined using a notation and presentation similar 
to that used earlier. An index m denotes the value of a variable on the 
inner iteration of the model. This inner iteration is used to derive the in 
crements of service employment and population from basic employment. 
This differs from the Lowry model in which the sum of these increments 
was derived analytically using the economic base relation in (3.9). The 
outer iteration, denoted by the index n is used to ensure that the model 
satisfies the locational constraints. The previous notation will be used, and 
further notation will be defined when necessary.

At the start of the model's operations, m = 1, n = 1 and Et(l,n) is 
equal to E\. The weight Bj(ri), j e Z on residential attraction is set equal 
to 1 and the weight on service centre attraction Qi(ii), i e Z is also equal 
to 1. All zones belong to Zt at this stage. First, the basic employees Ef(l,n) 
are distributed to their zones of residence

Tti(m, ri) = ^(n) £,<«) Ei(m, n)f\Dit ct]\ i, j e Z, (3.28)

' ijez- (3 - 29)
Ty (m, ri) is the number of workers employed at i and living at j, and 

J (Dj, c{j) is a function relating the attraction £>3 of area j to the generalised 
cost of travel cy between i and / The population living at j is found by 
summing (3.28) over i and applying the inverse activity rate a

Pj(m, ri) = a2 Trfm, ri), i, j e Z. (3.30)
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The population at j demands to be serviced and the number of service 
employees demanded, Hj(m,n) is found by applying the population-
serving ratio /?

#,(!»,») = pPj(m,n), jeZ. (3.31)

In this outline of the model, the service sector, is not disaggregated; in 
terms of the original Lowry model, ft = £/fffc . The service employees

k
demanded at j now have to be distributed to their places of work

Srfm, n) = R^n) H}(m, n) 2<(«)/2( A, c{i), i, j e Z, (3.32)

Sij(m,ri) is the number of service employees working at i demanded by 
the population at j, and f\Di , ci}) is a function relating the attraction of 
service centres to the generalised cost of travel. 

Service employment in /', called 5;(w,n) can be calculated by summing
(3.32) over /

St(m,n) = ZSi}(m,n), /JeZ, (3.34)

and this increment of service employment becomes the input of employ 
ment to be allocated on the next iteration of the model m + 1 . In other
words

Et(m + !,«) = St(m, n), i, j e Z. (3.35)

At this point, the first increments of population and service employment 
have been generated. It is now necessary to allocate service employees to 
zones of residence, and Et(m+l,n) is substituted for Ef(m,n) in (3.28). 
Equations (3.28)-(3.35) are reiterated until

(3.36)

(3.37) 
i

j,e and £j, are limits below which further increments of service employment 
and population are small enough to ignore. Total population and employ 
ment predicted by the model are now approximately equal to their respec 
tive totals and these totals are calculated from

,n), jeZ, (3.38)

(3.39)
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By summing equations (3.38) and (3.32) over m, matrices giving the inter 
actions between workplace and residential areas and between residential 
areas and service centres can be calculated. Zonal inverse activity rates 
«„•(«) and population-serving ratios Pi}(ri) can also be calculated and 
these ratios help to highlight the effectiveness of the model's allocation 
procedures ,

At this point, tests must be made on the allocation of activities to find 
out whether the density constraints on population or the minimum size 
constraints on service employment have been violated. First, if

'jMa > {.. JfZ. ,3.42,

P,(»)eZa,Z4 . (3.43)

Second, if [Ei(n)-E\]<mmS, ieZ, (3.44)

Z4 . (3.45)

If equations (3.42) and (3.44) do not hold for any zone, then the con 
straints are satisfied and the simulation terminates. However, if (3.42) 
and (3.44) do hold then

,3.46,
1, jeZlt Z3,

(Q,
= (3-47) 

/eZ1; Za.

fi/n+1) and Qt(n+l) are now substituted into (3.28), (3.29) and (3.32), 
(3.33) respectively and the whole system of equations from (3.28) to (3.47) 
is reiterated until

~ ^ fi, 76Z, (3.48)' 

an [£&)-£*}]•£ minS, /eZ1; Z2 . (3.49)

The sequence of operations in this model is presented in Figure 3.3.
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employment, travel time 
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Fig. 3.3. Generalised flow chart of the Activity Allocation model.
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Examination of the model reveals that the total population generated 
approximates the population predicted by the economic base relationship 
given in (3.9). By summing (3.30) over j, the following recurrence relation 
can be derived

S^(«,«) = «SS7;y(fn,Ji) = oW-1 S£i(l, »), ij e Z. (3.50)
j i j i

Then summing (3.50) over the iterations m, total population generated 
in the model is given by

,«) S («/»)m, U e Z. (3.51)
m

Using the argument and assumptions in the section on the expanded form 
of the economic base hypothesis in Chapter 2, it is clear that the term 
£ (a/?)m converges to (1 — a/?)"1 as m -> oo. Then population is given by
m

S/» = «S£'i(l,«)(l-a/7)-1, UeZ, (3.52)
; i

which is formally identical to the population estimate in (3.9). The argu 
ment showing that service employment converges is similar and can be 
deduced from the fact that employment is linearly related to population. 

A comment on the method of applying constraints to this model is 
warranted. The residential location model is subject to a production 
constraint on the numbers of workers leaving any zone, and also con 
straints on the maximum population density allowed in any zone. 
Formally = ZE{(m,n), /JeZ, (3.53)

m j m

aZS^O".") < Stf, iJeZ. (3.54)
•m i

The constraint in (3.54) is accomplished using the term Bj(n) which is com 
puted in (3.48). To show that this term is similar to the attraction balancing 
factor in the partially constrained model given in (2.68)-(2.71) in the 
previous chapter, the significant part of (3.46) is manipulated as follows. 
Substituting for Pfri) in (3.46), from (3.50) and (3.51) above, gives

.. yeZ2,Z4, ieZ. (3.55)

Then by expanding the term 2ry(n) from (3.28) and assuming that 

8^ =/(£,-), (3.55) simplifies to



Systems of equations 69 

If (2.71) is substituted into the right-hand side of (3.56) then
4 , (3.57)

and it is clear that B}(n + 1) plays the same role as 5, in the production- 
attraction constrained gravity model. No formal proof for the conver 
gence of Bj(n) is offered here and in certain circumstances convergence 
may not occur, especially if zones are being continually switched from the 
sets Z2, Z4 to Z1; Z3 . Also, the amount of land available for housing in the 
system can influence the speed of convergence. If

i i

then convergence can be fast but if the amount of available land approaches 
the population to be allocated, the system may not converge in a reason 
able time.

In the service centre location model, constraints on the numbers of 
service employees demanded by the population in each zone, and the 
minimum size constraint on the location of service employment are 
satisfied. Formally,

(3.58)

( = 0, / e Z3, Z4,»>«)i <3 - 59)
[ ^ min S, i e Zlt Z2 .

These constraints can usually be satisfied by the model but (3.59) is de 
pendent upon the procedure used to ensure that the density constraints in 
the residential model are met. In concluding discussion of this model, a 
list and count of the major equations serve to highlight the model's struc 
ture. Table 3.2 presents such a list and the model is determined, for the 
total number of endogenous variables is equal to the total number of 
equations. The structure of this model is explored further in the following 
section where the system of equations is presented in simultaneous form. 

There are three important differences between this model and the Lowry 
model. First, this model uses interaction models of a gravity type to allo 
cate activity, in contrast to the potential functions used by Lowry. This 
means that trips between home and work and between home and service 
centre are calculated explicitly. Besides the obvious advantages of generat 
ing this information, it means that calibration procedures such as those 
used in trip-distribution studies, can be employed in fitting the model as 
is demonstrated in Chapters 6, 7 and 8. Second, the method of securing 
consistency between the input and output distributions used by Lowry, 
is not embodied in the equation system described here. Assuming that
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population and employment were used as proxies for locational attraction 
in the model, it would be a simple matter to feed back these variables in 
the outer iteration of the model. However, this considerably complicates 
calibration procedures and the difference between the inputs and outputs 
might not be sufficient to warrant using this option. Third, there is more 
emphasis on activities than on land use in the model. Although land use 
enters the model through the maximum density constraint on population, 
there is no priority given to the location of service employment as in the 
Lowry model. This is largely due to the scale for which the model is in 
tended ; if the maximum density constraint on population is likely to affect 
the amount of service land use, then the model could be easily extended 
by adding the appropriate procedures.

TABLE 3.2. Structural equations of the Activity Allocation model

Equation 
number

(3.28)

(3.30)

(3.31)

(3.32)

(3.35)

(3.46)

(3.47)

TH (m, n)
Pj(m, ri) ••

Hj(m, ri)
Su(m, ri)

Et(m + \)

*,(„+!)

<M, + 1>

Form of equation

= Ai(ri)Bj(ri) Ej(m, ri) f\Dj, cw), /', j e Z

= °&Ttl(m, ri), i,j e Z
i

= /?/>(«,«), ;eZ

= R,(ri) H,(m, ri) Qt(ri) f 2 (A, c«), i, 7 6 Z
= Si(m,ri), i,jeZ

r djl^
= } '" Pj(n)' JC *' 4

U, ;eZ1,Z3

JO, ieZ3,Z4 
~ \1, /eZ!,Z2

Number 
of 

equations

P
I

I
72

7

7

7

The Garin-Harris matrix formulation
Although the model presented by Garin (1966) has already been dis 
cussed, a major feature of Garin's work involved a demonstration of the 
convergence properties of the Lowry model in its expanded form using 
the algebra of matrices. At about the same time, Harris (19666), in a re 
markable paper contrasting the equilibrium-seeking characteristics of 
urban models, also formulated the Lowry model in matrix terms thus
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revealing the simultaneous nature of the model's structure. The Activity 
Allocation model of the previous section can be rewritten using matrix 
notation and this presentation follows the Garin-Harris formulation, 
apart from the specification of locational constraints which are in 
corporated into the model. It is of interest to note that several researchers 
have favoured matrix notation in presenting 'versions of this model 
(Echenique, Crowther and Lindsay, 1969a; Goldner, 1968; Stradal and 
Sorgo, 1971) and this matrix model has already formed the basis of an 
efficient computer programming strategy in operational use (Batty, 
1969).

As the model is operated through both inner and outer iterations, 
vectors referring to the inner iteration are subscripted by the index m and 
vectors and matrices referring to the outer iteration are subscripted by the 
index n, as in the model of the previous section. Before the model is in 
troduced, two probability interaction matrices are defined. First, an 
/x/ matrix Tn describes the probability that a worker who is employed 
in / lives at/ From (3.28), each probability ttj(n) is calculated as

Second, a 7x / matrix SM describes the probability that a person living in 
/ will demand to be serviced at centre/ Then in analogy with (3.32), each 
probability Jy(/i) is calculated as

The 1 x / row vector pmft and the 1 x 7 row vector emn describe the popula 
tion and employment distributions generated on the iterations m,n of the 
model.

Starting with the distribution of basic employment called eln , a distri 
bution of basic population pln is found by distributing employees to their 
residence zones using the matrix Trt and multiplying the result by the 
JxJ scalar matrix of activity rates called a.. Then

Pi« = elnTreoc. (3.60)

The service employees demanded by pln called e2H are calculated by 
applying the J x J scalar matrix of population-serving ratios (3 and these 
employees are distributed to service centres using the matrix Sn . Formally,

= e1IlTBopSn . (3.61)
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To simplify the presentation, a matrix A.n is defined from
An = TTOa(3Sn .

The service employees calculated in (3.61) have to be distributed to their 
residence zones and the associated population demands further increments 
of service employment. These are calculated in a similar manner to (3.60)
and (3.61) by T * T /•> e.t\ P2» = e2BTma = eln AnTna, (3.62)

e3« = P2nPSB = elB A«. (3.63)

From (3.60) to (3.63) for any iteration w, the following recurrence relations 
can be derived using a similar argument to that in deriving equation (3.50).

P»» = elB A»J-1 TBa, (3.64) 

emn = e^A™-1. (3.65)

The increments of population and employment generated in (3.64) and 
(3.65) can be summed over the subscripts m to derive totals. Taking the 
summation of employment, a 1 x / row vector of total employment e.B is
calculated as ,, . . 2 Am ,, ,,, «„ = eln(I+An + A° +...+A™), (3.66)

where I is an 7x7 identity matrix. The summations for total population 
and employment can be written in shorter form as

Pn = em S A™TBa, (3.67)
m=0

eB = e,n £ A» (3.68)
m = 0

where A" is taken to be the 7x7 identity matrix I. Comparing the series 
representation of population and employment in (3.67) and (3.68) with 
(3.51) and with (2.25) and (2.26), it appears likely that these series will 
converge to the zero limit.

No formal proof for convergence of the matrix series is offered here, 
for good proofs are given by Garin (1966) and also by Hadley (1961). 
The series in (3.67) and (3.68) can be written as

(I -A)-1 = A" (3.69)
m = 0

if and only if Bm A- - 0. (3.70)
m— *oo

Using (3.69), the equations for population and employment in (3.67) and



Systems of equations 73 

(3.68) now become . . P« = em(I-Am)-1 Tna, (3.71)

eB = elB (I-AB)-1 . (3.72)

Equations (3.71) and (3.72) are particularly important for the inverse 
(I-A^)"1 is similar to the input-output matrix in (2.50), and this inverse 
contains both the direct and indirect effects of basic employment in any 
zone i on total employment in any zone j. Furthermore, (3.71) and (3.72) 
have been derived analytically by Harris (19666), thus revealing the 
simultaneous nature of the equation system. Perhaps the most important 
aspect of these results is the fact that (3.71) and (3.72) can be used to 
predict the distribution of population and employment in a direct fashion. 
As many modern computer installations have efficient library routines for 
manipulating and inverting matrices, the use of (3.71) and (3.72) can speed 
up the programming and reduce computational time, and lead to more 
efficient operation of the model. Although (3.71) and (3.72) dispense with 
the need for the set of inner iterations m, the outer iteration n used to 
ensure that the locational constraints are satisfied, is still needed. After 
(3.71) and (3.72) have been calculated, the model utilises the constraints 
procedure given in (3.42)-(3.49) above; new values for #,-(«+!) and 
Qj(n+l) are predicted from (3.46) and (3.47) and a new matrix Art+1 is 
formed. An+1 is substituted into (3.71) and (3.72) and this procedure is 
repeated until the locational constraints are satisfied.

The errors resulting from the series expansion of population and em 
ployment to any power m as in (3.66) can be calculated in a similar way 
to the error in (2.38). To calculate the maximum error, the norm of the 
matrix An , called N(\n), is defined.

N(\n ) = max Say(«), 
i *

where a(i(n) is now an element of A,r The norm is usually defined as the 
maximum value of the sum of the absolute values of a{j in any column j 
but, in this case, a{j > 0 from a previous definition. It is interesting to 
note here that if N(A. lt) < 1 , then this fact can be used to prove conver 
gence of the series in (3.67) and (3.68). Such a proof was developed by 
Waugh (1950) to demonstrate the convergence properties of the Leontieff 
input-output model. The maximum percentage error £ which arises from 
the summation in (3.66) to any power m can be shown to be

£ < AM ^ [N(An)r. (3.73)

The right-hand side of (3.73) constitutes an appropriate upper bound for 
the error £. Then the minimum number of iterations m required to bring

4-2
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the model to a given error £ is

(3 - 74)
and Waugh (1950) has shown that if the error called £* is in absolute 
rather than percentage terms, the minimum number of iterations m can 
be calculated from

ln(N(An)] • '

Using the matrix formulation, the model can be easily manipulated to 
demonstrate its potential. For example, if the vector of population pn was 
already given, together with the probability and scalar matrices, it is 
theoretically possible to find vectors of total and basic employment by 
rearranging (3.71) and (3.72). Equation (3.71) is rewritten below for
convenience _ . . -.„ r/nmPn =ei,! (I-Aft)-1 T>. [(3.71)]
Multiplying both sides of (3.71) by the inverses of Tn and a gives an esti 
mate of total employment from population

e» = pn«~V = eln(I-AJ-i. (3.76) 
Basic employment can be calculated from (3.76) as

eln = pBor*r-Hl-A) = pBa-iT»i-pn pSB , (3.77) 
and from (3.77) it is clear that the vector of service employment S,, is

sft = pB pSB . (3.78)
Harris (19666) argues that population and service employment are likely 
to be extremely sensitive to the probability distribution matrices T,( and 
Sn , and that negative values of population and service employment might 
result in extreme conditions. In a development of this model in Central 
and North East Lancashire described in the next chapter, equations (3.76) 
and (3.77) were used to find the impact of given distributions of population 
on employment. To satisfy (3.77), the vector of basic employment included 
both large negative and positive elements due to the peculiar behaviour of 
the inverse T,,; 1 , and in all cases severe difficulties were encountered in 
operating the model in this way. Such problems represent important areas 
for further research.

A model of urban stocks and activities
The final model to be presented in this chapter is based on a modification 
of Garin's formulation and is being developed by a team at the Centre for
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Land Use and Built Form Studies in the University of Cambridge. In 
contrast to the Activity Allocation model, this model is designed to 
operate at the town scale, hence the emphasis on both stocks and activities. 
Garin's model has been extended in two ways : first, a submodel is used to 
allocate stocks in terms of floorspace to zones, and it is assumed that 
the stocks model simulates, albeit very crudely, the ' supply ' side of the 
urban land market. Second, the model uses these stocks of floorspace as 
constraints on the demand for space by different activities ; as the activities 
begin to fill up the zones, the amount of available space is reduced and 
any excess activity is reallocated to other zones. This model is more 
strongly coupled than any of the models presented previously; the 
amount of available floorspace is used as a measure of attraction on each 
iteration of the model, and as this floorspace is reduced, so is the measure 
of locational attraction.

The model has been fitted to several British towns (March, Echenique 
and Dickens, 1971) and a version has been applied to the Santiago 
Metropolitan area (Echenique and Domeyko, 1970). The detailed equation 
system is presented in two papers by Echenique et al. (1969a, 1969ft) in 
an application to the town of Reading. Although the equation system 
presented below follows the Reading model, certain details concerning 
the application of the constraints differ slightly; as in the previous pre 
sentation, the index m refers to the iterations used in applying the ex 
panded form of economic base method but the index n refers now to an 
inner iteration used to effect locational constraints. The zonal subsets, Zs, 
are not explicitly presented in this model in contrast to previous outlines 
of equation systems in this chapter.

The model is started by allocating total floorspace Fj to zones of the 
system ; this is the stocks model which has the following form

fL (3.79)

Fj(l) is basic employment in /, L3- is the total land available for urban 
uses in j and n is a ratio of total floorspace to basic employment in the 
system. The amount of floorspace available on the first iteration for 
services and population called F/l) is calculated as

F/l) = F3.-^£.(i), (3.80)
where 7rb is the floorspace standard for basic employment. Note that it 
may be desirable to relate 7rb to specific zones if floorspace standards vary 
widely within the class of basic employment. Hereafter, available floor- 
space is written more generally as F,-(w), thus relating to any iteration m 
of the model. Then on iteration m, the measure of locational attraction £);-
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in the residential sector is set equal to available floorspace
Dj = Fj(m\ (3.81)

and population Pj(m) generated from the increment of employment E/(m) 
is calculated using a production-constrained gravity model with a form 
similar to the model in (2.62) and (2.63)

Pj(m) = aS7-y(m) = c^Etim) . . (3.82)
» i 2-iJ \-L>j, Cfj)

The locational attraction Dt in each service centre / is now calculated as
m F.(ni\

A:= S£<(*)+-^, (3.83) 
k=l w

where w is the service floorspace standard expressed as the ratio of floor- 
space to service employment.

At this stage, the model enters a somewhat more complicated loop in 
which the floorspace constraints are satisfied and service employment is 
allocated. This inner iteration is referred to by the index n but note that 
on the first of these iterations « = 1 , the overflow population P*(m, n) = 0. 
Then residential floorspace F*(m,n) is calculated as

*>i,«) = K[Pfrn)- S Pj(m,K)], (3.84)
k=l

where K is the floorspace standard for the residential population. Service 
employment St(m,n) is derived by distributing the service employees 
demanded by the population to service centres using an attraction-con 
strained gravity model equivalent to the model in (2.64) and (2.65)

St(m,n) = ftpfrn) - />,(«,*) Y (3 - 85)

The floorspace generated by (3.85) called F{(m,n) is calculated as
f?(»i,n) = «$(/«, »), (3.86)

and a test is now made to ensure the total floorspace generated can be 
accommodated by the available floorspace. If

, n) + F](m, n) > Fj(m), (3.87)

then service employment is assumed to take priority and a population 
overflow P./(n,m + l) is calculated as
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This overflow has generated both floorspace and services and to produce 
consistent distributions of floorspace, population and services, Pi(m,n + 1) 
is substituted into (3.84), and (3.84)-(3.86) are repeated. Two iterations of 
this procedure suffice to ensure that the constraints are satisfied, but if 
some constrained equilibrium is sought, further iteration of the sequence 
(3.84)-(3.88), excluding (3.87), is necessary.

The overflow population Pj(m,n + 1) must be reconverted into employ 
ment which is allocated together with service employment on the next 
iteration m + 1. To obtain a consistent distribution of employment 
associated with the overflow population, an equation similar to (3.76) 
must be used. Reverting to matrix notation for clarity, the vector of over 
flow employment e is obtained from the overflow population p by

e = pa-1!-1, (3.89) 

where a"1 and T^1 are the appropriate inverse matrices defined from the

JesHas"
population

constraint been
violated 

7

Fig. 3.4. Generalised flow chart of the Stocks-Activities model.



78 URBAN MODELLING

scalar matrix of activity rates and the residential probability distribution 
matrix respectively. Employment to be allocated on the next iteration m+ 1
is calculated as „ , ,, „ , , , _ ,, nm Ei(m+l) = S^mrf + Ei, (3.90)
where Et is from the vector e in (3.89). Available floorspace on iteration 
m + 1 is also calculated as

Fj(m+l) = Fj(m)-[Fl}(m,n) + F}(m,n)]. (3.91)

Fj(m+ 1) and Ei(m+ 1) are substituted into (3.81) and (3.82) respectively 
and the equations (3.81)-(3.91) are reiterated until the increments of popu 
lation and employment fall within prespecified limits such as those given 
in (3.36) and (3.37). The reader can easily satisfy himself that this system 
of equations converges to these limits.

TABLE 3.3. Structural equations of the Stocks-Activities model

Equation 
number

(3.79)

(3.80)

(3.81)

Form of equation

i Z,f(Li, CH)
i

F/l) = Fj-ifiEjU)

Di = Ft (m)

Number 
of 

equations

1

I

I

m F,(m) 3.83) Di= X Ei(k~)+-^-^- I

(3.84) F}(m, n) = K\ P^m) - _ % P, (m, k) \ I

(3.85) St(m, n) = ft[pj(m)-

(3.86) Fl(m, n) = S^m, n)

(3.88) Pj(m, n+ 1) = ^—^
	/C

(3.89) e = pa^1 T^1 /

(3.90) Ei(m+\) = Si(m,n) + Ei I

(3.91) Fj(m +1) = F,(m) - [F^(m, n) + F](m, n)] I
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Various constraint procedures can be designed for this type of model, 
and that shown above is only one of many possible methods. A flow dia 
gram of the model's operations is presented in Figure 3.4 and, as in the two 
previous models, the major equations are listed in Table 3.3. From this 
table it is clear that the number of equations is equal to the number of 
unknowns and therefore the model is determined. This model differs from 
the Lowry model and the Activity Allocation model for the outputs of the 
model are quite separate from the inputs. Therefore, a procedure such as 
the one used by Lowry (1964) to obtain consistency between inputs and 
outputs is not required. In this sense, the model is more complete than 
any of the previous descriptions, for only available land is used to start 
the process of generating measures of locational attraction. Thus the 
implied circularity built into the Lowry and Activity Allocation models 
through the measures of locational attraction, is avoided.

A family of urban models
The Activity Allocation and the Stocks-Activities models presented above 
form the basis for a family of urban models originating from the parent 
Lowry model. There have been many developments of these kinds of model 
in Britain in recent years and it is useful to refer to the major applications 
and specific adaptations of these models in particular areas. Although 
detailed reviews of this family of models are presented elsewhere 
by Goldner (1971) and by the author (Batty, 1972a), this section will 
attempt to highlight the critical differences between various applications. 
Models have been developed around both the Activity Allocation and 
Stocks-Activities models and in general, the Activity Allocation model 
has been used at the subregional-metropolitan scale while the Stocks- 
Activities model has been applied to the town scale.

The models built for the Bedfordshire subregion by Cripps and Foot 
(1969a) and by the author for the Central and North East Lancashire 
subregion described in the next chapter are direct applications of Garin's 
model. The Activity Allocation model based on Garin's version but in 
corporating locational constraints has been developed for Nottingham 
shire-Derbyshire described in Chapter 5, for Northamptonshire described 
in Chapter 8, for Severnside (Turner, 1970a) and for Merseyside (Masser, 
1970). A model designed for the Tyne-Wear region (Bone, 1971) is based 
on the Activity Allocation model but constraints have been handled in 
a manner akin to the original Lowry model. In the South Hampshire 
region, Caulfield and Rhodes (1971) have developed an Activity Allocation 
model with population disaggregated by socio-economic group, and in 
which the constraints are handled in a similar way to the Stocks-Activities
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model. A model designed for Cheshire by a team at the Centre for 
Environmental Studies (Barras, Broadbent, Cordey-Hayes, Massey, 
Robinson and Willis, 1971) is based on Garin's model although con 
siderable refinements have been made to the allocation models and much 
attention paid to the definition and design of the spatial zoning system.

The Stocks-Activities model has been applied to several towns by a 
team at the Centre for Land Use and Built Form Studies in Cambridge. 
The model originally developed for Reading has been built for Stevenage, 
Milton Keynes and for the proposed new town of Hook (Echenique et al., 
1972) and the model has also been used to evaluate alternative plans for 
Cambridge (Booth, 1970a, 19706). The outputs from this model have been 
transformed into indices measuring the relative 'performance' of certain 
aspects of urban structure based mainly on concepts of accessibility, and 
such indices have been used to provide a guide in evaluating the relative 
merits of different urban forms.

Table 3.4 lists these applications and shows the number of zones adopted 
by each model. Apart from the differences in the structure of developments 
in this family of models in North America and Britain, there are two other 
distinct differences. In Britain the main emphasis has been on developing 
land-use models for systems of interdependent cities, whereas in North 
America many of the models have been developed for more complicated

TABLE 3.4. A comparison of some urban models

Region or 
town

Bedfordshire
Cambridge
Central Lancashire
Cheshire
Hook
Merseyside
Milton Keynes
Northamptonshire
Notts.-Derbys.
Reading
Severnside
South Hampshire

Stevenage
Tyne-Wear

Type of model

Garin's version
Stocks-Activities
Garin's version
Garin's version
Stocks-Activities
Activity Allocation
Stocks-Activities
Activity Allocation
Activity Allocation
Stocks-Activities
Activity Allocation
Activity Allocation

Stocks-Activities
Activity Allocation

Number 
of 

zones

130
180

51
150
35
29

168
50
62

130
40

134

49
136

Reference

Cripps and Foot (1969a)
Booth (1970a)
Chapter 4
Barras et al. (1971)
Lindsay (1971)
Masser (1970)
Echenique et al. (1972)
Chapter 8
Chapter 5
Echenique et al. (1969a)
Turner ( 1970s)
Caulfield and Rhodes
(1971)

Echenique et al. (1972)
Bone (1971)
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metropolitan areas. This difference in scale means that the average zone 
size used in these models is considerably larger in Britain. Furthermore, 
the British versions have used fewer zones and this appears to be due to 
limitations on the size of the computational facilities available and the 
lack of data for the development of these models.

This chapter has demonstrated how fairly elementary ideas can be linked 
together in systems of equations which form sets of hypotheses or models 
of urban systems. Despite the fact that the models discussed here all 
originate from the concepts developed in Chapter 2, these are sufficiently 
diverse to show how different changes in emphasis can alter the model 
structure. In the next two chapters, the Activity Allocation model presented 
above will be applied to two subregions, thus raising a host of practical 
issues concerning model design, calibration and prediction. An attempt 
will be made in these next two chapters to describe the total process of 
model design without getting involved too deeply in detailed development 
problems, but establishing the background for a thorough exploration of 
the calibration and zoning problems in later chapters. Yet it is also im 
portant to judge the worth of these kinds of model in a predictive context 
at an early stage, and therefore these two chapters are primarily concerned 
with demonstrating the use of such models in the land use planning process.



4. Subregional model design: 
impact analysis

One of the principles adhered to in this book involves the notion that 
urban modelling can best be illustrated by both theoretical and practical 
demonstrations, one following on from the other. Rather than presenting 
the book in two distinct parts based on theory and practice, an attempt has 
been made to follow mathematical description by operational develop 
ment ; thus, this chapter is concerned with making operational one version 
of the Activity Allocation model outlined in the previous chapter. A much 
simplified but total process of model design is described here with the 
initial emphasis upon an elementary design and calibration for the model. 
The place of such a model in the physical planning process is also de 
scribed, and this application to a planning problem is perhaps the least 
complicated of all applications, being based upon the concept of using the 
model to analyse the impact of major changes in urban structure. This kind 
of impact analysis which seeks to trace the implications of a fundamental 
change in spatial structure on an otherwise static system, represents 
a relatively straightforward use of an urban model in that the model is 
essentially regarded as a tool to identify problems rather than potential. 
The form of this analysis will be described after the calibration of the model 
has been discussed.

Although the models discussed here are referred to as urban, their 
application is to metropolitan subregions which have mainly urban but 
some rural components. However, the implication is that such models are 
best suited to simulating urbanised situations and the subregion of Central 
and North East Lancashire, the subject of this chapter, provides one such 
example. In Figure 4.1, a diagram of the locations of all the subregions 
modelled in this book is presented, and it is immediately apparent from 
the most cursory glance at this map that the subregions in question are 
mainly fringe areas to the extensive metropolitan areas of North West, 
South East and Midland England. The fact that none of the models 
presented here deal with the more complex parts of such regions is signifi 
cant and implies that these models are easier to build on less complex 
systems, a fact which will become apparent in the following pages.

82
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The structure of the operational model
The model described in equations (3.28)-(3.49) has been fitted to the Cen 
tral Lancashire subregion and this section serves to define certain details 
of this model structure. In particular, it is necessary to define the attrac 
tion-deterrence allocation functions in (3.28), (3.29) and (3.32), (3.33). 
In the following presentation, the sets to which each zone belongs are not 
explicitly notated, thus implying that the equations given apply to all sets. 
The residential and service allocation functions are defined as

p cti) = Pf
= S** -

Fig. 4.1. Location of the subregional modelling projects 
outlined in subsequent chapters.
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where P* is observed population in zone j, S* is observed service employ 
ment in zone i, and Ax and A2 are parameters of these functions to be 
estimated numerically by the calibration. The choice of functions of 
inverse distance as proxies for the generalised travel costs is arbitrary 
although based on conventional use (Carrothers, 1956). Yet the seemingly 
tautological specification of locational attractions by observed values of 
variables the model is required to predict, needs some explanation. This is 
the locational attraction problem which will be referred to again in some 
detail in Chapter 8, and which is also discussed by Broadbent (1970a). The 
use of observed values of population and service employment is purely 
due to convenience, in that other measures which describe locational 
attraction at any cross-section in time are difficult to specify and measure. 
Most alternative measures, when they have been available, have been 
highly correlated with these observed variables (Davies, 1970), and have 
thus made little difference to the simulation in practice.

In the model designed for Central Lancashire, no constraints on the 
location of population and service employment were imposed. In fact, 
the model was programmed using the matrix equations (3.71) and (3.72), 
and Table 3.4 classifies the model as a straight application of the model 
due to Garin (1966). In terms of the equation system beginning at (3.28), 
only equations (3.28)-(3.41) were used: the values for 5/1) and 2,(1) 
were set at 1 for all i and j, and the constraints in (3.42)-(3.49) were not 
invoked. The logic of running this model unconstrained is important; the 
less constraints there are on the model, the less are the number of variables 
exogenous to the model and, therefore, the greater the predictive power 
of the model. Constraints are generally only introduced for extraneous 
reasons based on policy or for pragmatic reasons based on the performance 
of the model, as in the constraints introduced in the Nottinghamshire- 
Derbyshire model described in the next chapter.

Zone and data requirements

The first model built used a zoning system based on the 29 Local Authority 
areas in Central and North East Lancashire; but the attempt was 
abandoned soon after it became clear that the irregularity and non- 
homogeneity of these areas as zones for the model precluded a good fit 
ever being achieved between the predicted and observed populations. 
Rural districts were very large and irregular in shape and several of them 
included suburban development around the main towns of Preston, Black 
burn and Burnley. These zones were not functional units in terms of 
localised economic activity, for they were based on fairly arbitrary divi 
sions in the subregion; the extreme variation in the density of population
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17

14

37

01
29 zones ^

1 Blackburn 14 Fulwood
2 Burnlev 15 Great Harwood
3 Preston 16 Leyland
4 Accrington 17 Longridge
5 Adlington 18 Nelson
6 Barrowford 19 Oswaldtwistle
7 Brierfield 20Padiham
8 Chorley 2 1 Rishton
9 Church 22 Trawden

10 Clayton 23Walton
11 Clitheroe 24Withnell
12 Colne 25 Blackburn rural
13 Darwen 26 Burnley rural

I Urban areas
N

6 miles_^^.
'

27 Chorley rural
28 Clitheroe rural
29 Preston rural
51 zones

1 Preston
2 Fulwood
3 Lea
4 Penwortham
5 Walton
6 Farington
7 Mutton
8 Broughton
9 Goosnargh

18 20

10 Samlesbury
1 1 Hoghton
12 Longridge
13 Whittle
14 Leyland
15 Hoole
16 Euxton
17 Croston
18 Coppull
19 Chorley
20 Adlington
21 Rivington
22 Withnell

23 Chipping
24 Ribchester .
25 Osbaldestone
26 Wilpshire
27 Pleasington
28 Darwen
29 Blackburn
30 Rishton
31 Oswaldtwistle
32 Whalley
33 Great Harwood
34 Clayton
35 Accrington

36 Sabden
37 Padiham
38 Aighton
39 Pendleton
40 Clitheroe
41 Chatburn
42 Burnley
43 Hapton
44 Higham
45 Barley
46 Brierfield
47 Barrowford
48 Cliviger
49 Nelson
50 Colne
51 Trawden

Fig. 4.2. Zoning systems for the Central Lancashire subregion.

in these areas meant that the positioning of a zone centroid, which could 
be used in the computation of inter-zonal distances, was almost impossible. 
To offset these problems, certain criteria were denned which could be 
used to disaggregate the subregion into regular units. Physical factors, 
density of population, dominant land use, similarity in zonal size: these 
were some of the factors applied when the subregion was redefined into 
51 distinct zones. Figure 4.2 provides a comparison of the two zoning 
systems developed.

A combination of several factors meant that this model had to be 
constructed at a far higher level of zonal aggregation than the Pittsburgh 
model (Lowry, 1964). Primarily, the supply of data fixed an upper bound 
on the number of zones which could be used but also the size of the sub- 
region with its several fairly independent settlements, the need to simulate 
interurban trips, and the simple structure of the model omitting density 
and minimum size constraints lead to somewhat large zones resulting in 
a better calibration yet still at a level of detail necessary to study the 
problem of impact. Not least in this discussion of zone size is the question
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of the allocation functions to be used. As outlined in the previous section, 
it was decided to use conventional gravity models in the calculation of the 
distribution probabilities, and experience suggests that such functions can 
best be fitted to fairly large areas in which irregularities in the mass of 
population or economic activity tend to cancel each other out (Isard et al., 
1960).

Compiling the inventory of data necessary for the operation of the 
model took up a fair amount of time at the calibration stage. The division 
into basic and non-basic employment was made from Employment 
Exchange Area data at mid-1965. Basic employment is usually defined as 
employment which is not dependent upon the local economy for siting 
and access. This is export^ oriented industry exogenous to the system under 
study. Although it is difficult to classify basic and non-basic employment 
with complete accuracy, the primary and manufacturing sectors of the 
Standard Industrial Classification (S.I.C., 1-17) correspond to basic 
employment here. Non-basic employment is dependent upon the local 
economy for its markets and consumers, and this service-oriented employ 
ment was classified under the service sector of the S.I.C. (18-24). Popula 
tion from the 1961 Census of Population was up-dated to 1965 using a co 
hort survival programme and these projections were checked against 
independent estimates (MHLG, 1968). Another data source consisted 
of work trips from the Workplace Tables of the 1961 Census of 
Population.

The data were then distributed to the 51 zones already defined. Dis 
aggregating these data, which were collected in the 29 Local Authority 
and 12 Employment Exchange areas, was facilitated by the finer grained 
information on population by parishes. Proportions of basic to non-basic 
employment had to be retained from the Exchange Area data and their 
transformation into these smaller zones inevitably involved a series of 
errors. This process of disaggregation was a lengthy task as continual 
refinement and redefinition of the data had to be sought so that unavoid 
able errors could be minimised. The most unsuccessful yet probably the 
most important part of this data refinement involved the decomposition 
of work trips between zones. It is essential to have independent data on 
trips for any interaction model, but these data were too coarse to provide 
observations against which to fit the allocation functions. Therefore, an 
attempt was made to decompose the trips between the 51 zones although 
the attenuating effect of distance could not be brought to bear on this 
reallocation. The inverse activity rate (population/total employment) 
and the population-serving ratio (non-basic employment/population) were 
also calculated from the data. The major characteristics of this subregion 
are presented in Table 4.1.
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TABLE 4.1. Major characteristics of the 
Central Lancashire subregion

Total number of zones
Total land area in square miles
Average land area per zone in square miles
Total population
Average population per zone
Population density in persons per square mile
Basic employment
Total employment
Ratio of basic to total employment
Ratio of inter-zonal to intra-zonal work trips

51
392

7.6863
724063

14197
1847

172874
313165
0.5517
0.5059

Required for this model is a matrix of inter-zonal distances or travel 
times to be used in the computation of the distribution functions. After 
locating the zone centroids, a planar graph of the route network was 
drawn. Time-distances for private car, varying over the type and condition 
of the road system and modified by terminal traffic speeds at centroids, 
were measured on the direct paths of this graph and provided input to a 
Shortest Route Programme based on the Cascade Algorithm (Farbey, 
Land and Murchland, 1967). This subprogramme is in fact built into the 
main body of the computer programme used in calibrating the model, 
and the matrix of interzonal time-distances is set up within the computer 
each time the model is run; thus the data requirements for the model were 
extremely manageable.

Calibration as statistical estimation
In calibrating urban models, there are two major problems necessary to 
resolve. First, there is the problem of defining 'best' statistics which 
measure the goodness of fit of the model to reality in a meaningful way. 
Second, having derived such 'best' statistics, there is the problem of de 
veloping efficient methods for finding 'best' values for the model's para 
meters ; such values are usually chosen by finding the optimum fit of the 
model in terms of the 'best' statistics. With regard to the two parameters 
Ax and A2 of the activity allocation model, a number of statistics which 
measure the correspondence of various observed and predicted endogenous 
variables, have been chosen arbitrarily. At this early stage, the statistics 
were taken from conventional linear methods involving measures such 
as the correlation coefficient and chi-square test. In later chapters, parti 
cularly in Chapter 7, theoretical methods for deriving 'best' statistics will
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be explored, but here the emphasis is on fitting or calibrating the model in 
fairly rough and ready terms, thus avoiding the use of more sophisticated 
methods.

Four statistics are used in this chapter and the next and each of these 
statistics has been applied to several different distributions such as popu 
lation, employment, work trips and so on. The following statistics are 
defined for the population distribution but can be extended to any other 
distribution. Define the population mean

P =
i i

where Pj and Pf are the predicted and observed values of population in 
zone j given previously. Note that Jh the total number of zones associated 
with these population distributions. The first statistic is the standard devia 
tion of the predicted distribution cr and of the observed distribution a*. 
Then for the predicted distribution

cr= F3-
The standard deviation for the observed distribution is calculated in like 
manner. The correlation coefficient r can now be defined using the means 
and standard deviations as

r = Jb-cr*

The third statistic which is known as the root mean square error f is defined 
by Hill, Brand and Hansen (1965) as

and the fourth statistic, the chi-square %2, is based upon the frequency 
distributions for observed and predicted populations. These are calculated 
by grouping the data into K categories, each category having frequency

K r/.*_ ns
Z __. (J k Jk

Then .*_s
.

k = l fk

Optimum values for these statistics occur when r = 1, and |er — <r*| =0, 
f = 0 and x2 = 0. Therefore the calibration problem can be seen as one in 
which optimum values for ^ and A2 are found by maximising r, and 
minimising Icr — <r*|, f and x2 -
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The traditional method of calibrating this kind of model is by trial and 
error. It is assumed that the optimum exists within a predetermined range 
of parameter values, and the goodness of fit of the model is evaluated at 
selected points within this range. The interval of search can be narrowed 
sequentially and there exist highly efficient methods for achieving this to 
be outlined later in Chapters 6-8. In the case of a model with two para 
meters A! and A2, a grid of possible values for the parameters is established 
within the predetermined ranges and the fit is evaluated for each combina 
tion of values, gradually homing in upon the best combination. This 
method will be illustrated in some detail in the next chapter.

Perhaps the most important statistics in spatial interaction modelling 
reflect the amount or cost of interaction in any urban system. In particular, 
the means of the trip length or cost distributions have been widely used 
in transport modelling (Wagon and Hawkins, 1970), and these key 
statistics can be defined in their most general form as

, A2) = ^=== —— , (4.1) 
2j2j*tj
i i

„.."• (4' 2)
i i

where C(A1( A2) is the mean trip cost in the residential-workplace subsystem 
and 5(Alt A2) is the mean trip cost in the service subsystem. FJ(cy) and 
F2(ci30 are functions of generalised travel cost whose particular form 
depends upon statistical considerations oulined in Chapter 7. However, 
in this particular application, these functions are defined as

= In dy.

The rationale for this definition is given later; readers who wish to antici 
pate these considerations are referred to the paper by Hyman (1969) for 
a brief but cogent summary.

Performance of the model
The model took about five months to calibrate although much of this 
time was concerned with continual refinement of the data and the alloca 
tion functions. Part of the process consisted in testing the sensitivity of 
the model to variation in the parameters and in the time-distance measures.
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From the statistical tests performed to optimise the fit, the model was 
extremely insensitive when the parameters were varied although the 
allocation of employment and population changed substantially over 
a range of parameter values. The most sensitive aspect of the model in 
volved the values given to the intra-zonal time-distances. Estimation of 
these time-distances was made by taking the average time-distance from 
the centre of gravity of the population distribution of an area to the 
periphery of the distribution, and this was modified by relating the speed 
of travel to the density of population. It is easy to see why these distances 
are most sensitive in the model, for in a large town a slight variation in this 
value could mean a large addition or subtraction of the amount of non- 
basic employment or resident population located in that area. The same 
procedure used by the Haydock study was adopted in that the intra-zonal 
travel times were varied proportionately over a specified range and the 
best resulting fit was taken (McLoughlin, Nix and Foot, 1966). The re- 
measurement of these values does not detract from the validity of the 
model but it is a fundamental measurement problem which is looked at 
again in Chapter 9.

100000 ]lObserved 

j I Predictedoil
Predicted and observed population

Hi > 10%
—i 10 to- 10%
mm <-io%

Spatial
distribution of population residuals

Flows shown are 
the sum of trips in 
both directions. Only 
trips > 300 shown

Distribution of work trips

Fig. 4.3. A summary of model calibration.

Work and service flows 
20 000 trips 

lO 000 
0

Distribution of service demands
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Two sets of observed data - population and total employment - were 
used to optimise the fit for 1965 and statistical hypothesis testing based 
on the previously defined statistics was employed to evaluate the validity 
of the output. Eventually the distance exponents were fixed at 2.4 for trips 
to workplaces and 1.7 for trips to the service-shopping centres. The 
results of the calibration are shown statistically in Table 4.2 and for 
a selection of zones in Table 4.3. A diagrammatic assessment of the model's 
performance is given in Figure 4.3. The nature of the high correlation be 
tween the observed values and the model's output can only be appreciated 
when the actual results are scanned, for the statistics used give an almost 
complete fit whereas the actual results show that there are slight deviations 
from observed values which are significant in terms of the allocation rules 
used.

TABLE 4.2. Goodness of fit of the model

Residential parameter Aj 2.4000
C(A!, A 2) observed 1.3564
S&i, ^2) observed Not available
r2 for {In (P,)} 0.9683
r2 for {In (£<)} 0.9915
r" for {a,,}, / = / 0.6421
r2 for {/?„}, i = j 0.7678

Service centre parameter A 2
C(Ai, A 2) predicted
5(Alt A 2) predicted
£ for {PJ
£ for {£J
£ for {aa}, i = j
£ for {/?,,}, j = j

1.7000
1.5771
1.9161

2073
976

0.6233
0.0249

TABLE 4.3. Performance of the model for a selected 
sample of zones

Observed values 1965 Calibration values 1965

Zone 
number

1
2
5

14
19
29
30
31
35
42
49
50

Name

Preston
Fulwood
Walton-le-Dale
Leyland
Chorley
Blackburn
Rishton
Oswaldtwistle
Accrington
Burnley
Nelson
Colne

Population

116339
16649
20295
20642
32195

108351
5520

12211
45874
82346
32733
20942

Service 
employment

38840
1561
3909
2414
5681

20304
292

1725
7263

17994
4405
2947

Population

121528
16073
21479
21361
31203

118815
8029

12603
44828
84631
33200
20176

Service 
employment

34104
1432
4151
1971
5824

24756
442

2056
8262

19014
5443
3181
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The main point arising from the calibration concerns the fact that the 
populations of the major urban centres are overreading a little. This seems 
to be due to the nature of the allocation functions which are operated 
uniformly over the system with no differentiation between rural and 
urban areas. The excess population in the larger urban centres can be 
mainly accounted for from the agricultural zones which are underreading; 
too many trips are being generated from the agricultural areas to the urban 
centres and this result seems consistent with the fact that different areas 
generate different types of trips which need to be described by different 
allocation rules. This reveals an aspect of the model which must be 
treated with care especially in projection where it is assumed that the 
agricultural zones will not change very much. Density constraints on 
the zones have not been needed in calibrating the model, for the size of 
the zones seems to mesh well with the general structure of the model. 
Garin's formulation is neatly adapted to model-building at this scale of 
spatial planning, although in some instances it is quite possible that 
density constraints would have to be invoked when the repercussions of 
large increases in basic employment are projected.

In conclusion to this section on system design and calibration, another 
variant of the model will be mentioned. The model as calibrated describes 
a closed system since movements across the subregional boundary are not 
treated. A version which tried to describe this movement was programmed 
and eight very large 'dummy' zones were placed around the edge of the 
subregion to account for the trips. Although the dummy zones had 
similar data requirements to the other 51 zones, movement between them 
was forbidden. A few runs of this model were made but it soon became 
apparent that the task of 'tuning up' a partially open system would be 
long and expensive. The dummy zones were too large for the problem 
and the total population and employment of the subregion varied with 
changes in parameter values. This approach, however, is useful and 
realistic for it is obvious that in the areas outside the subregion, the 
impact of the new town may be as great as in North East Lancashire. 
Consequently the model in its present form may overestimate the impact 
in the valley towns of Blackburn, Accrington, Burnley, Nelson and Colne. 
More feasible formulations of the problem of relating the spatial system 
to its environment using dummy zones are presented in Chapters 8 and 9.

Predictive modelling and recursive forecasting
In using any static model in a predictive and necessarily dynamic context, 
there is a logical inconsistency in that the model has been calibrated to 
reflect some average spatial history of the system whereas it is being used
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predictively to allocate marginal change. This is a problem which affects 
many of the models in this book, inevitably reducing their predictive 
power. The dynamic modelling of Chapters 11 and 12 presents the only 
way to resolve this inconsistency and thus the reader must bear in mind 
these limitations on the predictive analysis which is presented in subse 
quent sections. In this study, two types of projection have been made - 
one-shot projections direct to 1990, the horizon year, and recursive projec 
tions based on five-yearly intervals to this date. At one extreme, the one- 
shot projection deals with change over the whole forecast period of the 
plan. Intervening outputs are not computed, thus the continuous change 
towards this final date cannot be measured but the purpose of this pro 
jection is to establish a single locational equilibrium. Inevitably the 
approach suffers from the application of distribution rules which are un 
changing over the projection period. At the other extreme, recursive pro 
jections are based upon a stepwise progression in which the solution at 
1990 is based upon a continuous redistribution of activity to that date. 
In this recursive process, output of an intermediate projection provides 
input to the next projection, and the process continues in this way until 
the solution date is reached. Obviously each of these intermediate outputs 
is an equilibrium in itself, and this involves the question of lagged variables 
within the system.

How quickly does the spatial distribution of population and non-basic 
employment respond to a change in basic employment? Is there a simul 
taneous response or does the system respond after five years or twenty- 
five years or longer? Do different activities react uniformly to such a 
change ? These are some of the questions which have to be borne in mind 
when evaluating the different projections. The method of one-shot pro 
jection means that certain variables which determine the allocation rules 
such as population or employment in any zone, operate on a twenty-five 
year lag. Much less lag is involved in the recursive projections for there 
is an immediate response to changed transportation patterns, and a re 
sponse after five years to the new allocation of population and service 
employment. For both one-shot and recursive projections, the restruc 
turing of the spatial organisation of the system operates equally over all 
activities, existing activity following the same response to change as the 
new activity. A variant which can be adopted for both sets of projections 
is based on an incremental approach. Using this method, new activity is 
'layered' on top of the existing pattern which is assumed to be unrespon 
sive throughout the period of the plan, possibly accounting for some of 
the locational inertia of existing investments.

These different types of projection represent the real world condition 
only partially and it is impossible at the present time to structure the model
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to simulate completely realistic conditions for there has been no extensive 
research focusing directly upon the response of activity to change and the 
varying lengths of time necessary to determine changes in the pattern of 
land use. Thus, at best, the projections described here can only be sugges 
tive of change and the specific results produced by each projection can 
only be seen in the light of the assumptions embodied within them.

Rather than describing a recursive form for the whole system of 
equations given in (3.28)-(3.49), the method of recursive forecasting will 
be outlined only in relation to the residential and service centre location 
models. In the following equations, the notation is the same as that used 
previously, and the postscripts (?) and (t+ 1) define the appropriate fore 
cast interval used in projections with the model. Note also that the iterative 
notation of the model is suppressed in the following presentation. Then 
for the residential location model given in equations (3.28) and (3.29)

T{j(t+l) = At(t+l) Bj(t+ 1) £,(/ + 1)/W), cifiy), (4.3)

Ai(t+ 1} = - (4 '4)
The parameter value A1 associated with fl(D£t\ c{j(t)) in (4.3) and (4.4) 
is altered at each forecast interval to account for assumed changes in the 
amount expended on transportation in the subregion. The travel times on 
the network cti are lagged over the forecast interval on the assumption 
that changes in network do not affect the distribution of trips or the 
location of population immediately. The constraints on residential loca 
tion in Z2 and Z4 are also changed at each forecast interval; the attractions 
of residential locations Dj are lagged over the forecast interval on the 
assumption that changes in these attractions do not immediately affect 
residential location.

In the service centre location model given in equations (3.32) and (3.33), 
the parameter A2 is altered at each forecast interval and the attractions of 
service centres to the location of service employment Dj and the travel 
times on the network are lagged over the forecast interval

(4' 6)

As pointed out previously, there is an inconsistency between the time- 
oriented projection system and the calibration. When the model is cali 
brated, no lags are built into the system. This inconsistency was con-
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sciously accepted in this modelling venture because of the difficulty in 
projecting the future attractions of residential and service centre locations 
and the consequent need to use the outputs of population and service em 
ployment from one time period as indices of locational attraction in the 
following time period. Furthermore, the use of this model is not in accu 
rate forecasts of the future system, but in forecasting a range of possible 
futures for the system. As long as each forecast is based upon a consistent 
projection system, the different futures predicted by the model can be 
compared.

There are several trajectories which can be charted from the model's 
predictions. The work trip and service trip distributions can be analysed, 
and changes in population and service employment can be plotted

+l), (4.7) 

(4.8)

This model also provides an interesting mechanism for forecasting migra 
tion. Changes in the input variables such as basic employment and the 
travel times lead to a series of repercussions within the spatial system and 
it is the changes through time in the directions and strength of these 
repercussions which create migration. People leaving one zone will reduce 
their demand for services in other zones; these people associated with 
service trades will in turn reduce their demand for services in other zones 
and so on until the process works itself out. Rather than using any 
explicit submodel of migration within the general framework, the model 
produces a changed distribution of population and service employment in 
which migration is treated implicitly. Three types of migration can be 
derived from this model:

1. Migration which is external to the subregion: changes in basic 
employment will result in persons entering or leaving the area, these 
changes being projected independently of the model.

2. Migration which is due to the internal redistribution of basic employ 
ment in the subregion.

3. Migration which is caused by the changed potential of the subregion.
This last category needs further explanation. The gravity models which 

predict the residential locations of workers are based upon the distribution 
of population and spatial measures of cost impedance, in this case average 
travel times between the zones. Changes in the distribution of population 
and changes in the transportation network will generate different resi 
dential locations for the same distribution of employment. This leads to 
a changed distribution of population which is treated implicitly as the
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response of population to the changing locational attractiveness of each 
zone. If a zone becomes more attractive in relation to all other zones, 
the model will predict that the zone in question will attract a greater 
quantity of population than it originally had, the excess coming from the 
other zones in the subregion. This flow can be called migration due to the 
changed potential of the subregion and it represents the most important 
variable to be used in the projections of the space-economy.

Total net migration of population in any zone j between t and t + 1 , 
called AP, can be calculated from

Ay, = a(/+ 1) GW+ 1)- W)L (4.9)
i i

Here the inverse activity rate a is normalised to t+l so that changes in 
population due to natural increase or decrease do not obscure changes in 
population due to increases and decreases in basic employment. One 
component of total net migration is migration which is caused by the 
changing attractions of residential locations through time. This net migra 
tion called AM, can be calculated by removing the change in population 
caused by the change in employment A£f from (4.9). Then

AM, = Ay,-a(f + l)S>4,(f + 1 W+ 1) AEi/W), crft)). (4.10)
i

Summing (4.10) overy and substituting for Ay, from (4.9) gives

SAM, = a(t + 1) ES7tf(/+ l)-SSr«(0-SA£J. (4.11)
j i i i i i

Now noting that Et(t+\) = £;(0 + A£i ' n (4-3) and substituting (4.3) 
into (4.11), it is clear that

SAM, = a(f+l) [S(£i(0 + A£f)-S£((0-ZA£i] =0. (4.12)
j i i i

Examining the set of constrained zones Z2, Z3, Z4 and the unconstrained 
set Zlf then £AM,+ ^ AM . = 0> (4. 13)

jeZi jeZs,Z,,Zt
and

SAM, = - S AM,. (4.14)
;e£i jeZ,,Z,,Z,

Equation (4.14) shows that a net migration flow between the constrained 
and unconstrained locations can be calculated. In fact, the net migration 
across any partition of the system into two mutually exclusive sets of 
zones can be found, and this is an extremely useful output for assessing 
the sensitivity of the model. The system of equations in (4.3)-(4.14) is now 
illustrated with regard to the impact analysis described in the following 
sections.
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A brief history of the subregional space-economy
Central and North East Lancashire is extremely suitable for the applica 
tion of land-use modelling techniques since the area is physically and 
economically well defined and interaction with other settlements across 
the subregional boundary is negligible. The subregion can be divided into 
two parts - North East Lancashire centred on the Blackburn-Burnley 
complex and Central Lancashire on the Preston-Chorley area. North 
East Lancashire has experienced a long period of decline in population 
and employment due to the contraction of the textile industry around 
which the area developed, and although there has been considerable 
diversification in the local economy in recent years, the area is still 
characterised by a high rate of outward migration. The settlement pattern 
of the Blackburn-Burnley area has not changed substantially since the 
turn of the century and the obsolete environment and poor accessibility 
to major metropolitan markets are important factors discouraging the 
economic revival of this area.

Central Lancashire has fared a little better than its close neighbour for 
this area is astride the main north-south communications network in 
North West England. There has been some industrial expansion in the area 
in the last ten years, for example at Leyland, but the rate of growth has 
been well below the national average. The Preston area has a more 
amenable climate and environment than North East Lancashire, but 
nevertheless suffers from the legacy left by the Industrial Revolution, es 
pecially where its housing stock is concerned. Since 1951, population has 
declined in North East Lancashire at a rate of approximately 0.3 per cent 
per annum whereas in Central Lancashire, the population has increased 
slightly at about 0.4 per cent per annum.

The most striking characteristic of the subregion is the lack of change in 
the spatial distribution of activities in the last twenty years. There is very 
little journey to work between the main settlements of Preston, Blackburn 
and Burnley, and recent industrial surveys have revealed that since the 
decline of the cotton industry, there are few interdependencies within the 
industrial structure of the area. In North East Lancashire, decline in basic 
industries, low per capita income, obsolete environment, poor climate, 
and the ageing population structure all contribute to continuing economic 
decline. In Central Lancashire, however, there is a little more prosperity, 
for this area is beginning to feel the advantages of economic decentralisa 
tion from the two conurbations of Merseyside and Greater Manchester 
to the south.

In future years, the space-economy of the subregion is likely to be 
dominated by the location of a new town, centred on the Preston area,
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which is to be fed by overspill population from South Lancashire 
(MHLG, 1967). Therefore, the projections of the space-economy discussed 
here largely concern the impact which this new town will have upon the 
settlement pattern in North East Lancashire. It is quite possible that the 
scale of development proposed in Central Lancashire could lead to 
severe economic decline in North East Lancashire, for the economy of 
this area is already depressed, and unless there are positive proposals for 
its revival, the decline in employment may continue. How can the local 
economy benefit from the creation of such massive economic potential 
virtually on its doorstep? What sort of decisions are needed to revive the 
economy of this area, and what would be the likely spatial distortions to 
the settlement pattern if proposals for its future are not made? These are 
some of the questions which this modelling study will attempt to answer, 
but before the results of projection are described, a recent projection of 
the space-economy by consultant economists will be outlined, for this 
provides a useful yardstick against which to compare the forecasts made 
by the model (MHLG, 1968).

A recent forecast of the space-economy
The framework adopted by the consultants concentrates primarily upon 
the assessment of the future industrial prospects for North East Lancashire 
and upon the migration of population into and out of this area. Forecasts 
of future population and employment levels involve the projection of 
migration and population independently of employment, and by a 
method of successive approximation, consistency between these distribu 
tions is secured. The mechanics of this study have been well thought out, 
and recognition of migration as the most important flow involved in impact 
analysis means that the results of this work are partially comparable with 
the migration data produced by the model. Although the state of the art 
sets a limit on the techniques which any study can apply, it would have 
been better for the problem to have been set within a more rigorous 
framework in which the independent projections of migration and popu 
lation, manufacturing and service employment and the journey to work 
could have been more closely integrated. This method of successive ap 
proximation is a useful tool but it has no analogy in the events of the real 
world. It is therefore impossible to state with complete confidence that 
the actual impact of the new town will follow the conclusions reached by 
this study.

A sample survey of the motivations and destinations of migrants who 
left the area between mid-1965 and mid-1967 provides the data for the 
analysis of the present migration pattern. This reveals that migrants within
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different occupational groups have different priorities in the decision to 
move. Data on the destination of migrants show that of the total out- 
migration from North East Lancashire, only 6.6 per cent move to Central 
Lancashire, and the major attraction of the area seems to be due to better 
housing and a more temperate climate rather than better employment 
opportunities. The analysis is supplemented by a projection of industrial 
activity in North East Lancashire which shows that manufacturing employ 
ment will continue to fall during the next twenty-five years. The journey to 
work analysis is confined to an interpretation of the existing pattern of 
movement in relation to earnings differentials in the subregion, but the 
results of this section are too vague to constitute the basis for a projection 
of future changes in the distribution of trips.

The impact of the new town
Impact is defined by the study as the difference in population between 
projections made for the area without the new town and projections with 
the new town. The consultants conclude that the new town will attract 
between 30000 and 40000 people from North East Lancashire over the 
next twenty-five years, and this compares with a movement of 13000 people 
which would result if the new town were not developed. The spatial 
intensity of impact would approximately vary inversely with distance from 
the new town, but the scale of the impact tends to be obscured by rising 
population in the subregion due to changes in the activity rates and 
population-serving ratios. It seems that these conclusions are too optimistic 
about the future of North East Lancashire, for the projections of change 
have been modified by consideration of the role of this area as a specialist 
industrial and residential subsystem of the new town. There is no evidence 
that North East Lancashire will adapt in this way; it may remain quite 
separate and the existing differences between the two areas may become 
even more marked.

Yet despite these shortcomings, the study is a useful contribution to the 
understanding of impact and although the conclusions are based upon 
fairly tentative assumptions, the results are probably in the right direction. 
The involvement with migration streams and differentials, and the implicit 
treatment of the multiplier effect in migration show that the study has 
been conceived on a sound theoretical base. Projections with the model 
mean that migration, population, employment, and the work and service 
trips are rigorously related, and it becomes possible to measure the change 
in any one of these variables relative to changes in the others. Projections 
are made at five-yearly intervals from 1965 to 1990, and during this 
period 40000 basic jobs are located in the Central Lancashire new town,
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whose form is shown in Figure 4.4. As the projection reveals that the effect 
on population and employment is much more critical than the conclusions 
of the study reviewed above, this analysis must be qualified by some 
comments on the limitations of the model in simulating change in 
activities.

The impact may be less serious than it appears at first, for the model 
is operated within a closed spatial system; without this assumption, a more 
even distribution of impact in the surrounding areas is likely. Areas not 
simulated by the model will be affected by the new town, and this may 
reduce the impact upon North East Lancashire. But on the other hand, 
it is assumed that basic employment in North East Lancashire does not 
change during the period of the analysis. This is optimistic in the light of 
the decline predicted by the consultants' study, and contributes to some 
reduction in the effect of the new town on the economic base of this 
area. The most important assumption which helps to confirm that the 
results to be reported here are reasonably accurate is the fact that the 
natural increase in the population of the subregion is not treated by the 
model. Only 40000 employees in basic industry are projected for the new 
town; this is definitely an underestimate, for more basic industry will be 
needed on which to base the natural increase in population. Voluntary 
migration of employment and population into the Preston area will 
probably occur when the new town becomes large enough to become its 
own generator of growth, and this is not considered in the following 
analysis.

___ N
•• Urban development 1965
>'.:. '.,] New town development 1970-90
••• Consultant's impact study area: North East Lancashire
•—— Subregional and regional motorways

Fig. 4.4. Location of the Central Lancashire new town.
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A B A

Note: contours of equipotential are plotted in intervals of 20 000 persons per square mile

Fig. 4.5. The impact of the new town on a profile of population potentials,
1965-90.

A general indicator of impact

The word 'potential' has already been used in this chapter as an index 
for the general locational attractiveness of any area. There is however, 
a more precise measure of potential which can be computed for every 
component of the spatial system; this is a measure of the aggregate accessi 
bility of any zone relative to every other zone. By utilising such an index, 
it is possible to show how the distribution of potential changes over time. 
When a large change is made to one part of the area, the relative potentials 
of all the zones in the system change, and it is possible to use this change 
as an indicator of impact. The conventional population potential formula 
of Stewart referred to earlier in (2.54) is used to compute this index 
(Stewart, 1947)

Vi is the population potential at i, and Pj, dip and Aj are as defined pre 
viously. The potential field of a subregion can be summarised by contours 
of equipotential (Knos, 1968), and Figure 4.5 illustrates a cross-sectional
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change in potential through time from 1965, without the new town, to 
1990, by which time the new town has been developed. From the 1965 
situation in which the three focal points of the subregion Preston, Black 
burn and Burnley have similar potentials, Preston becomes the major 
focal point by 1990 and the distribution of potential within the Accring- 
ton-Burnley complex becomes more even. The most interesting fact 
arising from this comparison concerns the potential of Blackburn. This 
potential increases significantly although there is no physical fusion 
of development within the Preston-Blackburn area. Does Blackburn 
benefit from the development of Preston-Leyland-Chorley ? To answer 
this question and to provide a more detailed discussion of the future 
space-economy, it is now necessary to turn to the detailed population 
and migration results, predictions made by the model.

Impact analysis: changes in population and migration

In this section, a recursive projection of the space-economy is described, 
and evaluated against the forecasts made by the consultant economists. 
Apart from the increase in basic employment in the new town, the trans 
portation network of the subregion changes quite substantially. The new 
town is centred on an urban motorway system in Central Lancashire, 
and a motorway linking the new town with Blackburn, Accrington and 
Burnley is located along the Calder Valley. Changes in population are 
shown in Figure 4.6 for the larger urban settlements within the subregion. 
A pointer to the future of this area is the decline in population and total 
employment within the Accrington-Burnley-Nelson complex. Such extreme 
change suggests that the economic attractiveness of North East Lancashire 
is substantially reduced with the expansion of the new town. But these 
changes must be interpreted spatially, for the increasing population in 
the suburban zones of Padiham, Clayton-Le-Moors and Brierfield accounts 
for some of the decline in Accrington and Burnley. Within Central Lan 
cashire, there are some large increases in population within suburban 
zones such as Fulwood and Walton, and the population of Preston itself 
increases substantially. The model is able to simulate a decentralisation 
of activity quite successfully and by 1985, Preston begins to decline in 
population. As mentioned in the last section, Blackburn thrives with the 
growth of the new town. It has a growth curve similar to Preston's, 
eventually losing a small amount of population to suburban areas. The 
growth of Blackburn can only be discussed implicitly; its location within 
the subregion and its present population potential mean that a proportion 
of the service employment generated by the new town is diverted from 
Preston to Blackburn which is more accessible to some parts of the new
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town than to Preston. This service employment in turn generates further 
population and service employment in the Blackburn area.

The cumulative decline of North East Lancashire due to the increasing 
unattractiveness of the area to locators can be analysed more accurately 
with reference to internal migration within the subregion. Internal migra 
tion was defined earlier in this chapter as that migration which is caused by 
the changed potential of the zones of the subregion. The particular advan 
tage of using this type of migration measure is that the trend in migration 
can be isolated and any change in the trend identified. It is possible to find 
out whether the system is tending towards stability or instability. The 
migration-time curves for selected urban areas in the subregion are shown 
in Figure 4.7. This is probably the most useful output from the study; the 
migration statistics give a crude dynamic orientation to the model but 
are nevertheless true indicators of change. Besides showing the trajectory 
or line of behaviour for each component in the spatial system, migration 
neatly points up the structural deficiencies in the model. The fact that 
only 7 zones out of 51 have a positive net internal migration between 1965 
and 1990 indicates that the model is too sensitive to changes in potential. 
Perhaps if growth in the system were constrained by physical restrictions 
on development or by a more realistic formulation of the recursive process, 
then the model might produce a more dispersed distribution of growth.

Yet this is only a localised problem. It does not detract from the general 
results which the model forecasts for the subregion. The migration-time 
curves show how the model can simulate decentralisation. Note for 
example, the curves of Blackburn and Preston in Figure 4.7. The migration 
results endorse the population changes in the sense that the large urban 
centres of North East Lancashire experience heavy out-migration and the 
suburban areas of the new town become the main residential attractors 
for the subregion. There are some interesting trends in migration; the 
shifting centre of development within the new town is revealed by initial 
net in-migration at Leyland and out-migration at Longridge. When the 
development moves towards Longridge in the latter years of the plan, 
Leyland experiences a small net out-migration and Longridge a net 
in-migration.

Most of these migration results reflect the trend shown in population 
change; but the change in Nelson is interesting for at one interval within 
the forecast period, there is a net in-migration of population. At previous 
and later intervals, there is net out-migration. This curious result seems 
partly due to the fact that at this time, there is a slight improvement in 
transportation in this area, and partly due to the overlapping potential 
fields of Burnley and Colne. As Lowry (1964) has pointed out, if two 
potential fields overlap in this way, then there is a build-up of population 
in the area of overlap. In Figure 4.8, the process of migration is spatially
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summarised by a diagram showing the critical changes in each forecast 
interval. The model has not been used to extract data on inter-zonal migra 
tion, but as the sum of the internal migrations is equal to zero by equation 
(4.12), what is lost by any one part of the system is gained by the other 
part. Flows can thus be interpreted by dividing the system into two parts. 
The division which suggests itself is into Central Lancashire and North 
East Lancashire, and in Figure 4.9, the flows between these areas are 
shown in each forecast interval of the analysis.

Migration into Central Lancashire, although increasing at each forecast 
interval, begins to stabilise by 1985. It is easy to speculate on the future 
stability of the area in these terms but it is difficult to interpret the eventual 
outcome of such a process. One of the reasons why the system has not

1965-75 1975-80

!• > 20 000
I——I 10 000 to 20 000
1=1 5000 to 10 000
nrn 1000 to 5000 
I—i -1000 to 1000 
EZ3 -500oto-iooo
r~^1 < -5000

1980-85 1985-90

Fig. 4.8. The spatial pattern of net internal migration, 1965-90.
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1965 75 1975-80

1980 85 1985 90

Fig. 4.9. Migration flow between Central and North East Lancashire, 
1965-90.

been projected further than 1990 to show the emerging spatial structure 
of the subregion, is that forecasting after this period is mere speculation 
and examining the rates of change in each zone of the subregion, parts of 
the system could well degenerate upon further projection. Another feature 
of change involves service employment. This tends to follow a similar 
pattern to population although there is no decentralisation of service 
employment from the large urban centres of Preston and Blackburn to 
the suburban areas. With such radical restructuring of the settlement 
pattern, it is likely that basic employment will be affected by the internal 
migration of population. This is an aspect of change which the model 
cannot predict, for the system is operated on the assumption that changes 
in basic employment are completely independent of non-basic employ 
ment and population. In general terms, basic employment does not generate 
population but when basic employment is changing at different rates in the 
system, migration is created which may force a decline in the less 
prosperous basic industries.
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The flow of population from North East Lancashire to the new town is 
double that predicted by the consultants, but just as their study must be 
interpreted on its assumptions, so must the results given here. They are 
indicators rather than accurate forecasts: in the same way the diagram in 
Figure 4.10 provides an indication of the increasing dominance of Central 
over North East Lancashire, rather than any definitive forecast.

The future of Central and North East Lancashire
If some of these problems are to be solved, then there are two ways to 
manipulate the future of this subregion; both will involve titanic efforts 
on the parts of government and planners. First and foremost, employment 
must be injected into the base of North East Lancashire. But if economic 
decline is accepted for locational reasons, a second method would be to 
make the area so attractive as a residential location that people working 
in the new town would demand housing in North East Lancashire. The 
first strategy is the most realistic and the easiest to achieve but any proposal 
will involve an integration of growth in Central and North East Lanca 
shire. Intricate manipulations are needed to sort out the mechanics of such 
a revival and a subregional strategy is the only way to achieve balance in

01
miles

1 Preston area: problems of congestion and high density

2 Blackburn area: problems of uneven population sprawl

3 Possible fusion of development

4 Leyland-Chorley area: too scattered development

  Centres of growth in service employment
 - Directions of population decentalisation

Urban areas with declining population and out-migration 
to the new town.

Fig. 4.11. Future problems concerning the growth and
distribution of activity in Central and North East

Lancashire.
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the economy. Projections of alternative growth patterns for the new town 
show possible ways in which these goals may be achieved. A more even 
distribution of basic industry within the subregion realises such objec 
tives, and this model can be used to show how the impact on the subregion 
can be minimised using different growth locations.

Figure 4.11 suggests a diagrammatic interpretation of the various 
problems which the subregion will face if the new town is developed. 
Although there is much work to be done on refining the mathematical 
and theoretical structure of this model - which is tackled in subsequent 
chapters - these conclusions do seem to be reasonable indications of the 
future. If they are, then North East Lancashire is likely to experience an 
intensification of its present decline. But it is not too late to think again 
about the future growth of this subregion. By a comprehensive location 
policy, these trends can be reversed and the area steered back to a state 
of economic balance.

This chapter has attempted to illustrate the real potential which urban 
models have in helping to aid the planner in predicting and inventing the 
future and in this instance, in circumventing undesirable effects of planning 
policy. The real advantage of such a model in forecasting is that it can 
produce a very large range of answers to any problem and by doing this, 
it can define the boundaries of the solution space to that problem. It is 
these extremes of prediction that planners find very hard to produce, for 
in a completely intuitive process, there is a continual feedback of informa 
tion about the problem which results in a series of compromises leading 
to a single solution; no matter how hard one tries to produce an objective 
range of alternatives, each alternative reflects the previous alternative in 
some way, and the range tends to become very narrow. Besides sharpening 
one's perceptions and understanding of the mechanisms of spatial structure 
and change, the model widens one's horizons in the search for a solution, 
and by isolating extremes, it helps one to focus upon critical factors which 
might otherwise remain unnoticed. In the next chapter, this type of 
model will be made more realistic in an attempt to show how the model 
can be used as a positive aid in the planning of urban structure.



5. Calibration and prediction with 
activity allocation models

In this chapter, the activity allocation model presented formally in 
Chapter 3 and operationally in Chapter 4 is applied to a more complex 
problem of subregional modelling. This discussion is organised into three 
major sections, the first dealing with problems of model calibration, the 
second with issues affecting the use of the model in evaluating alternative 
urban structure plans, and the third with a comparative analysis of the 
problems raised in this and the previous chapter. The model which is 
applied to the Nottinghamshire-Derbyshire subregion, referred to here 
after as the Notts.-Derbys. subregion, was based upon the system of 
equations (3.28)-(3.49); however, unlike the Central Lancashire model, 
locational constraints in the residential population sector were required 
in the Notts.-Derbys. model and thus the equation system used was 
specifically based upon equations (3.28)-(3.41) together with (3.42), (3.43), 
(3.46) and (3.48). No constraints were invoked with regard to location in 
the service or non-basic sector. A more complex calibration procedure 
was designed for this model but before this is described, it is worth while 
outlining some of the factors involved in making this model operational 
in Notts.-Derbys.

Zoning and information systems
Although the factors affecting the number and size of zones, and the data 
describing activities within zones are closely intertwined, as was illustrated 
in the previous chapter, Broadbent (1969a) has suggested a fundamental 
theoretical principle governing the choice of zone size. When designing 
spatial interaction models, Broadbent argues that it is important to have 
a 'sufficient' number of interactions between zones in order that the 
model describes trip behaviour in an accurate way. In other words, the 
smaller the ratio of inter-zonal to intra-zonal interaction, the less need 
there is for a model describing spatial interaction. As a general rule, 
Broadbent suggests that the average radius of a zone should be less than 
the mean trip length; a more detailed presentation of this idea is given in 
Chapter 8. Although this principle is basic to zone definition, it must be

111
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tempered against other factors. If possible, zone geometry should be fairly 
regular for this can ensure that as many zones as possible are packed into 
the system. The smaller and more regular the zone, the more accurate is 
the location of the zone centroid, although zone centroids should be 
placed on or near the main transport network used in measuring the travel 
times between zones. The spatial distribution of activities within zones 
should be as homogeneous as possible, especially in the types of model 
discussed here in which the variables are not disaggregated. The zoning

Urban area 
> M1 national motorway

8 miles

1 Chesterfield
2 Dronfield
3 Eckington
4 Staveley
5 Bolsover
6 Clowne
7 Shirebrook
8 Market Worksop
9 Worksop

10 Blyth
1 1 Gringley
12 Ranby
13 East Retford
14 Tuxford
15 Cottam

17 Mansfield
18 Newark
19 Sutton
20 Clay Cross
21 Heath
22 Alfreton
23 Tibshelf
24 Ripley
25 Kirkby
26 Hucknall
27 Meaner
28 Eastwood
29 Nottingham
30 Ilkeston
31. West Bridgford

16 Mansfield Woodhouse32 Beeston

33 Long Eaton 49 Ashbourne
34 Belper 50 Doveridge
35 Derby 51 Kedleston
36 Allestree 52 Church Broughton
37 Spondon 53 Ashover
38 Chellaston 54 Old Brampton
39 Mickleover 55 Cotgrave
40 Smalley 56 East Bridgford
41 Breaston 57 Blidworth
42 Melbourne 58 Carlton-on-Trent
43 Repton 59 Ollerton
44 Carlton 60 Lowdham
45 Arnold 61 Southall
46 Matlock 62 East Leake
47 Wirksworth
48 Crich

Fig. 5.1. Zone geometry and the settlement pattern in the Notts.-Derbys.
subregion.
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system should also follow topographical barriers as far as possible. The 
zoning system used in Notts.-Derbys. is shown in Figure 5.1, and in 
Table 5.1, the major characteristics of the subregion are presented.

The choice of zoning system has not only been made with regard to the 
factors mentioned above; the areal units for which data are available were 
another critical factor in these decisions. The development of this model 
was undertaken under a strict limit on the supply of data for no special 
surveys could be commissioned to collect new data. This is reflected in the 
fact that the model is designed to operate with only data available from

TABLE 5.1. Major characteristics of the 
Notts.-Derbys. subregion

Total number of zones 62
Total land area in square miles 1456
Average land area per zone in square miles 23.8064
Total population 1701050
Average population per zone 27436
Population density in persons per square mile 1168.303
Basic employment 438 830
Total employment 751260
Ratio of basic to total employment 0.5841
Ratio of inter-zonal to intra-zonal work trips 0.9073

published sources. The Census of Population 1966 provided the main 
data source for the model. Population was available for enumeration dis 
tricts from the Ward and Parish Library, and this provided a fine zoning 
system which was later aggregated to form larger zones. Total employ 
ment data for Local Authorities (aggregations of enumeration districts) 
were used as a control total, and a detailed classification of the location 
and size of firms employing over five persons was available from the 
Employment Exchange Record. The classification of these firms was by 
Minimum List Headings of the S.I.C. and this was used as a basis for the 
division of employment into basic and service sectors. The maximum den 
sity constraints on each zone were calculated using the inventory of land 
uses compiled by the Local Planning Authorities.

Data on the spatial distribution of work trips were available from the 
Census of Population. A special tabulation of work trips had already 
been carried out by the Census of Population for this area, and furthermore, 
a cordon survey around the main towns in the subregion was available. 
As in the Central Lancashire model, no data were available for the trips
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made between home and service centre, but from other studies in the 
subregion, mean service trip lengths were available. It was therefore 
decided to calibrate the model against a range of mean service trip 
lengths before one particular service trip length was adopted. The con 
structed variables such as activity and population-serving ratios were 
calculated from the data. A particularly good data bank had been assem 
bled by the Notts.-Derbys. Subregional Planning Unit and all data were 
stored in this bank. The zoning system was redesigned several times, 
taking account of the principles outlined above, and the final design shown 
in Figure 5.1 is the result of this lengthy process. Before the results of 
applying the model are presented, it is necessary to look in more detail 
at some of the issues involved in sectoring employment and in choosing 
the variables measuring locational attraction.

Detailed decisions in model design
It was stated earlier in both Chapters 3 and 4 that the division of employ 
ment into basic and service reflects a weak assumption in this model. The 
weakness of this assumption is largely due to the practical difficulties 
involved in dividing employment into these two sectors. Although 
methods such as the minimum-requirements approach (Ullman and 
Dacey, 1962) have been suggested to overcome some of these difficulties 
such methods break down when applied to the local scale. As data were 
available on the location of each firm and its classification by Minimum 
List Heading, the division into basic and service employment was carried 
out by examining each firm from these files and deciding whether or not 
the firm belonged to the basic or service sectors. As a general rule, the 
primary and manufacturing sectors constituted basic employment. But 
there were exceptions to this. For example certain publishing establish 
ments classified under manufacturing were shifted to the service sector; 
some military and government establishments were transferred from the 
service to the basic sector on account of their functions and site require 
ments. An attempt was also made to restrict the amount of employment in 
the basic sector, for as the ratio of basic to total employment approaches 1, 
all employment is exogenous to the model, and the service centre location 
model is redundant. If this ratio is large, then the performance of the model 
may be biased towards a good fit, especially if fit is measured in terms of 
the total distribution of population and employment. In this case, the ratio 
was 0.58 and this was judged to be low enough to ensure that the model's 
fit would not be biased.

The measurement of locational attraction is one of the most important 
problems in model design, and as discussed in the previous chapter, this
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problem has never been resolved satisfactorily. In this model, as in the 
Central Lancashire model, population is used to measure the attraction 
of residential areas, and service employment to measure the attraction of 
service centres; negative exponential functions of time-distance dti are 
used in representing the deterrence functions. Then

Set against the tautological implications of the above equations are two 
arguments which are worthy of note. First, as the models are equilibrium 
models summarising the whole history of spatial structure by simple 
equations at one point in time, it is logical to use variables which describe 
the history of locational attraction. Population and service employment 
are variables which achieve this description. Second, in the case of resi 
dential location, other variables which summarise attraction such as the 
number of houses or households tend to be highly correlated with popula 
tion. The same high correlations are found between service employment, 
and variables such as floorspace and sales in the service centre location 
model. These problems seem to be a feature of equilibrium models, and 
can only be resolved in a dynamic context when such variables as site 
rent, and amenities such as accessibility to schools, recreational resources 
etc. are used to provide more realistic measures of locational attraction. 
Such extensions are attempted in Chapter 12.

There are, however, two mechanisms in the activity allocation model 
which change the measures of locational attraction. The first is the 
constraints procedure which determines weights on residential and service 
centre attraction, and the second is the procedure used by Lowry to 
establish consistency between the input and output variables in the 
model. Although these procedures have only an operational, not theoreti 
cal, meaning, they act as a brake on the model's simulation process and 
ensure that the model's predictions fall within reasonable limits. The 
measurements of generalised travel cost within and between zones were 
based on the travel times along the shortest routes in the subregional road 
network. The travel times were computed from average driving speeds by 
car, which varied over the network according to the density of population. 
The higher the density of population in areas adjacent to the route, the 
lower the average driving speed. The travel times were also weighted by 
parking times at each end of the trip

where d^ is the total average travel time between i and j, ti and ?3- are ter-
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minal times necessary for parking at i and j, and t{j is the average travel 
time on the shortest route between i and j. The shortest routes in the net 
work were calculated as in the Central Lancashire model using a minimum 
path algorithm based on the Murchland's cascade method developed by 
Foot (1965).

Calibration procedures
The first stage in operating this model is to find values of the parameters 
A! and A2 for the residential and service centre location models, which 
produce the best correspondence between the model's predictions, and 
the observed situation at the base date, in this case 1966. This corre 
spondence between predictions and observations, called here the goodness 
of fit, is measured by the various statistics such as the correlation coeffi 
cient outlined in Chapter 4. Research into this model, shows that it is 
possible to achieve reasonably good approximations to the best parameter 
values of A1 and A2 independently of each other. Changes in the value of 
A2 do not substantially affect the fit of the residential location model and 
changes in At do not affect the fit of the service centre location model. 
If the values of Ax and A2 are first found independently, then this reduces the 
cost of developing the model and the amount of computer time used. The 
calibration procedure developed for the Notts.-Derbys. model relies 
heavily upon these results. A two-stage procedure has been developed 
which first finds the best parameter values when the model is run without 
constraints on residential location, and second, modifies these values 
when the model is run under residential constraint. The elements of this 
process are summarised in the following argument.

In the first stage, the method finds the values of each parameter in 
dependently using iteration. These values are then used as first approxima 
tions and a gradient search procedure is used to test the uniqueness of 
these values. If the fit improves, then the gradient search is initiated once 
again, and the process stops when the fit does not improve. The method 
can be described in different stages with a residential parameter ^ and 
a service centre parameter A2 .

1. As a first approximation, the best values A^ and A| are found in 
dependently by running the model through a range of values for 
each parameter.

2. Two narrow ranges of values Af + AA X and A^ + AA2 are fixed.
3. The model is then run through all combinations of values at intervals 

in the ranges A^ + AA2 and A^ ± AA2 .
4. If the fit does not improve, Af and Af are the best parameter values. 

If the fit does improve, then new parameter values Aj +1 and Af+1 are 
selected.
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5. Af+1 and Af+1 are substituted for Aj and A| respectively in 2 above.
6. Stages 2-5 are repeated until there is no further improvement in the

model's fit. The best parameter values AI + ™ and X\+n are then selected.
In the case of a tie between two or more best values at any stage, the
above procedure is applied to those two or more values.

The second stage of the calibration procedure can now be started. First,
the overall fit of the model is assessed and if residential constraints need
be incorporated into the model on a priori grounds, or on the results of
the first-stage calibration, the model is run until such constraints are
satisfied. Then a process of testing the fit under small changes in the best
parameter values, similar to the test in the first stage, is begun, and this
procedure stops when the best fit cannot be improved. The essential
elements in this two-stage process are illustrated in Figure 5.2. This pro
cess has been developed empirically and by measuring the goodness of
fit with statistics which are sensitive to small variations in the parameter
values, this process provides a sensible search routine for homing in on
the optimum fit of the model to reality. This two-stage procedure will now
be applied to the Notts.-Derbys. model, thus providing both a demon
stration of its efficacy in model design and a pertinent evaluation of the
model's performance.

First-stage calibration

The values of Ax and A2 were first fitted independently and their goodness 
of fit was primarily assessed using the mean trip length statistics whose 
functional form is given in (4.1) and (4.2). The particular form adopted 
here was specified as

which is compatible with the maximum-likelihood estimates of the nega 
tive exponential deterrence functions (Hyman, 1969). Although these 
statistics were the most important in calibrating the model, log-transformed 
versions of the r2 and £ root mean square error statistics were used to 
measure the fit of the locational distributions of population and employ 
ment. These statistics were based on log-transforms due to the log-normal 
distribution of population and employment in the subregion, as is demon 
strated later. Earlier it was stated that the two parameter values A1 and A2 
were fairly independent of each other in the model, and to test this propo 
sition, the model was run under several combinations of Aj and A2 . Varia 
tion in the values of the statistics measuring the goodness of fit relative to 
variations in these parameter values is illustrated using isometric forms



S
el

ec
t d

et
er

re
nc

e 
fu

nc
tio

ns

Se
le

ct
 p

re
vi

ou
sl

y 
de

te
rm

in
ed

 b
es

t 
va

lu
es

 o
f X

i 
an

d 
>2

R
un

 m
od

el
 

w
ith

 r
es

id
en

tia
l 

lo
op

 c
on

st
ra

in
t

D
oe

s
m

od
el

 p
re

d
ic

t
an

y 
m

aj
or

 d
ev

ia
tio

ns
fro

m
 o

bs
er

ve
d

ac
tiv

iti
es

Fi
g.

 5
.2

. T
he

 tw
o-

sta
ge

 c
al

ib
ra

tio
n 

pr
oc

ed
ur

e.



Calibration and prediction 119

for population, employment, and the work and service trip distributions 
in Figure 5.3. Besides confirming the relative independence of At and A2, 
Figure 5.3 also highlights the ambiguities caused by the use of r 2 and £ in 
measuring the fit of the activity distributions.

The values of Aj and A2 were found independently and no changes in 
these values were needed when the full model was run. The values of the 
predicted and observed mean work trip lengths are very close with Ax at 
0.23. Because no data were available for the service trip distribution, a 
value for the mean service trip length was assumed and A2 was iterated 
towards this assumed value. Table 5.2 summarises this fit, and indicates 
the performance of the model in terms of its activity distributions, mea 
sured by the log-transformed version of r2, and the £ statistics. Figures 5.4 
and 5.5 provide a diagrammatic interpretation of the model's fit showing 
the correspondence between the predicted and observed distributions of 
population, employment, activity rates and population-serving ratios.

TABLE 5.2. Best fits at calibration with no 
constraints on residential locations

Residential parameter A x
C(A,, A 2) observed
•5(^i> A2) assumed
r2 for {In (P,)}
r' for {In (£<)}
r2 for {a,,.}, i = j
r2 for {/?„}, i = j

0.2300
6.9766
8.0000
0.9364
0.9764
0.8746
0.5709

Service centre parameter A2
C(A1; A 2) predicted
5(At, A2) predicted
£ for {P,-}
£ for {£•<}
£ for {aw}, ; = ;
£ for {/?„}, i = j

0.1600
0.4748
8.5207
21296

3052
1.3224
0.0712

At this point, it was necessary to find out whether the model should be 
run with constraints on residential location. In the Notts.-Derbys. model, 
this represented a situation of imperfect information or uncertainty for 
before the model was run, it was difficult to know on a priori grounds 
whether or not the residential location model would provide a sufficiently 
good explanation of reality. If it did not provide good enough predictions 
in certain areas of the system, then it would be necessary to run the model 
with the location of residential activity constrained to the observed situa 
tion, in those areas. This is really a process in which the model-builder 
ascertains the predictive power of the model in certain areas of the system, 
and if this predictive power is poor, then those areas are constrained by 
the model and the location of activity is assumed to be based on decisions 
exogenous to the model's simulation process. In the Notts.-Derbys. 
subregion, the location of residential development is particularly com-



Residential location Service centre location

A diagrammatic example of the calibration procedure on r2 of (Tjj).

1 Determine \i with X 2 
fixed.

2 Determine X2 with X) 
fixed from 1 above.

3 Run model with Xi and 
X 2 from 1 and 2 above 
and hill-climb over the 
surface to a new best fit.

4 Determine new \\.

5 Determine new X2 .

Fig. 5.3. Analysis of the goodness of fit under simultaneous variation in 
the parameter values Aj and A 2 .
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plex in the Chesterfield, Mansfield, Derby and Nottingham urban areas, 
and before the model was run, it was expected that the simulation of 
residential activity would be poor in these areas. Several of the zones in 
these urban areas have reached their holding capacity in accommodating 
residential land use, and it is unlikely that any gravity model without con 
straints on residential location could effect a good simulation in such 
a situation.

Population
100000 | Observed 

J Predicted 
50000

Employment 
50 000 , n Observed

I | Predicted 
20 000

gW:-iH

Fig. 5.4. Population and employment, 1966, with no constraints on 
residential locations.

Activity rates 
10 Observed 
5j I Predicted
0 J

Population-serving ratios

1.0,
j | Observed

Fig. 5.5. Activity rates and population-serving ratios, 1966, with 
no constraints on residential locations.
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A comparison of the deviations in the model's predictions expected 
on a priori grounds, and the actual deviations in the predictions is illus 
trated in Figure 5.6. Several of the major urban centres such as Chester 
field, Derby, Mansfield and Nottingham were attracting too much resi 
dential activity and the suburban areas were attracting too little; a simple 
test was designed in the hope that any systematic bias could be revealed. 
The test was based on a comparison of two variables, the first describing 
the model's predictions of population, the second describing the propor 
tion of land not yet developed in each zone. The ratio of predicted to 
observed population was used for the dependent variable

Zone holding capacities

^H < 10% land area undeveloped 
ES110-50% land area developed

Population residuals from first- 
stage calibration

^0-25%
£3-25- 
I—1< -25%

Constrained zones
in second-stage calibration

Fig. 5.6. Definition of the subset of constrained residential locations.
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and the proportion of land not yet developed in each zone was used for the 
independent variable

X, = (Lj -(V}+Ui +

The coefficient of determination r2 between 7;. and X^ is 0.7459, revealing 
a highly significant relationship. A regression of F;- against Xj yielded the 
following equation in which the slope coefficient is significantly different 
from zero at the 0.05 per cent level using a Mest. Then

Yj = 1.8062-2.06591}.

This equation shows that as the proportion of available land in any zone 
decreases, the ratio of predicted to observed population rises. This rela 
tionship supports the use of capacity constraints on the location of 
population, and on this basis, it was decided to constrain residential 
development in the main urban areas of the system; 27 out of 62 zones 
were constrained, as is illustrated in Figure 5.6. Although this decision 
definitely lowers the predictive capability of the model in forecasting, it 
is an eminently more sensible procedure than making arbitrary changes 
to the distances or to other variables in an effort to get a good fit.

Second-stage calibration
With the best parameter values determined at the first stage, the model, 
as set out in (3.28)-(3.43), (3.46) and (3.48), was run until constraint 
equation (3.48) was satisfied. The movement to equilibrium is extremely 
slow with this formulation of the model, and Figure 5.7 illustrates the 
movement towards equilibrium for some of the zones whose residential 
activity is constrained. The process of iterating equations (3.28)-(3.41) 
was stopped after twenty cycles and at this point, all the constrained loca 
tions were within 2 per cent of their constraint values. It might be possible 
in certain instances to speed up this convergence by replacing the relevant 
part of equation (3.46) with

rA rhiiA
> j e Z2, Z4,

where fi is a constant greater than unity. The effect of iff would be to 
magnify the change in Bt(ri) to B^n+l), producing a greater scaling up 
or down effect, thus hopefully helping the process to converge at a faster 
rate. Some success has been had with such a technique in the Northampton 
model discussed in Chapter 8. The performance of the model obviously 
improves substantially in terms of the residential sector, but the fit of the
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employment sector also improves. This is encouraging for it suggests 
that service employment is oriented towards the location of population, 
and it goes some way in showing that the original definition of service 
employment is substantially correct. The improvement in the model's 
performance measured by the log-transformed version of the r z statistics

Population

Observed 

Predicted
100 000 

50 000 : 

0

Employment 

50 000 Observed

Fig. 5.8. Population and employment, 1966, with constraints on 
a subset of residential locations.

Activity rates 
10iObserved

Population-serving ratios 
1 0 Observed

Fig. 5.9. Activity rates and population-serving ratios, 1966, with 
constraints on a subset of residential locations.
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for population and employment is also shown in Figure 5.7. To steer the 
model towards a best fit, it was necessary to alter only the value of A2, 
and Table 5.3 presents these best fits, and the statistics measuring the 
overall performance of the model. Figures 5.8 and 5.9 provide a diagram 
matic interpretation of the goodness of fit. As a research exercise, the model 
has also been run with all zones in the residential sector constrained. The 
fits are not very different from those in Table 5.3 and these new fits are

TABLE 5.3. Best fits at calibration with constraints on 
a subset of residential locations

Residential parameter A t
C(Aj, A2) observed
S(At , A 2) assumed
r2 for {In (Pi)}
r2 for {In (£,•)}
r2 for {a.u}, i = j
r2 for {/?,,}, «=/

0.2400
6.9766
8.0000
0.9402
0.9802
0.8982
0.5083

Service centre parameter A 2
C(Ai, A2) predicted
S(^, A 2) predicted
£ for {Pi}
£ for {£.,-}
£ for {<XM}, i = j
£ for {/?«}, i = j

0.1600
6.5132
8.2917

3326
1898

1.0588
0.0779

presented in Table 5.4. When the residential location model is totally con 
strained in this fashion, the lengthy system of equations given in (3.28)- 
(3.49) can be simplified for as the distribution of population is exogenous 
to the model, the system is simply made up of a traffic distribution model 
and a service centre location model which can both be run separately.

TABLE 5.4. Best fits at calibration with constraints on 
all residential locations*

Residential parameter A x
C(A!, A2) observed
S(A X , A 2) assumed
r2 for {In (/>,)}
T-2 for {In (£()}
r2 for {ay}, / = j
r2 for {/?,,}, i=j

0.2400
6.9766
8.0000
0.9992
0.9856
0.9415
0.5068

Service centre parameter A2
C(Aj, A 2) predicted
5(A 1; A 2 ) predicted
£ for {Pi}
£ for {£,)
£ for {a0}, / = j
£ for {ft,-}, i=y

0.1700
7.1329
8.2321

637
1750

0.9543
0.0799

* A perfect fit for {.PJ should occur in this application but as the convergence pro 
cedure has been terminated at 20 iterations, the values of r2 for {In (P()} and £ for {PJ 
are not quite equal to their optimum values of 1 and 0 respectively.
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This brings up a fairly important problem concerning the degree of con 
straint on the residential or service sector which the model-builder can 
accept. As the ratio of constrained to unconstrained activity in the model 
increases, the purpose to which the model can be applied in planning 
begins to change; this seems to be an important research problem which is 
worthy of further study.

A general critique of the model and its performance
The model attempts to simulate a system whose components adjust them 
selves immediately to some static equilibrium. This highly idealised in 
terpretation of an urban or subregional system is in some ways 
unrealistic for the structure of the model does not involve the processes 
of change characteristic of such systems, and the model only simulates an 
average behaviour at one point in time. This does not mean that such 
a model is irrelevant to the problems of spatial planning; it does mean, 
however, that the model can only be used for conditional projection and 
impact analysis which involves interpreting the equilibrium state of the 
system resulting from given changes in activity (Lowry, 1965). With these 
points in mind, the suitability of each location model can be assessed. The 
service centre location model produces a fairly good simulation of the 
location of service employment in Notts.-Derbys. The service sector 
probably responds fairly quickly to changes in the demand for service 
employment, and this model provides a reasonable tool in simulating the 
development of service centres (Cordey-Hayes, 1968). On the other hand, 
the residential location model produces a relatively poor simulation. The 
complexity of locational decisions in the residential sector, especially in 
the main urban areas, means that constraints have to be built into the model 
to effect a reasonable simulation. It seems that this type of elementary 
model is not suited to the residential sector in Notts.-Derbys., and 
Wilson (19696) has suggested that considerable disaggregation of such 
models is necessary before they become feasible tools for simulation. 
Table 5.5 provides a numerical demonstration of the model's performance 
under no constraint and partial constraint for a selected sample of zones. 

At least 90 per cent of the population in Notts.-Derbys. is concentrated 
in the main urban settlements, and therefore the parameters of the model 
are strongly biased towards the location of urban activities. This is evident 
from the predictions shown in Figures 5.4, 5.5, 5.8 and 5.9. The model 
produces poor predictions of the residential and service activities in rural 
areas, and there is a tendency for the urban areas to pull too much activity
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away from the rural areas. One way of overcoming this which has not 
been tried in this model but has been developed by Cripps and Foot

TABLE 5.5. Predicted population and service employment for 
a sample of zones

Observed values Calibration without Calibration with 
1966 constraints 1966 constraints 1966

Zone 
num 
ber

1
3
5
9

11
16
17
19
22
26
29
31

33
35
37
39
41
45
47
52
57
59
62

Name

Chesterfield
Eckington
Bolsover
Worksop
Gringley
Woodhouse
Mansfield
Sutton
Alfreton
Heanor
Nottingham
West
Bridgeford

Long Eaton
Derby
Spondon
Mickleover
Breaston
Arnold
Wirksworth
Broughton
Blidworth
Ollerton
East Leake

Popula 
tion

79080
27510
11070
33010
11450
22640
55610
40840
32050
24130

305050
65130

31090
125900
30430
22010
21900
29840
8160
6620

21880
23830

8540

Service 
employ 

ment

22080
1850

430
8740
1220
2470

18050
4200
3410
3410

81410
10600

5090
49340

200
3620
2510
4130
1060

930
2160
1730
2170

Popula 
tion

111298
18879
8703

36591
6786

30249
77194
47445
21297
21607

439397
43283

23068
202644
24190
13475
12579
25735
5064
1858

13828
22519

2698

Service 
employ 

ment

27956
1736

360
8540

656
3350

24778
5201
2715
3242

102293
7600

3704
50940

163
1840
1612
3697

475
225

1733
1343

406

Popula 
tion

79175*
28103
12103
33047*
7059

22712*
55799*
40985
37035
24297

307930*
65731*

31339*
126782*
32642
23158
35463
30113*
6225
5083

35363
23013

5854

Service 
employ 

ment

26334
2221

455
8797

703
3349

24313
5227
3583
3771

92904
8470

4485
48403

191
2077
2246
3463

579
293

2773
1415

577

* Shows zones in which the maximum density constraint on population is necessary.

(19696) in their model of Bedfordshire, is to vary the parameters affecting 
intra-zonal location, on the assumption that persons working in settlements 
of different sizes have different behaviours with regard to living within 
those settlements. Some comments have been made already on the model's 
performance, although performance as measured by the goodness of fit 
is too narrow a guide to evaluation. A comprehensive evaluation of the
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model can only be made if the variables and parameters are subjected to 
sensitivity-testing. The calibration procedure revealed that the measures 
of spatial interaction were most sensitive to parameter variation. Small 
changes in the intra-zonal travel times lead to large differences between 
the predictions, and this suggests that the ratio of inter- to intra-zonal 
interaction is too low. Only by reducing the zone size and by packing more 
zones into the subregion can this problem be overcome. If a variable such 
as intra-zonal distance is too sensitive, then this means that the use of 
the model in prediction is suspect if large changes in intra-zonal distances 
occur. In any redesign of the model, this would be one of the most 
important problems to tackle.

Another feature of the model revealed by the calibration involves the 
use of system-wide parameters in residential and service centre location. 
The model tends to over-allocate population and service employment in 
urban areas and under-allocate these activities in rural areas. This suggests 
that the locational parameters should be higher in rural than in urban areas 
to account for the greater resistance to travel. The constraints procedure 
partly obscures this problem for the maximum-density constraint ensures 
that urban areas do not attract too much activity. However, those areas 
which are not rural and which are not constrained tend to attract too much 
activity from rural areas. One way of overcoming this is to use Goldner's 
(1968) method of disaggregating the parameters spatially. Disaggregation 
of employment and population would probably help to alleviate this 
problem. Because of the model's structure and its limitations in simulating 
locational behaviour, the model can only be used for certain types of 
spatial forecasting. Although the model does not involve an explicit time 
dimension, projections with the model are explicitly based on different 
time intervals. This gives rise again to the theoretical inconsistency between 
calibration and projection already discussed and before the types of pro 
jection are outlined, the precise use of the model in forecasting activities 
in the Notts.-Derbys. subregion must be outlined.

The use of the model in spatial forecasting
The model has been used both in plan design and in plan evaluation. 
A set of thirteen alternative future strategies for the location of basic 
employment and transportation was tested by the model and on these 
results the first set of strategies was revised and reduced to six. These new 
strategies were then tested by the model, and eventually three strategies 
were chosen for further development (Thorburn et al, 1969). In this sort 
of planning process, it is difficult to draw the line between plan design 
and plan evaluation. Although the model was used to test the first set of
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strategies, the model's forecasts were then used in the design of the second 
set. As the differences between the strategies in the second set were much 
less than the differences between those in the first set, the model was 
primarily used as an evaluation tool in testing this second set.

Projections made by the model are based upon the recursive system 
of forecasting outlined in (4.3)-(4.14) using a ten-yearly forecast interval. 
As in the Central Lancashire model, population and service employment 
predicted by the model at, for example, 1975 becomes input data to the 
location models, used in predicting these same variables at 1985. As well 
as accounting for change in the system between the base and horizon years, 
a ten-year lag between the change in activity and its impact on the system 
is also built into such projections. Although it is generally accepted that 
such a lag exists, there is little information on the length of the lag and 
the technique is thus open to criticism on this account. Using the tech 
nique of recursive forecasting, the trajectories of the critical variables such 
as population, employment and the work trip and service trip distributions 
can be charted and analysed. This provides useful information for the 
planner seeking to control the system and can also lead to some insight 
into how the system is behaving, thus having some implications for the 
design or redesign of the subregional system.

Rather than demonstrating all the strategies tested by the model, one 
particular strategy has been chosen for more detailed exposition and 
discussion. In this forecast, the general strategy for the subregion is to 
channel growth from the Greater Nottingham area to the Erewash Valley 
which in recent years has suffered from a declining economic base and net 
out-migration of population. As part of this strategy, two goals are 
explicitly formulated and the forecasts are to be tested against these goals.

1. The need to control the growth of Greater Nottingham and Derby 
due to the extreme pressures on land for residential development, 
rising land values and severe traffic congestion.

2. The need to generate a more balanced and prosperous industrial 
base in the Erewash Valley towns of Mansfield, Sutton, Alfreton and 
Ilkeston.

A realistic strategy for the subregion could not be implemented and 
would have no major impact on the structure of activities until 1976, 
and the forecasts from 1966 to 1976 are based on a projection of existing 
trends in the subregion. The major growth in basic employment in this 
period occurs in Chesterfield, Nottingham, Derby, Spondon and Matlock. 
Basic employment declines in Clay Cross and Heath, in the towns of Ripley, 
Kirkby, Heanor and Hucknall, in Ilkeston and in Breaston. In this period, 
improvements in the transportation system of the subregion, for example 
the opening of the Ml Motorway, are likely to affect the structure of acti-
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vities, especially in the Erewash Valley. The strategy for 1976-96 proposes 
growth in basic employment in the Erewash Valley. The largest growth is 
proposed for Alfreton and smaller but still substantial growth is forecast 
for Kirkby, Heanor, Hucknall, Eastwood and Smalley. The major declines 
in basic employment occur in Nottingham, Spondon and Derby. These 
policies for change are backed up by comprehensive proposals for the 
subregional transportation system, and major improvements to the trans 
portation network are made in the Erewash Valley and in the Derby- 
Nottingham area. These changes in basic employment and transportation, 
from 1976 to 1996, are designed to achieve the two goals stated pre 
viously. The model's predictions in terms of population and employment 
can now be analysed in the light of these changes in the exogenous 
variables.

Population, employment and migration analysis
Between 1965 and 1976, growth and decline in population mirrors the 
change in basic employment. Existing constraints on residential develop 
ment are relaxed to account for possible increases in the density of popu 
lation. The major increase in population occurs in the Nottingham- 
Breaston-Derby area and this is counter to the major goals of the 
strategy. Pressures on agricultural land for conversion to urban uses and 
traffic congestion are likely to increase during this period. There are few 
major declines in population except for Ilkeston which loses a large pro 
portion of its basic employment during these years. After 1976, major 
growth in population is centred on the Heath, Alfreton, Ripley, Hucknall 
and Breaston areas; this growth is partly due to the increased attractive 
ness of these areas due to changed transportation facilities. During the 
projection period, the trajectory of change in population and employment 
can be plotted and this is illustrated in Figure 5.10. Apart from some rural 
areas, the major decline in population takes place in Derby where declines 
in basic industry and some decentralisation of population to suburban 
areas account for this change.

In Figure 5.11, the net internal migration of population from equation 
(4.10) is plotted in each forecast interval. This shows that a significant 
proportion of the growth in population in Heath, Alfreton, Ripley, 
Hucknall, Spondon and Breaston is accounted for by net inward migra 
tion from other parts of the system. Major out-migrations take place in 
the large centres of Chesterfield, Nottingham, Mansfield and Derby. 
Like the recursive projections carried out with the Central Lancashire 
model, this shows that the recursive system of forecasting is quite sensitive 
to the changes which cause the decentralisation of activity, and in this
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respect, the model produces successful simulations. Although it is possible 
to find actual average movement of population between zones using this 
model from the elements of (4.9), these are rather complex to display 
diagrammatically and thus the analysis is restricted to the text. The 
Spondon-Breaston area gains much of its increase in population from 
persons moving out of Derby and Nottingham. Such decentralisation is 
largely due to better transportation facilities in these areas. The growth 
in Hucknall is due to out-migration from Nottingham and population 
growth in Heath is due to out-migration from Chesterfield and Mansfield. 
Net migration to Alfreton poses the most interesting case for migration 
analysis. Alfreton is equidistant from the four largest towns in the sub- 
region - Chesterfield, Derby, Mansfield and Nottingham, and therefore 
it is clear that Alfreton gains population from each of these towns. Fur 
thermore, the greatest change in locational attraction for residential 
development occurs in Alfreton during the projection period; this is 
largely due to its central location in the subregion, its large growth in 
basic employment and its increased accessibility due to improvements in 
the transportation network in this area.

To test the impact of the various changes in basic employment and 
transportation on the distribution of population, an analysis can be 
made of the migration flows across any partition of the system into two 
subsets of zones as in (4.14). As one of the goals of this strategy is to 
generate growth in the Erewash Valley by improving its overall locational 
attraction, one subset of zones comprised this area (zones 16, 17, 19, 22, 
23, 24, 25, 26, 27, 28, 30, 37, 40, 41); the other subset consists of all other 
zones. The flow of population between these areas is shown in Figure 5.11 
for the three forecast intervals. Net migration into the Erewash Valley 
increases at each forecast interval and this demonstrates that the projected 
strategy for the area positively encourages industrial and residential 
growth in this area. Net migration between any other partition of this 
system into two subsets can be analysed, and this leads to further insights 
into how the system is behaving. To demonstrate how these flows can be 
of use, cumulative net migration over the projection period between eight 
different partitions of the system is illustrated in Figure 5.12. These net 
migration analyses provide eight different interpretations of how popula 
tion is being redistributed in the system. These partitions are described 
below.

1. An arbitrary north-south partition.
2. An arbitrary east-west partition.
3. A partition into the Derby-Nottingham urban region, and the rest 

of the system.
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Greater Nottingham- 
Derbv

Net internal 
migration 
between 
1966 and 1990

200 000

100000
50000
0

- Arrows indicate direction of migration -

Rural areas: 
zones 10-12, 
14, 15,42,43 
46-62

Large towns: 
zones 1,17, 
29,35

Suburban areas: 
zones 2-4, 16, 19, 
21, 27, 30-33, 
36-39,41,44,45

Constrained 
residential areas: 
zones 1,4,9, 16-20, 
25-39,44,45,55,59

Urban areas Rest of
the subregion

Rest of
the subregion

Rest of
the subregion

Fig. 5.12. An analysis of cumulative migration flow between 1966 and 1996, 
across eight different partitions of the subregional system.

4. A partition into the Chesterfield-Mansfield area, and the rest of the 
system.

5. A rural-urban partition.
6. A partition into zones with population greater than 50000, and zones 

with less than 50000 population in 1966.
7. A suburban area - rest of the system partition.
8. A partition into constrained and unconstrained residential locations 

based on the 1966 definition of these subsets.
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The first four partitions are into spatially adjacent sets and the net 
migration flow is shown between each of these partitions. The net loss of 
population from the northern to the southern area can largely be explained 
by the presence of Alfreton in the southern area. In a similar manner, 
the loss of population from the eastern to western areas is accounted 
for by growth in the Erewash Valley which is mainly in the western 
area. The losses from the Derby-Nottingham and from the Chester 
field-Mansfield complexes is also due to the decentralisation of popu 
lation from these areas into the Erewash Valley. Each of these movements 
is a small percentage of the total number of net moves between 1966 
and 1996 and these analyses, unlike the previous analysis of movements 
between the Erewash Valley and the rest of the system, do riot reveal 
any major impacts.

Partitions 5-8 are more significant. These are essentially topological or 
non-planar partitions of the system based on different functional relations. 
The partition into rural and urban areas is especially interesting. The rural 
areas gain very slightly from the urban areas and this is probably due to 
advancing urbanisation of the urban-rural fringe, and to the availability 
of residential land in these areas. Partitions into zones over 50000 
population and the rest of the system, and into suburban areas, and the 
rest of the system, produce significant migration flows. 50 per cent of the 
net movement in the system is accounted for by moves from the large 
towns over 50000 population to the rest of the system. The suburban areas 
gain 35 per cent of the net movement from the rest of the system. Again 
on the basis of the results already presented, these are fairly predictable 
patterns but they provide useful evidence of the model's ability and sensi 
tivity in simulating the processes of decentralisation at the macro-scale. 
Of these eight partitions, the greatest movement is from the constrained to 
the unconstrained zones. Over 50 per cent of the net movement is 
accounted for but this again is predictable for many of the constrained 
residential locations have reached their holding capacity and this move 
ment is largely due to the increasing severity of the constraints on residen 
tial location in the constrained subset. These eight partitions provide 
a fairly full analysis of net internal migration in the system. It is also 
reassuring to note that each one of these eight migration patterns does not 
indicate as strong an impact on the system as the partition into the Ere 
wash Valley and the rest of the system. Thus, it is fair to conclude that 
the goals of the plan to steer growth from the Nottingham area to the 
Erewash Valley will be satisfied under this strategy.

Problems associated with the residential and service centre location 
models have already been described and these problems apply to projec 
tions with the model. The analysis of net internal migration, however,
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shows how sensitive the model is to changes in its exogenous variables. 
Net migration between time t and t+ 1 expressed as a percentage of P^t) 
is not stable during the projection period; nor is the change in net internal 
migration stable during this projection. There is little evidence to suggest 
that these rates of change should be constant but the tendency for these 
rates to increase during each forecast interval suggests that the system is 
overreacting to change. This is a difficult subject to broach because so few 
data are available on such movements, and furthermore the component 
of migration treated here which is caused by changes in the distribution 
of population but not employment, has not been studied in previous 
research.

In fact, the right amount of net internal migration may be generated by 
the model, but its distribution is probably suspect. If this is so then it is 
part of the range of problems associated wih the residential location model. 
In the results discussed here, the model seems to favour a very small num 
ber of locations; it seems that there should be a more even spread of the 
population which is redistributing itself, and this problem can only be 
solved by the design of more realistic location models. Rather than 
assuming that the whole stock of activity moves into a new equilibrium at 
each forecast interval, it might be assumed that a proportion of the 
existing stock would move. The modification of the Lowry model due to 
Crecine (1964) was designed to treat such a proportion, and in any further 
development of the kind of model presented here, it would be sensible to 
take account of such behaviour. In Chapter 11, Crecine's model is pre 
sented and many of these mover problems are then discussed in the formal 
context of dynamic modelling.

A comparative analysis of subregional models: 
the bogus calibration problem

The last theme developed in this chapter involves an analysis of the various 
problems revealed in calibrating both the Central Lancashire and Notts.- 
Derbys. models, and these problems form the basis of the explorations 
of the next three chapters. So far the method of calibrating activity alloca 
tion models has been developed heuristically with little emphasis upon 
either the use of efficient technique or best statistics. In this and the follow 
ing sections, an attempt will be made to evaluate the worth of these various 
statistics and some pointers will be given to ways in which such concepts 
can be improved. However, before this is done, it is worth while outlining 
one of the most pervasive and wicked of all modelling problems which 
frequently occurs in developing models of spatial interaction. This is the 
problem labelled by Cordey-Hayes (1968) as the problem of bogus calibra-

6-2
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tion, and it was first formally demonstrated in the inter-regional freight 
flow model used in the Portbury study (MOT, 1966).

When the parameter controlling the effect of spatial deterrence in such 
models tends to zero, this deterrent effect no longer influences the dis 
tribution of activity. In such a case, activity is then allocated in proportion 
to locational attraction, and it is intuitively obvious that a perfect distribu 
tion of activity will occur if that activity is allocated in proportion to 
a measure of attraction based on the same variable which is being 
allocated. Such a 'bogus' fit could occur in the models of this and the 
previous chapter where the locational attraction is measured by population 
in the residential sector and service employment in the non-basic sector. 
This peculiar result can be demonstrated formally in the following way. 
Taking as an example the residential location model in (3.28) and (3.29), 
suppressing the iteration postscripts and substituting the Notts.-Derbys. 
attraction-deterrence function, this model can be written as

T{j = A l Bi Ei P*np(-Xl dij), ieZ, j<=Zlt Za, (5.1)

At= /6Z- (5 ' 2)
Note here that (5.1) is only applicable to the unconstrained subsets Zt and 
Z3 for these are the subsets where it is required to predict the location of 
population. Then in (5.1), Bj = l.y'eZj, Z3 . Summing (5.1) over / and 
scaling by the inverse activity rate a in analogy to (3.30) gives

PI = * S Ti} = ccBjP* S A, Et exp (- A^y), j e Z1; Z3 . (5.3)
i € Z i E Z

If A, =0 and Bj = 1, (5.3) can be simplified to

S^ 
^ = <^b, ./eZ^Z,. (5.4)£/'

Note also that Bj = 1 , j e Z2 , Z4 when A: = 0, a fact which can be deduced 
by manipulating (5.1). Now as the sum of employment scaled by the 
inverse activity rate is equal to the total population in the system, (5.4) 
can be further simplified to

Pt = Pf, jeZlt Z3, (5.5)
which demonstrates the formal condition characterising bogus calibration.

The same analysis can be undertaken for the service centre model and
this argument suggests that statistics such as r 2 , £ and x2 will tend to 1,
0 and 0 respectively for these activity distributions as AJ H> 0. This is
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theoretical evidence suggesting that these statistics are most inappropriate 
although statistics which measure characteristics of the trip length distribu 
tions are not biased in this fashion. For example, the mean work trip 
length C(A1; A2) computed from (5.1) with A: = 0 can be written as

thus demonstrating that this is no bogus fit. In the following sections, 
some empirical evidence of the inappropriateness of traditional statistics 
measuring the fit of activity distribution will be introduced, thus implying 
the importance of calibrating these models against trip length statistics.

Sensitivity testing and parameter variation
In the Central Lancashire model, both parameter values Ax and A2 were 
varied between 1.0 and 4.0 in steps of 0.5; the parameter values in the 
Notts.-Derbys. model were varied in steps of 0.05 between 0.1 and 0.4. 
Within these ranges, the largest and smallest values of the statistics give 
an approximate indication of their sensitivity. For population, r 2 varied 
between 0.9538 and 0.9958 in Central Lancashire, and between 0.9493 
and 0.9899 in Notts.-Derbys. A similar range of variation occurred for 
employment in both models. For activity rates and population-serving 
ratios, r 2 was much more sensitive, and Table 5.6 summarises the range

TABLE 5.6. Maximum and minimum values ofr2

Range of parameter variation

Population {PJ 
Employment {E,} 
Population-serving ratios {/?;,}, / = j 
Activity rates {aa}, i = j

Central Lancashire Notts.-Derbys. 
1.0^4.0 0.1^0.4

Maximum Minimum Maximum Minimum

0.9958 0.9538 0.9899 0.9493 
0.9995 0.9363 0.9992 0.9932 
0.9770 0.0219 0.8721 0.4098 
0.9627 0.3719 0.9241 0.8277

of variation for r2 from the four distributions of activity predicted in the 
two applications of the model. For population and employment which 
are the major variables predicted by the model, the insensitivity of r 2 is 
disturbing, for this is the most common statistic used in measuring the
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performance of this type of model. Furthermore, it is clear that the range 
of variation is dominated by bogus calibration which occurs when the 
parameter values tend to zero.

On comparing the largest and smallest values of the x2, °" and £ statistics, 
it was found that these are a little more sensitive for all distributions. The 
results are also consistent in both applications of the model: for example, 
in the Notts.-Derbys. application, x2 varied between 8.9070 and 17.0440, 
and a- between 53298 and 62154 for population, and these statistics 
produced a similar range of variation in the Central Lancashire model. 
The £ is a fairly sensitive statistic and, in Central Lancashire, it varied 
between 2072 and 5821 for population. Like r 2, these statistics are biased 
by the possibility of bogus calibration, and this suggests empirically that 
calibration against activities is an undesirable way of assessing the good 
ness of fit.

Another result which is of some interest in investigating calibration 
concerns the relationship between the two parameter values in each 
location model. If the parameter in the residential location model is held 
constant, there is little change in the value of any statistic summarising 
the population fit when the parameter value in the service centre location 
model is varied. For example in Central Lancashire with At = 1.0 and A2 
varying between 1.0 and 4.0, r 2 varies between 0.9958 and 0.9955; a similar 
result occurs in the Notts.-Derbys. model. With the parameter value in 
the service centre location model held constant and the parameter value 
in the residential location model being varied, statistics describing the 
employment fit do not vary very much. This suggests that the parameter 
value determining residential location is relatively independent of the 
parameter value determining service centre location, and it also goes some 
way in showing that values for the parameters in any one location model 
may be approximated without reference to the parameter value in the other 
location model. This fact has already been used in designing the two-stage 
calibration procedure for the Notts.-Derbys. model outlined earlier in 
this chapter.

A more comprehensive sensitivity analysis of the effects of parameter 
variation on the statistics summarising population and employment fit 
in both models is illustrated in Figure 5.13. These diagrams take account 
of the relative independence between the residential and service centre 
subsystems; the analysis assumes that the parameter value in one subsystem 
is constant while the other parameter value varies. These graphs are 
equivalent to cross-sections of the isometrics in Figure 5.3. The values of 
each statistic obtained by varying this parameter value are plotted as 
percentage deviations from the parameter value giving the best overall fit. 
In general terms, the analysis is consistent for both population and em-
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Central Lancashire model: 
population fit with A2 = 1.7
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Nottinghamshire-Derbyshire model: 
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Central Lancashire model: 
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Fig. 5.13. Sensitivity of statistics measuring the goodness of fit of the employment 
and population distributions.

ployment in each application of the model. The graphs in Figure 5.13 do 
however reveal minor differences between the sensitivity of equivalent 
statistics applied to different distributions of activity and different sub- 
regions. Such differences may be misleading in interpreting the sensitivity
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of the statistics, but these are probably accounted for by the particular 
spatial structure of each subregion.

In both models, the distributions of activity predicted by varying the 
parameter values were remarkably similar, and it seems that the structure 
of this type of model is a much stronger determinant of the distribution 
of activity than the parameter values. Statistical tests against the activities 
are too insensitive and too biased towards bogus calibration to reveal the 
true effects of parameter variation, and even if such tests are used to 
measure performance, they must be interpreted with considerable care.

Central Lancashire model: 
work trip fit with \2 = 1.7

Nottinghamshire- Derbyshire model: 
work trip fit with A 2 = 0.16

-30

30-,

20-

-20-

-30

r.m.s. error

Fig. 5.14. Sensitivity of statistics measuring the goodness of 
fit of the work trip distributions

All statistics summarising the work trip distributions were much more 
sensitive to parameter variation than the statistics summarising the 
activities. Using the previously given ranges of parameter values for both 
applications of the model, r2 varied between 0.8721 and 0.9646 in Notts.-
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Derbys. and between 0.8432 and 0.9787 in Central Lancashire. The x2, ff 
and f also vary significantly, and the smallest and largest values of these 
statistics are given in Table 5.7. The variations in the values of these 
statistics also show that the residential location model is highly indepen 
dent of the service centre location model. In the Central Lancashire model 
with A! = 1.0 and A2 varying between 1.0 and 4.0, the r z for work trips 
varies between 0.9515 and 0.9751. The r~ for work trips predicted by the 
Notts.-Derbys. model shows a similar range of sensitivity. A compre 
hensive sensitivity analysis of r2 , ^2 , a-, and f for the work trip distribution 
is illustrated in Figure 5.14. As with the activities, the parameter in the

TABLE 5.7. Maximum and minimum values ofV2, %*, <r, and 
for the work trip distribution

Range of
parameter
variation
r2
X2
cr
e

Central Lancashire
1.0-»4.0

(

Maximum

0.9787
29.0173

1709
1530

Minimum

0.8432
13.4460

570
611

Notts.
0.1

i

Maximum

0.9546
32.6370

2985
961

-Derbys.
-*0.4

^

Minimum

0.8721
9.9152

1880
612

service centre location model is held constant, and the value of each statis 
tic is plotted against different values of the parameter in the residential 
location model. The statistics are quite sensitive in both applications of 
the model; r 2 and f are not biased towards bogus calibration, and of all 
the tests outlined up to now, these two statistics applied to the work trip 
distribution provide the best criteria for judging the goodness of fit.

From this discussion of the relative merits of various statistical tests 
used in calibrating the activity allocation model, two conclusions can be 
drawn. First, calibration against distributions of activity such as popula 
tion and employment does not lead to an accurate assessment of the good 
ness of fit. Statistics describing the fit are insensitive to parameter varia 
tion, and are dominated by a tendency towards bogus calibration. Second, 
calibration against trip distributions provides quite sensitive tests of the 
goodness of fit especially for r2, £ and the mean trip length statistics. The 
mean trip length seems to be the best estimate of fit, for besides being 
sensitive to parameter variation, it is a good summary measure of the
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amount of travel generated by the model. This supports the theoretical 
derivation proposed by Wilson (1970a) discussed in Chapter 2 and the 
statistical work of Hyman (1969) referred to earlier in this chapter.

Assumptions concerning the statistical tests
This chapter has described several statistical tests without inquiring too 
deeply into the assumptions behind the application of each statistic. Apart 
from the trip length statistics which have been shown by Hyman (1969) to 
be best estimators, the use of the other statistics is based upon the assump 
tion that the distributions to which they are applied, are normal. In other 
words, these statistics are only unbiased, consistent and efficient estimators 
if the variables which they measure are normally distributed. Zonal activity 
rates and population-serving ratios seem to be normally distributed in 
both models but the distributions of population and employment are 
highly skewed having a reversed-/ shape. The purpose of this section is to 
test the normality of the population and employment distributions in both 
models, and to find out whether a transform of these distributions might 
lead to more sensitive statistical tests.

Theory suggests that variables such as population and employment are 
log-normally distributed and empirical investigation has confirmed this 
(Simon, 1955; Berry, 1961). Frequency distributions were drawn for 
population and employment in both subregions and this revealed that the 
distributions are positively skewed with modes close to their origins. In 
Central Lancashire, the distributions are highly skewed with Pearsonian 
coefficients of skewness of 1.1346 for employment and 1.0862 for popula 
tion. In Notts.-Derbys. the distributions are less skewed with a coefficient 
of 0.7073 for employment and of 0.6472 for population. The distributions 
were then plotted on log-probability paper, thus providing a graphical 
test for log-normality. If the distributions can be closely approximated by 
straight lines on the graph, then this will be usually sufficient to establish 
log-normality (Aitchison and Brown, 1957). This test which is shown in 
Figure 5.15 for population and employment, does indeed reveal that these 
distributions are near log-normal in both subregions.

On the assumption that these distributions are log-normal, the sensi 
tivity of r2 has been examined under different parameter values. Log trans 
forms of each distribution were taken and these transformed variables 
were used in the r2 statistic. Within the ranges of parameter values used 
for this investigation, r 2 for population varied between 0.8335 and 0.9273 
in Notts.-Derbys. and between 0.9619 and 0.9941 in Central Lancashire. 
The r 2 for employment was much less sensitive varying from 0.9680 to
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0.9804 in Notts.-Derbys. and from 0.9852 to 0.9989 in Central Lancashire. 
Although r2 was more sensitive for the normalised distributions, this 
statistic is heavily biased by the possibility of bogus calibration and this 
limits its use during the process of calibration. However as a general

Central Lancashire subregion Nottinghamshire-Derbyshire subregion
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Fig. 5.15. A graphical test for log-normality.

assessment of the goodness of fit of the model in terms of population and 
employment, r 2 based on the normalised variables is a sound guide to the 
performance of the model.

The problems revealed by this comparative analysis are taken up, 
developed and hopefully resolved in the following chapters. In Chapter 6, 
the calibration problem is explored in the simplest possible terms using a 
one-parameter partial model of the retail sector. This simple analysis is 
made more complex in Chapter 7 when partial models with many para 
meters are calibrated. In Chapter 8, these threads are drawn together and 
a fast efficient calibration procedure for the activity allocation models of 
this and the previous chapter is developed. This endeavour to find efficient
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procedures is not solely concerned with notions of speed and cost of com 
putation for in the process of calibrating such models, essential insights 
into their form and structure are generated, thus helping to judge their 
longer-term relevance to planning and urban research.



6. Exploratory calibration: 
search by golden section

During the first decade of urban modelling research, progress in developing 
suitable methods of parameter estimation or calibration has been slow. 
There are many reasons for this state of affairs but perhaps the most 
important is due to the fact that many of the urban models proposed and 
constructed, such as those reviewed briefly in Chapter 1, are formulated 
as systems of non-linear equations, and the intractabilities of dealing with 
non-linear relationships are well known. Yet the process of calibration is 
perhaps the most fundamental stage of model design, for during calibra 
tion the model-builder can develop a basic understanding of the model 
through exploring its structure and the sensitivity of its variables. Further 
more, these insights which are gained during calibration often provide the 
tests for evaluating the relevance and limitations of the model to research 
or to application in planning practice.

Thus, the search for appropriate calibration techniques has only just 
begun, and it is the purpose of this and the next two chapters to present 
a variety of techniques for calibrating urban models of the kind described 
in earlier chapters. In this chapter, these techniques will be explored and 
demonstrated using as an example a retail location model constructed 
from data pertaining to the Kristiansand region of southern Norway. 
As a first step in this investigation, the general form of the model is out 
lined and some analysis is made of the model's properties. A review and 
test of simple techniques for calibration based on interpolation follows, 
and this leads to an outline of more general methods based upon the 
theory of search. Such methods are first demonstrated in this chapter 
using a version of the retail model with one parameter, and then the 
methods are used to explore retail models with two parameters in this and 
the following chapter.

It is worth while making the logic of these next three chapters quite 
explicit so that the reader is able to anticipate and relate various calibra 
tion techniques. In the spirit of this book in which ideas are developed 
from the simple to the more complex, it is useful to approach calibration by 
first developing techniques for the simplest of urban models. In this chap 
ter, techniques for calibrating simple one-parameter and then two-para-

147
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meter models are presented. In the next chapter, these techniques are 
extended to deal with simple models with many parameters, and this 
serves as an important prerequisite to the study of calibration involving 
more complex models with many parameters, a study which forms the 
essence of Chapter 8. In short, these three chapters are concerned with 
developing a calibration methodology suitable for the activity allocation 
models of the previous chapters. Yet there are some shorter-term prob 
lems which are also to be resolved in this chapter dealing with the 
feasibility of calibrating two-parameter retail models; there is a feeling 
that with models employing two or more parameters, there may be no 
unique set of parameters which optimise the model's goodness of fit. As 
no systematic exploration of these problems has ever been attempted 
to the author's knowledge, the time seems ripe for a preliminary investiga 
tion. Although the choice of urban model has been restricted to the retail 
sector, the techniques presented here are of much wider relevance to the 
whole family of spatial interaction and activity allocation models. Before 
calibration techniques are described in detail, an outline of the model 
and its relation to other models is a necessary prerequisite to the analysis, 
and this is presented below.

Retail location models
The model to be developed and tested here is based upon the production- 
constrained spatial interaction model presented in equations (2.62) and 
(2.63) of Chapter 2 (Cordey-Hayes and Wilson, 1971). The specific form 
of the model is given in (2.79)-(2.82); the model allocates consumer 
expenditures on various commodities to different retail centres in the 
spatial system. Such a model has its origins in early research into con 
sumer behaviour and marketing in the retail sector (Berry, 1967). The model 
was first derived by Huff (1963, 1964) using probabilistic notions, and the 
first major application was made by Lakshmanan and Hansen (1965) to 
the Baltimore region. The model is restated here in the following terms

Sti = AiCiP^dtf: (6.1)

Ai = ^W*' (6 ' 2)
j

Stj is the flow of consumer expenditure between residence in / and shopping 
centre in j, Pt is the population in /, c, is the expenditure per capita in ;', 
\Vj is a measure of locational attraction of the shopping centre at j, such as 
floorspace, dti is the distance between / and/ and At and A 2 are parameters 
of the model. This model is the same as the model given in (2.80) and (2.81)
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and is subject to the following constraint on consumer expenditure

SS« = ct Pt . (6.3)

Sales in centre./, Sj, can be calculated by summing (6.1) over /

(6.4)

and it is obvious that total consumer expenditure in the system must 
equal total sales in shopping centres. In other words

i i i i

Various forms of the retail location model given in (6.1) and (6.2) have 
been applied in Britain in recent years, and as a first step in investigating 
the relevance of this model, a comparison of these applications can be 
attempted. Although some researchers consider that such comparisons are 
impossible because the measurements of the model's variables may be 
so different in each study, some comparison is possible in certain appli 
cations if it is assumed that different measures are linearly related. For 
example, two models, one using floorspace for W^ the other using sales, 
can be compared if it is assumed that floorspace is some linear function of 
sales or vice versa. In such cases, the model is scale-invariant and direct 
comparisons can be made. In support of this assumption, Davies (1970) 
has shown that many different measures of attraction and deterrence are 
highly correlated. However, in models where different functional forms 
for shopping centre attraction or spatial impedance are used, direct 
comparisons cannot be made.

The best comparison between different applications is in terms of the 
values of Ax and A2 which are usually chosen to optimise some criterion 
summarising the goodness of fit of the model to the real situation. For 
example, in many of the applications, values of Aj and A2 have been found 
which maximise the coefficient of correlation between predicted and ob 
served sales. A comparison of several applications is given in Table 6.1 
in terms of parameters and particular variable measurements although it 
is difficult to compare the Haydock and Oxford models with the others 
because of differences in their functional form. Excluding these two models, 
it appears that there is a tendency for the parameter value of Ax to cluster 
around 1, whereas the range for A2 is considerably larger. However, in 
examining the reports of each of these applications, it is clear that there 
is a lack of thorough exploration and sensitivity-testing of these models 
apart from the Haydock and Oxford models. This lack of information on 
the calibration process is important, for one of the main criticisms of this
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TABLE 6.1. A comparison of some shopping models

Attrac 
tion 

parameter 
Area or region (A t)

Haydock

Leicestershire

Lewisham*

Notts.-
Derbys.

Oxford

Severnside

South
Bedfordshire*

Teesside

3.0000

1.6000

1.0000

1.3000

0.9500

0.9200

1.0000

1.3800

De 
terrence 

parameter
(A 2)

2.6000

0.9500

1.1000

2.4000

0.2000

0.9100

1.3000

2.3600

Attrac 
tion 

measure 
W)

Composite
index
measuring
variety

Floorspace

Sales

Sales

Sales

Sales

Floorspace

Floorspace

De 
terrence 
measure 

(<40

Travel
time

Airline
distance

Airline
distance

Travel
time

Airline
distance

Airline
distance

Travel
time

Airline
distance

Reference

McLoughlin et al.
(1966)

McLoughlin et al.
(1969)

Rhodes and
Whitaker(1967)

Murray and
Kennedy (1971)

Black (1966)

Turner (19706)

NEDO (1970)

NEDO (1970)

* Models with no parameter Aj on Wit that is, an implied value of At = 1.00.

type of model lies in the possibility of multiple solutions to the calibration 
in terms of the values of Ax and A2 . Indeed, Black (1966) in her classic paper 
on the Oxford model, and Turner (19706) in his work on the Severnside 
model, have both pointed out this possibility, but the existence of many 
solutions has never been formally investigated. If there are different 
values of Aj and A2 which give an equally good fit in terms of the particular 
statistic used, then the calibration effort put into several of these models 
may be suspect. It is particularly useful to illustrate calibration methodolo 
gies using this model because of the model's popularity and fairly wide 
spread usage. Before this is done, however, some theoretical analysis of the 
properties of the model forms an essential background to a thorough 
exploration of the model's structure.

Prior analysis of the model
In this chapter, analysis will be restricted to this two-parameter retail 
location model, and some insight into the model's structure can be gained
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if an analysis is first made of the model's behaviour under extreme values 
of the parameters. As defined previously, origin zones are subscripted in 
the range 1 < / ^ / and destination zones in the range 1 ^ j < J. An 
additional destination zone / is also introduced to help the analysis. 
Variation of the parameter values Aj and A2 between 0 and oo gives four 
extreme cases which are identified by the table below.

Parameter value of Aj

Parameter value of A 2

These four cases can be dealt with briefly and in turn. In case 1, when 
both AJ and A2 are equal to zero, (6.1) transforms to

S!} = ^f. (6.5)

Equation (6.5) shows that consumer expenditure in each zone of residence 
/ is distributed evenly between all shopping centres j. In other words, 
Sa = Sj 2 = ... = Sjj = ... = S/j. Sales in each shopping centre are 
found by summing (6.5) over i

(6.6)

and from (6.6) it follows that total consumer expenditure in the system 
is distributed evenly among the shopping centres so that

This is an interesting case which can be derived using Wilson's entropy- 
maximising method, discussed in Chapter 2, if the constraint equation on 
travel cost and benefits is omitted. In effect, such a case arises when 
neither the cost of travel nor the benefits of location are relevant to the 
locational decision.

In case 2, the analysis is a little more complex; if it is assumed that one 
shopping centre, say centre /, is more attractive than any other centre, then 
the analysis is helped. When At = oo and A2 = 0, then

In this case (6.1) transforms to

,6.7)



152 URBAN MODELLING

From (6.7), it is obvious that all consumer expenditure flows to centre /, 
and this can be shown by summing (6.7) over z

S, = ZSa = £q/V (6.8)
i i

In cases where two or more centres tie with the largest measures of loca- 
tional attraction, the total expenditure in the system is distributed evenly 
among these centres.

Case 3 is similar to case 2 in that an assumption has to be made to help 
the analysis. If it is assumed that from each zone i there is a minimum 
distance or travel cost to some zone j, then it is reasonable to suppose that 
this minimum is the intra-zonal distance du . Therefore, when Aj = 0,
and A2 = oo, then

Equation (6.1) now transforms to

s, = ciPi , /=y,| 
Sit = 0, i * j. }

In this case, the effect of distance is so powerful on behaviour that no 
expenditure flows to shopping centres in zones different from the origin 
zone. By summing (6.9) over ;', sales in each centre j are calculated as

o _ v 9 — f P ((\\ (V» Oy — Zj^ij — j j' \y.i\J)
i

If the minimum distances from each zone / are not the intra-zonal distances 
and if two or more distances are minimum, no general analysis of this case 
can be made.

Finally, in case 4, the analysis is complicated and considerably less 
general than the first three cases. As in cases 2 and 3, an assumption has 
to be made; from each origin zone ;' to all other zones j, it is assumed that 
there is one ratio (W^d^) which is a maximum. If Ax = oo and A2 = oo, 
then

In this case, all that can be said is that consumers living in any zone i 
allocate all their expenditure to some shopping centre /, although / may 
be different for each i. In fact, in most applications, it is likely that the set 
of shopping centres can be divided into two subsets - those with positive 
sales and those with zero sales. For example, in the Kristiansand model 
developed here for large values of Ax and A2, positive sales occur in only 
twelve out of the thirty shopping centres.
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One special case still needs to be dealt with and this occurs when A1 = 1 
and A2 = 0. This is the case which was described in Chapter 5 in equa 
tions (5.1)-(5.5) and which was termed 'bogus' calibration by Cordey- 
Hayes (1968). In this case, (6.1) transforms to

\Hf

(6.11)

and sales iny are calculated by summing (6.11) over /
2X-P, (6J2)

If 5>;/V2^ is called y, then (6.12) becomes 
i i

S} = yWit (6.13)
and it is clear that sales can be derived as a simple linear function of loca- 
tional attraction. If, for example, Wj is measured by floorspace, then ?/ 
is the system ratio of sales per unit of floorspace. However, in many 
applications of this form of model, suitable measures of W^ have been 
difficult to obtain and often observed sales have been substituted for W^. 
In such cases, r/ is equal to 1 if total observed sales in the system equal 
total expenditure. It is obvious that if observed sales are used to measure 
Wj, then predicted sales will co-vary with observed sales from (6.12), and 
a perfect and 'bogus' fit occurs. Moreover, as has already been pointed 
out, many proxies for W^ such as floorspace tend to co-vary with observed 
sales, and in such cases there is always a danger of bogus calibration.

Several versions of this retail location model have used observed sales 
as a measure for locational attraction (Black, 1966; Turner, 1970Z>), and 
despite the perennial problem of the implied tautology in such usage, an 
attempt can be made to resolve this problem by iterating the model in the 
following fashion. Using n as an index denoting iterations, (6.1) and (6.2)

= Ai(n)ci Pi S}i(n)d-i **, (6.14)

Sales in j on iteration (n+ 1) are found by summing (6.14) over /, and these 
sales are then substituted for the previous values of Sj into (6.14) and 
(6.15). This process is continued until convergence between the input and 
output values of sales is obtained. In the quest to explore whether or 
not this procedure will converge, Eilon, Tilley and Fowkes (1969) have
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provided some useful theorems which reveal that in most simple cases, 
convergence is assured.

Non-linearity and calibration
As the prime purpose of this chapter is to elaborate on techniques of model 
calibration, little emphasis need be placed on the detailed application of 
the model to the Kristiansand region. Yet a brief introduction to the 
specific form of model and its data base is warranted. The Kristiansand 
region has been divided into 30 zones which are aggregations of Local 
Authority units. An effort was made to define the zoning system to mini 
mise the ratio of intra-zonal expenditure to inter-zonal expenditure, 
following the argument posed by Broadbent (1969a) and mentioned 
previously. The two-parameter version of the retail model has been 
applied using floorspace (in square metres) as a measure of locational 
attraction, and distance (in kilometres) on the major road network as 
a proxy for travel cost. No attempt has been made to refine this model 
by disaggregating sales into durable and consumer, or by accounting for 
expenditures flowing across the regional boundary.

The process of calibrating an urban model of this kind involves the use 
of techniques to find parameter values which optimise some criterion 
measuring the goodness of fit of the model's predictions to the real situa 
tion. For example, it may be decided that by minimising the sum of the 
squared deviations between predictions and observations, the best para 
meter values can be found. Thus in some models it is possible to use 
analytic methods such as regression analysis. Whether or not an analytic 
method of calibration can be used depends upon the form of the model. 
Generally, analytic methods can be used to fit models which are linear in 
their parameters. Non-linear forms of model are more difficult to fit and 
Draper and Smith (1966) make an essential distinction between two kinds 
of non-linear model. Some non-linear models can be linearised by trans 
formation, and in such cases, analytic methods of calibration such as 
regression analysis can be used despite certain reservations (Seidman, 
1969). Such models are called by Draper and Smith intrinsically linear. 
The other set of non-linear models cannot be transformed and these 
are referred to as intrinsically non-linear. Examination of equations (6.1) 
and (6.2) reveals that the model dealt with here is intrinsically non-linear 
and attempts to transform the model to a linear form will lead to biased 
estimates of the parameters. However, it is useful to compare such models 
with intrinsically linear systems such as that given in (2.51) which can 
be linearised by a simple transformation as in (2.52). As a slight digression, 
it is interesting that this distinction between linearity and non-linearity 
also coincides with the distinction between the traditional geographer's
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approach to modelling with its inductive bias and the deductive style 
advocated here.

The trial and error method of searching for best-parameter values 
by running the model exhaustively through a range of parameter values 
or combinations thereof represents a somewhat blunt approach to model 
calibration. There is a need for techniques which are well adapted to the 
problem and this chapter attempts to introduce some such techniques. 
Moreover, as each run of the model can be expensive or take a large 
amount of computer time, few applications have attempted to find sys 
tematically the optimum parameter values, and this is seen nowhere more 
clearly than in the comparative study recently produced by NEDO 
(1970) where the parameters and fits of several retail location models 
are compared. Clearly, then, there is a need for the introduction of 
methods suitable for calibrating intrinsically non-linear models of spatial 
interaction.

So far the argument has concentrated upon calibration techniques 
but there are difficulties involved in choosing meaningful statistics measur 
ing the goodness of fit of spatial interaction models. It has been shown 
that statistics measuring the goodness of fit of the interaction variables are 
far more sensitive to variation in the parameters of such models than 
statistics measuring the fit of the distributions of activity. Furthermore, 
the simpler statistics such as the sum of squared deviations appear to be 
more sensitive to parameter change than the more complex statistics such 
as the coefficient of determination as was evidenced in the previous 
chapter. The theoretical work of Hyman (1969), Evans (1971) and Wilson 
(1970a) also supports the use of statistics based on interaction such as the 
mean trip length. Although generalised schemes for calibrating spatial 
interaction models have been suggested by Wilson, Hawkins, Hill and 
Wagon (1969), in relation to the SELNEC transport model, specific 
procedures for evaluating the deterrence parameter of such models have 
been proposed by Hyman (1969). Although the model dealt with here 
embodies two parameters, as a first step in exploring this model it was 
decided to test Hyman's procedures using a one-parameter version of the 
model. The rationale for Hyman's choice of the mean trip length as a best 
calibration statistic will be examined in the next chapter, for here interest 
will centre around techniques for homing-in on parameter values asso 
ciated with the best statistic.

Hyman's formulae: the rule of false position

The importance of Hyman's work lies in the fact that it represents the 
first attempt to provide a systematic procedure and statistic for calibrating 
spatial interaction models. Hyman shows that the mean trip length is the
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best statistic to use in calibration. This mean trip length, called S, is 
defined in this application using a one-parameter version of equation (6.1)

S Sy = AiCfMd-J, (6.16)

1 
The mean trip length given in (4.2) is defined as

(6.18)
i }

In fact, in the application described here, S is approximately equal to 
8 km and for purposes of exploration throughout the rest of this chapter, 
the observed survey value of S, called S* is set equal to 8 km. By converting 
the spatial interaction model in (6.16) to a continuous form, and by assum 
ing a negative exponential deterrence function, Hyman argues that the 
parameter A is some monotonically decreasing function of S. In other

W0rdsthat AS = 0, (6.19)

where O is a constant with a probable value between 1 and 2. Equa 
tion (6.19) could be used to give a first approximation to A and Hyman 
has suggested two procedures for computing accurate values of A. First, 
a new value for A, say Am+1 could be calculated from the previous value of 
the parameter \n and the mean trip length Sn by

= (6 '20)

Hyman suggests a second procedure based on linear interpolation- 
extrapolation which converges faster than the process implied by (6.20); 
this method is known as the 'rule of false position'. For this procedure, 
two previous values of A and their associated mean trip lengths need to 
be known and a new value of A is calculated from

gn _ £* £* _ $n-l 
Xn+1 — Jn-l ——————— i Tin ——————— (67HA ~ A s«-s»-i + 5»_5»-i- V°- Z U

Both these procedures will be demonstrated using the retail location 
model given in (6.16) and (6.17). Because the deterrence function in the 
model is a power function (6.19) has not been used to give a first approxi 
mation in this case. The two procedures have been used starting with A 
equal to 2.0 and 5.0, and in the case of the linear method, the second value
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Fig. 6.1. A comparison of Hyman's formulae for model calibration.

of A was calculated from (6.20). Figure 6.1 compares these two procedures 
graphically, and Table 6.2 summarises the number of iterations for each 
procedure required to converge to within specified limits of S*. From 
Table 6.2, it appears that the speed of convergence for (6.20) is in 
dependent of its starting point, and in the case of (6.21), the convergence 
takes longer, as the displacement of the starting point from the final value 
of the parameter increases. The most interesting result from Table 6.2, 
however, concerns the number of iterations required to converge to 
within specific limits. Both procedures take approximately the same 
number of iterations to converge to within 1Q-1 of S*, but to converge to 
within 10~5, the linear technique procedure is, as Hyman implied, con 
siderably faster.
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There are a number of variations in the linear interpolation-extrapola 
tion formula given in (6.21) which are worthy of mention. In particular, 
the method can be speeded up if on the fourth and subsequent iterations, 
the two-parameter values which produce values of S closest to S* so far 
are chosen. Karlquist and Marksjo (1971) demonstrate the use of this 
option which is sometimes called the secant method. Baxter and Williams

TABLE 6.2. Number of iterations required to come within 
specified limits of 5*

Convergence based on (6.20) Convergence based on (6.21)

Specified
limits
icr1
10-"
10-5

Start
(A = 2.0)

5
10
15

Start
(A = 5.0)

5
10
15

Start
(A = 2.0)

5
6
7

Start
(A = 5.0)

7
8
9

(1973) also give alternatives to (6.21) which are more efficient computa 
tionally. Of interest is the case when S* is zero, as in cases where it is re 
quired to minimise or maximise some function. Then equation (6.21) can 
be simplified to >-r, f»-i

A"+1 = A-*- (A -*_£ . (6.22)

Dixon (1972) also presents certain procedures for speeding up convergence 
based on formulae such as (6.21) and (6.22).

Although Hyman's formulae are highly efficient, they are limited in 
several ways. First, there are difficulties in extending these methods to 
handle models with two or more parameters and in such cases, search 
procedures such as gradient search tend to be more useful. Second, use of 
the methods in (6.20) and (6.21) above required some information con 
cerning the optimum fit of the model, in this case S*. In many instances, 
the researcher may wish to optimise the value of a statistic summarising 
the goodness of fit, and this value will usually not be known in advance. 
Such is the case when calibrating a model using statistics which compare 
variance in predicted and observed distributions. What is required is 
a more general optimisation procedure which can also be extended to 
explore models with two or more parameters, and to this end, a brief 
introduction to the theory of search is now presented.
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The theory of search
An informal discussion of the theory of search is sufficient for the purposes 
of this chapter and in this section, some pertinent definitions will be intro 
duced. For a more formal discussion, the interested reader is referred to 
Wilde (1964). Search procedures form part of a- wider class of problems 
coming under the general heading of optimisation. The particular 
characteristic of such problems refers to the need to find the optimum or 
best value of some function, and this class of problems can be divided into 
those which are subject to certain constraints and those which are not. 
Constrained optimisation problems are dealt with either by the calculus 
or by the methods of mathematical programming such as linear or 
quadratic programming. The problem of calibration dealt with here, how 
ever, is essentially a problem in unconstrained optimisation. The function 
to be optimised by its very nature cannot be handled analytically, and 
therefore numerical methods of search are appropriate.

An initial distinction must be made between univariate search in which 
the optimum value of one variable is required, and multivariate search in 
which the optimal values of many variables are required. The process of 
search in which two or more variables must be optimised is often likened 
to a form of hill climbing, in which the researcher is attempting to reach the 
summit by some route which he does not know in advance. The geometri 
cal analogue is obvious and the hill is referred to as the response surface 
(Wilde, 1964). In this book, the area within which the search is to take 
place is referred to as the parameter space. Perhaps the most important 
assumption of all search procedures is that the response surface has the 
property of unimodality. In other words, that the surface has only one 
optimum - the global optimum. Following the hill-climbing analogy, 
surfaces may have saddle points and ridges and in cases where the surface 
is multimodal, there may be several local optima. A formal definition of 
unimodality is given in Wilde (1964). It is important to note that most 
search procedures cannot get over the problems caused by multimodality, 
and this applies to the search procedures outlined below.

Optimum univariate search procedures have been suggested but no 
optimum multivariate procedure has been proved. Usually the method of 
multivariate search involves some method of assessing the gradient of the 
response surface and proceeding along the line of steepest ascent or 
descent. In the context of calibrating the two-parameter retail location 
model, given in (6.1) and (6.2), Turner (1970ft) has used a gradient search 
procedure based on a method devised by Marquardt (1963), but he reports 
that the process always converged to a local optimum. As the parameter 
space of such models remains largely unexplored, it seems that the develop-
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ment of a multivariate technique such as gradient search, which will only 
work on unimodal surfaces, is rather premature at this stage. Thus as a 
preliminary attack on the problem, the procedure suggested below is 
based on univariate search and this can be easily extended to explore the 
form of the multivariate response surface.

Fibonacci search
Consider a function such as the one illustrated in Figure 6.2. For pur 
poses of demonstration, it might be assumed that this function represents

\

x4
V x 2

-«————— Parameter value —————^ 

Fig. 6.2. Optimum point in the interval of search.

the value of the coefficient of correlation for different values of the para 
meter A in (6.16) and (6.17). The Fibonacci search procedure is an optimum 
method for finding the maximum or minimum of a function such as the 
one in Figure 6.2, where information about the shape of the function has 
to be generated sequentially. This presentation of the method follows the 
description given by Spang (1962) and Box, Davies and Swann (1969). 
The method has been proven optimum by several researchers and good 
accounts of the proof are given by Wilde (1964), Avriel and Wilde (1966) 
and Bellman (1957).

In Figure 6.2, it is assumed that the maximum lies in the interval {A2 -A1} 
and two further function evaluations are chosen such that

A1 < A3 < A4 < A2.
Then if/(A3) ^ /(A4), the maximum lies in the interval {A4 -A1} and if 

4), the maximum lies in the interval {A2 — A3}. Further function
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evaluations in the reduced interval will obviously narrow the interval of 
search. An optimum strategy for choosing the locations of A3 and A4 is 
based upon a series of positive integers called the Fibonacci numbers, 
so called after their discovery by the Italian mathematician of the thirteenth 
century. These numbers are denned by the sequence

MO = MI = 1, 1
(6.23)

«» = "»-l + "n-2» n > 2.J

Given a total number of function evaluations, say N, then on the fcth 
iteration, the range of parameters has been narrowed to {A2 > fc — A1-*} and 
two further parameters A3>fc and A4- fc are chosen as follows

(6.24)
uN+\-k

A4,fc = JfAt±_(A2,*_Ai.fc) + A1'*. (6.25)
uN+l-k

Using (6.24) and (6.25), the final function evaluations given by A3'^"1 
and A4'^-1 coincide at the mid-point in the interval {A2'^1 -A1 - JV-1}. 
Therefore one of the new parameters, say A3--^"1 is displaced from A4'^1 
by a small number e. Then

A4,jv-i = KAa^-i-AL^ + A 1 '^-1 . (6.27) 

After N function evaluations the remaining interval £,N is at most

£N = J_(As,i_ Ai.i) + 6> (6.28)
Mjy

and therefore for any reduction in the interval of search, UN can be 
determined from a Fibonacci table.

As in the linear interpolation-extrapolation in (6.21), two function 
evaluations are needed to start the process, but after this only one 
additional evaluation is needed at each iteration. For example if as in 
Figure 6.2 the maximum lies in the interval {A4-*1 — A3 '*} on the Ath itera 
tion, then on the next iteration

. (6.29)

Substituting for A4-* in (6.29) from (6.25), then
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LuN+l-k

uN+l-k

Equation (6.30) is obvious from the symmetrical properties of the method 
(Wilde, 1964). However, one problem remains - in many cases N cannot 
be found because the final interval required may not be known. For 
example, the process of search could be terminated when the difference 
between the values of the goodness of fit on successive iterations falls 
within a certain limit. To deal with such cases, a generalisation of the 
Fibonacci search, known as search by golden section, can be used.

Generalisation to search by golden section
Hoggatt (1969) shows that the Fibonacci numbers can be calculated using 
an equation due to the French mathematician Binet. This equation is

~,n(6 - 3i)5\ /iH
By substituting (6.31) into the ratios of the Fibonacci numbers given in 
(6.24) and (6.25) above, then for very large «, these ratios are approxi 
mately constant. Noting that (f> = (1 + ̂ /5)/2, these ratios are given as

^1 ~ _L = *z! f (6.32)

—— = T. (6.33) 
«»+i <P

The properties of (6.32) and (6.33) are quite intriguing for these equations 
imply an approximate calculation scheme for the Fibonacci numbers. 
The number <$> is itself of some interest due to the fact that it satisfies the 
so-called Fibonacci quadratic <j) z = <j> + \. Manipulation of (j> can be 
carried out endlessly, thus justifying the fact that Fibonacci numbers 
provide a major topic in recreational mathematics. Equation (6.32) is 
approximately equal to 0.382 and (6.33) approximately equal to 0.618. 
When N is not known, (6.24) and (6.25) become

A3-* = 0.382(A2-*-A1 -*) + A1'*, (6.34)

A4-* = 0.618(A2'*-A1 - &) + A1 ' i: . (6.35)

The computational scheme implied by (6.34) and (6.35) is known as search
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by golden section because of the properties of <j> which is known as the 
golden section number. The golden section is a proportion which was 
much used in Greek art and architecture, and is derived by dividing a line 
segment into two unequal parts so that the ratio of the whole line to the 
larger part is equal to the ratio of the larger part to the smaller part 
(March and Steadman, 1971). This can be demonstrated using the interval 
of search shown in Figure 6.2 and dividing this interval so that

AI* A«.*-AI.*
L* = ^ = *' (6>36)

Equation (6.36) can easily be verified by making the correct substitutions 
from (6.32) to (6.35). Furthermore, Mischke (1968) provides an alternative 
derivation of search by golden section by dividing the original interval 
according to (6.36).

The golden section search is approximately 13 per cent slower than the 
Fibonacci search, although in practice, the method is slightly easier to 
program, and this could well cancel out the prior advantage of Fibonacci 
search. For experimental purposes, the golden section search is more 
flexible for the number of function evaluations can be found in advance 
if this is required. Then, after k iterations, the interval of search is narrowed 
by the golden section method to

A2.*+i-A1 -*+1 = (0.618)*(A1 - 2 -A1' 1). (6.37)

If it is required to reduce the interval to a particular value then it is 
necessary to find k. This is achieved by transforming (6.37) to

k = ln A** -A1 - 1 ln (°' 618) - (6 ' 38)

For example, in the computer program used here, the interval was 
reduced to 0.0004 of its original size, and using (6.38) this means that 
about 16 iterations are needed. In fact, 17 function evaluations need to 
be performed because two evaluations are needed in the first iteration. 
If the time or cost, called ijr, of each function evaluation is known, the 
total time or cost T is

In the case of the Kristiansand model, each evaluation or run of the 
model takes approximately 7.7 seconds on the Elliot 4130 computer, and 
therefore the total time taken to narrow the interval of search to 0.0004 
of the original interval is about 2 minutes 1 1 seconds. An example of the 
use of golden section search in finding the optimum value of one para 
meter is shown graphically in Figure 6.3, in relation to a maximisation
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problem. In Table 6.3, the results of Figure 6.3 are tabulated and this shows 
the degree to which the interval of search can be reduced using this 
method. It is now necessary to show how the method can be adapted to 
a problem of multivariate search, and used to explore different kinds of 
response surface. This is attempted in the following section.

Sequential linear search: exploration of the parameter space
Krolak and Cooper (1963) have proposed a simple extension of the golden 
section search and its Fibonacci equivalent to multivariate problems. This 
extension consists in nesting a series of univariate searches within one 
another and a similar method is outlined by Box et al. (1969); however, 
there is a more direct method of multivariate search and this method based 
on applying golden section search, called sequential linear search, will be 
presented here. The essence of this method involves the use of series of 
golden section searches in such a way that the optimum value of a function 
is successively improved by optimising on each variable in turn. The 
method can be best illustrated by an example. Imagine a response surface 
for a function of two variables; such a surface could be presented geo 
metrically in three dimensions, but a more efficient visual presentation 
can be made in two dimensions by plotting contours of equal response. 
Such a surface taken from the Notts.-Derbys. model in Chapter 5 is 
illustrated in Figure 6.4 and a sequence of linear searches is traced on this
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Fig. 6.3. Search by golden section.
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graph. It is intuitively obvious that on surfaces which are strongly uni- 
modal, that is concave or convex down (Wilde, 1964), the sequence of 
searches will eventually reach the global optimum. It is also obvious that 
if the surface is not strongly unimodal, then the search could end at a 
saddle point, a ridge, or some other local optimum. Therefore, this method 
is a useful tool for exploring response surfaces. '

The rest of this chapter is concerned with the response surfaces derived 
from the retail location model in (6.1) and (6.2). An example of the method 
is given in Figure 6.5 where both parameters of the model Aj and A2 have 
been varied sequentially until the goodness of fit was optimum in the sense 
that further improvement in the fit could not be achieved using this method. 
The computational procedure is as follows: Ax is fixed and an optimum 
fit is found by varying A2 . Then the value of A2 associated with this opti 
mum is fixed, and At is varied in an effort to improve on the previous fit 
of the model. This sequence is reiterated until no further improvement is 
gained within a predetermined limit. In applying the model in this way, 
three statistics have been used to measure the goodness of fit. First, the

TABLE 6.3. Reduction of the interval of search 
using search by golden section

Variation of 
parameter 

Iteration value 
number (Aj)

1 1.9098
1 3.0902
2 1.1804
3 0.7295
4
5
6
7
8
9

10
11
12
13
14

.4590

.6312

.3526

.2868

.3932

.3274

.3119

.3370

.3430

.3334

.3311
15 1.3348
16 1.3325

Coefficient 
of 

correlation 
W

0.9819
0.9371
0.9951
0.9512
0.9961
0.9920
0.9972
0.9970
0.9969
0.9972
0.9972
0.9972
0.9972
0.9973
0.9972
0.9972
0.9972

Coefficient 
of 

determination 
(r2)

0.9642
0.8782
0.9903
0.9049
0.9923
0.9841
0.9944
0.9941
0.9940
0.9945
0.9944
0.9945
0.9945
0.9945
0.9945
0.9945
0.9945

NOTE: Deterrence parameter A 2 fixed at 0.0.
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coefficient of determination r2 has been calculated based on the pre 
dicted distribution of sales S}- and the observed distribution S*. The form 
of the r2 statistic has been given previously in Chapter 4. The second 
statistic calculated is based on the sum of the absolute deviations between 
predicted and observed sales, and in this case, the model is run to find the 
minimum value which is zero of

The third and final statistic is based upon the mean trip-length. In this 
case, it is required to find the minimum of the absolute difference between 
the predicted S and observed S* mean trip lengths. This value is at a 
minimum when equal to zero which implies that S = S*. This statistic 
has the form , ^ =

jo — *j

The three optimisation problems associated with these three statistics 
can each be handled by the golden section search, thus illustrating the 
power and generality of the method.

In any application of a search procedure, it is essential to have some

. Path of search
- Direction of search

Fig. 6.4. Sequential linear search of a response surface.
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0.86
0123

• Indicates a run of the model

-.—————————— Parameter value

Second search:
X2 fixed at 1.0762,
best A! at 0.3134

First search: 
X, fixed at 1.0, 
best X2 at 1.0762

Third search:
X, fixed at 0.3134,
bestX2 at 1.1434

Fig. 6.5. Sequential linear search based on search by golden section.

initial idea of the form of the response surfaces associated with each 
measure of fit. As a first step in the exploration, the retail location model 
was run through a series of combinations of the parameter values At and 
A2 in the range 0-5. A general rule for finding the total number of function 
evaluations is nx, where x is the number of variables or parameters and n is 
the number of evaluations in the range. In this case, evaluations were taken 
at intervals of 0.5 between 0 and 5, and at 0.5 between 0.25 and 4.75, and, 
in total, the model was run 222 times. The three response surfaces are 
presented in Figure 6.6 and contours of equal response have been inter 
polated visually from the grid of function evaluations also shown in 
Figure 6.6. In general terms, these surfaces seem to be far from unimodal; 
only the r2 surface has a global optimum and this is an extreme value of 
the range, thus reflecting the problem of bogus calibration. On the other two 
surfaces, there appear to be an infinity of combinations of Ax and A2 which 
give a best fit, and this implies that one of these parameters is redundant. 
Therefore, the fears expressed earlier, that previous applications of the 
two-parameter retail location model might be suspect in this regard, seem 
well founded. However, the construction of these response surfaces is far 
too crude to make definitive statements about their precise form, and it is 
therefore necessary to explore these surfaces in greater detail using the 
search by golden section.

For each surface, the sequential linear search has been started from six 
different points, that is from A2 = 0, 1, ..., 5. In Figures 6.7-6.9, the

7 BUN
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sequence of searches from each of the different starting points is illustrated 
for each surface. In almost every case, convergence to an optimal fit yields 
different sets of parameter values Ax and A2 . In Figure 6.7, which illustrates 
the r2 surface, the search always converges to the ridge which cuts across 
the surface. In Figure 6.6, this surface appears to have a high plateau but 
the golden section search reveals that this is in fact a ridge. In Figures 6.8 
and 6.9, the searches converge to the valleys which are the major features 
of these surfaces, and in these cases, this provides a good demonstration 
that the optimum value always depends upon the starting points. In using 
such search procedures, care must be taken in fixing convergence limits. 
If, for example, the search moves onto slowly rising ground, then the 
exploration may terminate if the gradient is seemingly too small to im 
prove the fit above a certain limit. Such an instance may have occurred in

5 

4 

<< 3-
0) 

OJ

I 2
m 

0_

1

81 90

1234!
Parameter X 2 

Indicates a run of the model

130 80

Sum of absolute deviations
in activity
2,5, -S, obs l x 10

30

Coefficient of determination r2 
(r2 x 102 )

30 20 10

Absolute deviation in observed- 
predicted trip means
IS ~S"\

Fig. 6.6. An evaluation of the statistical response surfaces.
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the searches illustrated in Figure 6.7, thus preventing the search ever 
reaching the global optimum. In Table 6.4, a summary of the start and end 
points for each of these examples is given, and this table illustrates the 
difficulties of finding the truly best fit.

Start X 2 at 2.0 Start X 2 at 3.0

Start \2 at 4.0 Start X 2 at 5.0 

^^~~^~ Direction and path of search

Fig. 6.7. Sequential linear search from different start points across the 
r2 surface.

7-2
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01 2345

Start X2 at 2.0 Start X 2 at 3.0

Start X 2 at 4.00 

~~ Direction and path of search

Start X 2 at 5.0

Fig. 6.8. Sequential linear search from different start points across the 
surface based on the absolute deviations.
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012345 

Start X 2 at 0.0
Start X 2 at 1.0

Start X 2 at 2.0 Start X2 at 3.0

Start X 2 at 4.0 

~~ Direction and path of search

Start X 2 at 5.0

Fig. 6.9. Sequential linear search from different start points across the 
surface based on the mean trip lengths.
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TABLE 6.4. Start and end points for each response surface 
using sequential linear search

Coefficient of
Start 
ing

value

0.0
1.0
2.0
3.0
4.0
5.0

determination (r)

*i

1.3334
1.1434
1.1790
1.2713
2.0163
2.6156

A 2

0.0000
0.2024
1.0703
1.2261
4.0000
5.0000

Sum of
absolute deviations

AI

1.2964
0.9173
1.0164
1.4567
1.9607
2.4708

^
0.0000
1.0000
2.0000
3.0000
4.0000
5.0000

Absolute deviation of pre
dicted from observed (S)

A,

2.6800
1.2329
0.4427
1.3288
2.0547
2.6814

A 2

4.9985
28920
2.3762
3.0000
4.0000
5.0000

This analysis is disturbing news for analysts using the two-parameter 
version of the retail location model, and these results surely apply to other 
spatial interaction models such as residential location models. Yet the 
problems of finding an optimum fit have been anticipated in previous work 
(NEDO, 1970; Turner, 19706). Moreover, the analysis also highlights the 
problem of finding meaningful statistics measuring the goodness of fit. 
Perhaps the most definite conclusion which can be drawn from these 
experiments is concerned with the use of two parameters in such models. 
Although there may be good theoretical reasons why such models should 
have two parameters, one of these parameters must be fixed a priori to get 
a best fit if only one statistic is used in calibration. In fact, it is shown in 
the next chapter that meaningful calibration can only be achieved if there 
are as many statistics to optimise as there are parameter values to find. Yet 
in situations where only one statistic is used, then one-parameter models 
should be used. In some senses, this problem can be considered similar to 
the identification problem in economics where it is impossible from the 
given data to determine all the values of the variables. In the retail model 
in (6.1) and (6.2) above, it is impossible to find unique values for both Aj 
and A2 from one single statistic and this suggests that the model should 
be reformulated as in (6.16) and (6.17).

Alternative univariate search procedures
Although the golden section search and its Fibonacci equivalent are the 
proven optimum methods for univariate search, there may be other 
methods which are faster in practice. Although not applied to the retail 
model discussed here, two such methods which are used extensively in the
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next two chapters, are stated here in terms of the simple case. First, the 
technique known as the Newton-Raphson method which forms one of the 
most popular methods of numerical analysis is presented. It is well known 
that the value of any function, say ^(A + e), can be found by expanding the 
function around some point A using Taylor's theorem (Stephenson, 1961). 
Then expanding S(A) in this fashion gives

(6.39)

Now an approximation to S(A + e) can be found by truncating (6.39) after 
a given number of terms. The Newton-Raphson technique is based on 
truncation of (6.39) after the first-order term, thus giving

(6.40)

An iterative scheme based on (6.40) forms the essence of the Newton- 
Raphson technique in which a new parameter value A*+1 on iteration k+l 
is computed from

= A" + e* = A* + {S(A + e) - 5(A*)} -. (6.41)

Equation (6.41) is derived from (6.40) noting that the value of the function 
S(A + e) represents the optimum value which is sought. Extension of this 
technique to the mean trip length problem treated earlier is obvious in 
terms of the notation used.

Second, a family of methods based upon the fit of a quadratic to the 
parameter space has been widely used in problems of unconstrained opti 
misation. Dixon (1972) presents a useful summary of the general method 
but a particularly appealing example which is simple to use has been 
suggested by Box et al. (1969). This method is an iterative quadratic inter 
polation procedure in which the minimum of a quadratic is found 
analytically based on three equally-spaced parameter evaluations at A*-1, 
Afc and A*+1. A new value of the parameter A*+2 can be found from

Note that in (6.42), AA is the interval between each of the parameters 
A*-1, A* and A*+1 and the variables S*-1, 5* and Sk+l are those associated 
with these parameters. An interpretation of (6.42) in terms of the mean 
trip length problem is again obvious.
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The message of this chapter is quite straightforward in that the calibra 
tion of urban models appears to be well suited to the use of unconstrained 
non-linear optimisation methods, at least for simple cases. In the next 
chapter, these techniques, particularly those outlined in the previous two 
paragraphs, will be extended to many-parameter urban models. Yet the 
problem of calibration cannot be dealt with summarily for the choice of 
calibration procedure remains a largely intuitive affair to be guided by 
a feel for the problem in hand. Usually, it is necessary for the model- 
builder to have some idea of the shape of the response surface in the para 
meter space, and in this respect, it is unlikely that only one technique of 
calibration can be universally applied, for each application can be quite 
different. The calibration problem is many-faceted like a diamond, each 
facet highlighting some aspect of the model's structure which can lead to 
revealing insights, the richness of which are further demonstrated in the 
next chapter.



7. Calibration as non-linear optimisation

The choice of appropriate statistical tests for urban models has not yet 
been dealt with in this book in any depth although certain conventional 
statistics measuring model performance have been used in the previous 
three chapters. In the last chapter, the emphasis was largely upon methods 
for finding parameters producing the best value of some statistic, rather 
than upon the choice of the statistic itself, and although this chapter will 
be concerned with extending such procedures, it is also devoted to 
establishing a theoretically acceptable method for deriving statistical tests. 
This method has already been anticipated in previous chapters in brief 
reference to the work of Hyman (1969), and in this chapter, the method 
will be explored and applied in the context of the Kristiansand retail 
location model described in Chapter 6 and a trip distribution model of 
the Reading subregion.

In introducing statistical testing of urban models, a brief review of 
existing calibration techniques which are mainly proposals rather than 
applications, sets a useful perspective for the statistical maximum-likeli 
hood analysis which is first developed using the Kristiansand model. Five 
techniques for solving the maximum-likelihood equations to which the 
calibration problem is reduced, are then outlined and contrasted in terms 
of their efficiency. These methods are based upon the numerical search 
procedures outlined in Chapter 6. The maximum-likelihood method is then 
extended to the trip-distribution modelling problem and further com 
parisons of the savings in cost and computer time posed by the use of 
these techniques, help in assessing their relevance to urban modelling. 
First, however, it is worth while reviewing existing proposals for solving 
the calibration problem.

Existing methods of calibration
The most popular scheme for calibrating spatial interaction models 
especially in the field of locational geography (Chisholm and O'Sullivan, 
1973), is based upon transformation of the model equations to linear form. 
The unconstrained spatial interaction model given in (2.51) is intrinsically

175
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linear and therefore linear regression analysis can be used to estimate the 
parameters. Equation (2.51) is rewritten below as a one-parameter model 
with an inverse power function of travel cost. Note that {7\*} is the 
observed trip distribution and the statistical problem is to find the para 
meter A associated with this distribution. Then

Tii ^GOl Di c-i}. (7.1)

By manipulating (7.1) and using a logarithmic transformation, an equation 
linear in its parameters is derived.

lnG-Alncw + g,y, (7.2)

where fi3- is an error term. In (7.2), In G and A can be estimated using 
bivariate linear regression analysis, and the full range of linear statistics 
can be used to measure the goodness of fit (King, 1969). Equation (7.1) and 
its transformation in (7.2) have been widely used in geographic analysis 
to describe interaction phenomena. Indeed, Olsson (1965) remarks that 
'much of the misunderstanding connected with the gravity model would 
probably disappear if it were more frequently treated as a type of regression 
analysis'. The use of regression analysis in estimating one or more para 
meters of intrinsically linear equations such as (7.1) above does have the 
disadvantage that the largest values of {T*j} have the smallest weight in the 
regression. Seidman (1969) has recognised this disadvantage and suggests 
that analysts should be exceedingly wary of using such transformations.

Apart from the unconstrained model, all other models in the family of 
spatial interaction models have equations which are intrinsically non 
linear. These equations are complicated by the balancing factors which 
involve summations of the model's parameters, and therefore cannot be 
transformed as in (7.2). However, it is still possible to use the method of 
least squares to estimate the parameters, although the assumptions of the 
linear model no longer hold. It is necessary to minimise

i j

If, for example, there are K parameters \k,k=\,2,...,K, minimisation 
of (7.3) yields Abnormal equations of the following form

W (T* — T 1 i — 0 If — 1 7 K (1 &\ £i£j \-i ij -* •ij) ^*r\ — "? "• — *• j ^*» • • •»•"•• v' •"/
i j <?Afc

This method of least squares has been tested by Tanner (1961) for a pro 
duction-attraction constrained trip-distribution model. Tanner reports that 
the normal equations had to be solved iteratively and the complex form of
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such equations usually means that the partial derivatives in (7.4) must be 
evaluated numerically. Kirby (1974) also provides conditions for the 
calibration of trip-distribution models according to the method of least 
squares.

An alternative to the least squares method involves a linearisation of the 
interaction model using Taylor's theorem. From first approximations to 
the parameters, called \™, the interaction equation can be expanded to 
terms of the first order as follows. Terms of the second and higher order 
are disregarded on the assumption that they contribute little to the expan 
sion, and it is obvious that this assumption is only valid if A^ is a good 
approximation to the unknown best value Afc

Aj?). (7.5)

To clarify the presentation, the variables in (7.5) can be redefined in the 
following way

It is easily seen that (7.5) has a linear form if substitutions are made 
according to the definitions above and (7.5) is rearranged as

Yit(m) = S ak(m) X^m) + £„. (7.6)
K

£,tj is an error term which is assumed to be randomly distributed. The 
parameters ak(m) of (7.6) can now be estimated using least squares and 
new values for A fc are calculated from

AJT 1 = W + ak(m). (7.7)

A™ +1 is substituted for A£* in equation (7.5) and the procedure is reiterated 
until a convergence limit is reached. This method, which is outlined in 
Draper and Smith (1966) and in Watt (1968), has been used by Broadbent 
(1968) in calibrating production-attraction constrained trip-distribution 
models, although it appears that convergence of the procedure can be 
extremely slow. However, this method has been applied to three different 
spatial interaction models in the Reading subregion and although in two 
cases the procedures diverged, in one case the procedure converged to 
within 10~ 3 of the best parameter value in three iterations. Despite this 
success, the method is too unreliable for general use. Seidman (1969) has 
also used this procedure in calibrating non-linear models as part of the
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Activities Allocation model for the Delaware Valley Regional Planning 
Commission.

Hyman's work has already been referred to in Chapter 6 and will be 
further detailed in the next section, and it is of interest to note that Evans 
(1971) has produced similar results to Hyman. However, in contrast to the 
interpolation-extrapolation method suggested by Hyman for finding the 
parameter A of a one-parameter trip-distribution model, Evans has shown 
that the derivatives of such a model are relatively simple to calculate where 
A is equal to zero. By expanding the interaction equation around the point 
where A equals zero using Maclaurin's theorem, the best value of A is 
calculated from

where C* is the observed mean trip length and C the predicted mean trip 
length based on (4.1) with Fl(c (l) = c (j . Evans has given methods for 
calculating the derivatives and suggests that any standard method such as 
Newton's method can be used to solve the polynomial in (7.8). Baxter and 
Williams (1972) have succeeded in deriving a more general form for Evans' 
method which they have tested on a trip-distribution model of the town 
of Reading. The statistical methods proposed by Hyman and Evans will 
now be discussed further in terms of a methodology for deriving best 
statistics.

Introduction to statistical estimation in urban models
In the next sections of this chapter, several of the methods and applications 
introduced will be illustrated using the production-constrained retail loca 
tion model of Kristiansand. Although the methods will be specific to this 
model, generalisations to other models in the family and to models with 
different parameter structures will be indicated. The main advantage in 
using this retail model to demonstrate a variety of techniques lies in the 
ease with which results can be compared, and efficient methods selected. 
To introduce the principle of maximum-likelihood as a tool for estimating 
relevant statistics for interaction models, it is necessary to convert the 
retail model given in (6.1) and (6.2) to a probabilistic form. Noting the 
following definitions, _,

^-i — ci^i
and

the model in (6.1) can be written as

Su = CPii . (7.9)
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To keep the reader informed, it is worth while redefining these terms. Sti 
is the expenditure on goods made by the population living at / and shopping 
at j, C is the total amount of expenditure on goods in the system, Ct is the 
expenditure available in each zone i, and/> (- ;- is the probability that a person 
living at i will shop for goods at j. This is defined as

pl} = pi Al W^d-i^, (7.10)

S
(7' U)

Pi = -. (7-12)

Wj is a measure of shopping centre attraction at j and d.(i is the distance or 
travel time between / and j. Ax and A2 are parameters of the model to be 
estimated by calibration. By substituting (7.10), (7.11) and (7.12) into (7.9) 
it is easily seen that (7.9) has an identical form to (6.1), the production- 
constrained retail location model.

The interaction probability p^ can also be expressed as the product of 
the conditional probability p(j\i) and the marginal probability p(i)

Pn=P(J\i)p(i)- (7.13)

The conditional probability p(j\i) is the probability that a person will shop 
aty given that he lives at /, and the marginal probability /»(/) is the probability 
that the shopper lives at /. Referring to (7.10), it is hypothesised that these 
probabilities take the following form

AiW$d-i}\ (7.14) 

p(i) = Pi . (7.15) 

The proportion of i,j events or trips that have been observed is defined as

i i

Note here that S = C. The principle of maximum-likelihood can be used 
to derive relevant estimators of the parameters in the hypothesised formula 
tion of{ptj} from the observed frequency proportions {s/j}. This principle 
has been used to estimate the parameters of a production-attraction 
constrained model by Evans (1971) and is related to the Bayes estimators 
and contingency table approach used by Hyman (1969). Mackie (1971) 
has taken the principle of maximum-likelihood further by explicitly relating
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it to decision theory, and Wilson (1970a) has shown how these estimators 
are closely connected and complementary to the entropy-maximising 
methodology. Kirby (1974) has produced an important paper in which the 
maximum-likelihood is generalised for a variety of frequency distributions 
governing the sampling of interactions.

The principle of maximum-likelihood
The likelihood function L for the 5*- independent observations is pro 
portional to the multinomial distribution

i }

Then according to the maximum-likelihood principle, the value of the 
parameters of the p{i's which maximise L or equivalently In L subject to 
any constraints, are their best estimates. Note that in this form, In L is 
proportional to the entropy used in statistical mechanics, and thus the 
problem is similar to entropy-maximisation (Tribus, 1969; Batty, 1973). 
However, it is necessary to ensure when finding these optimum parameters 
that p(j\ 0 and p(i) still obey the probability laws which are stated in the 
following equations = ^ (? lg)

i 
SXO = I- (7-19)
i

These constraints can be built in by maximising the following Lagrangian 
form L* = lnL-S^EX/|0-l]-7lSXO-l], (7-20)

i j i

where /*;, i = 1,2, ...,/, and y are Lagrange multipliers. Using (7.13), 
(7.14), and (7.15), equation (7.20) can be written out fully as

L* = £2 s*(ln At + A! In Wf - A2 In dti + In pt)
i j

- 1). (7.21)
i } i

Then to find the maximum of L* with respect to A { , p t , Aj and A2, it is 
necessary to solve the following equations which are obtained by dif 
ferentiating (7.21) and setting the partial derivatives equal to zero. These 
differential equations are given as

fil*
o- = ^-r -/»iS W^d-fr = 0, (7.22)
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8L*
ZT = SSS<* In W,-S/*<(S,4< W^d-J* In W,) = 0, (7.23)
<> A 1 i j i j

J& In dy + XpiCZAt W}id-j> In dti) = 0, (7.24)

</7/'-l=0 (7.26)
^ri j

and SL*
•^- = 2^-1=0. (7.27)°y i

Rearranging (7.26) and substituting into (7.22), the Lagrange multipliers /^ 
are calculated as „ „* .

and from (7.26)

Equations (7.25) and (7.27) can be rearranged to give

7 = SSSS = S, (7.30)
i J

and therefore

Then (7.28) and (7.31) give

(7.32)
t j 

Substituting (7.32) into (7.24) and rearranging gives

i Wj></ «*• In dti) SS SS = SS Sj In rfw . (7.33)
i 3 i j i i

In a similar fashion, substituting (7.32) into (7.23) gives

(ZZPiAt W^d^ In Wt) SS Sf, = SS 5^ In W,. (7.34)
i 3 i i i i

The four relevant equations from this analysis associated with Al5 A 2, 
A i and pi can now be brought together. Equations (7.33) and (7.34) are
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reinterpreted below and (7.29) and (7.31) are restated. The best estimates 
of the model's parameters can therefore be found by solving

sti In dti , (7.35) 

W, = SS sit In Wjt (7.36)

/>, = 5>«. [(7-31)]

Evans (1971) has pursued a similar analysis for a production-attraction 
constrained model with a negative exponential function of travel cost, and 
this method could easily be applied to the unconstrained model given in 
(7.1) above. Furthermore, the equations for the estimators depend upon 
the particular set of parameters embedded in the model, and different 
parameter structures would yield different equations. Such extensions to 
the principle are quite straightforward and could be tackled by the reader. 

At this point, it is worth while stating a fundamental principle of urban 
model calibration based on the method of maximum-likelihood. In the 
above analysis, it is clear that each of the parameters Aj and A 2 is associated 
with a particular equation, in this case with equations (7.36) and (7.35) 
respectively. Then in general, the calibration problem can be reduced to a 
problem involving the solution of as many equations as there are unknowns. 
Thus, it is stated without proof that urban model calibration can only be 
achieved if there are as many statistics to be optimised as there are para 
meters to be found : the following sections are devoted to elaborating and 
demonstrating this principle.

Solution of the maximum-likelihood equations
Of the four estimating equations given above, (7.29) and (7.31) can be 
calculated directly from exogenous data and any set of parameter values. 
The solution of (7.35) and (7.36), however, depends upon finding the 
values of Aj and A 2 which satisfy these equations, and the rest of this 
chapter is concerned with methods of searching for these parameter values. 
Equations (7.35) and (7.36) are rewritten below in a form more suitable to 
the methods described in later sections

min ^(Aj, A 2) = min |SSp<y ln «*«-SS * w ln dif \ = 0, (7.37) 
i i i i
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min F^Aj, A2) = min |S2p« In W3— SIX, In Wt \ = 0. (7.38)

Some of the methods for finding A x and A 2 use a statistic based on a 
combination of (7.37) and (7.38)

min A(A 1; A 2) = min [F^, A 2) + F^, A2)] = 0. (7.39)

Equation (7.37) refers to the mean trip-cost equation in (7.35) whereas 
(7.38) refers to (7.36) which can be called the mean trip-benefit equation. 
The global minimum values of (7.37) and (7.38) and therefore (7.39) only 
occur when the predicted mean trip cost and benefit are equal to their 
observed values.

Equations (7.37)-(7.39) are intrinsically non-linear and methods for 
their solution can be divided into two classes: numerical methods and 
search procedures. There are several standard numerical methods which 
can be used to solve systems of non-linear equations, and two methods, 
one based on simple iteration, the other based on the Newton-Raphson 
method will be outlined. Search procedures deal essentially with problems 
of unconstrained optimisation, and a distinction is usually made between 
direct search, the subject of the last chapter, and gradient search. Direct 
searches do not involve any evaluation of the derivatives of the objective 
function whereas in gradient search, the derivatives are used to guide the 
direction of search. In this chapter like the last, only the methods of direct 
search will be introduced for it appears that the direct search is generally 
more efficient than gradient search when, as in this case, derivatives are 
usually found by numerical methods and not analytically. Box et al. (1969) 
divide direct search procedures into tabulation, sequential and quadratic 
methods, and examples of each of these three methods will be presented. 
Tabulation methods, as described in earlier chapters, deal with progressive 
reduction of the region of search; a method based on the sequence of 
Fibonacci/golden section numbers, outlined in Chapter 6, will be de 
scribed further. Sequential methods investigate the objective function 
using factorial designs which are expanded or contracted as the search 
progresses; an example of this class of search - the Simplex method - will 
be demonstrated. Finally, quadratic methods depend on a process for 
finding the minimum of a quadratic in a specified number of iterations; 
a method devised by Powell (1964) will be outlined.

As a guide to the efficiency of the numerical and search procedures, the 
response surfaces formed by evaluating (7.37)-(7.39) with respect to the 
Kristiansand model, are plotted in Figure 7. 1 . Figure 7. 1 (a) shows the 
points within the parameter space which relate to the parameter values of 
Aj and A 2 under which the objective functions have been evaluated.
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Figures 7.1(6) and 7.1(c) show the response surfaces formed from (7.37) 
and (7.38); in Figure 7.1 (d), these surfaces are overlaid and the minimum 
values of (7.37) and (7.38) are plotted in Figure 7.1 (e). Finally, in Figure 
7.1 (/), a composite surface from (7.39) is plotted. A mean trip length of 
1.75 and a mean trip benefit of 5.25 were judged to be good approxima-

0

(a)» Indicates a run of model

0.25

(b) Value of equation (7.37)

(c) Value of equation (7.38) (d) Value of equations (7.37) + (7.38)

(fl Value of equation (7.39) 
Minimum of equations (7.37) + (7.38)

Fig. 7.1. Response surfaces from the model.
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tions to the observed values of these statistics, and Figure 7.1 is based on 
these values. In the following sections, first the numerical methods, and 
then the search procedures, will be described, and a comparison of the 
relative performance of each method will ultimately be made.

Numerical methods: first-order iteration and the 
Newton-Raphson method
A first-order process based on simple iteration was used in the attempt to 
solve (7.37) and (7.38). At each iteration m, the mean trip benefit W™ and 
mean trip cost Cm were computed from A™ and Af respectively.

(7.40)

(7.41)
i j

Cm = In dti .

New values of the parameters A^+1 and A^ + l were computed by weighting 
the previous values of these parameters according to the ratios given in the 
following equations. Hyman (1969) has suggested a similar procedure 
mentioned in Chapter 6 for a one-parameter production-attraction con 
strained model r^tAT (7.42)

(7.43)

Equations (7.40) and (7.41) were then recomputed using A^+1 and
and the process is continued in this way until some convergence limit is

5 ————

A 2 5 
Start from A, = 4.0, A 2 = 1.0Start from A, = 0.0, A 2 = 0.0 

- — - — Path of solution

Fig. 7.2. Solutions using first-order iteration.
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reached. This method was tried from two different sets of starting points 
for A! and A2 ; the convergence is described in Table 7.1 and the solution 
paths are illustrated in Figure 7.2. It is obvious from these results that the 
process has extremely slow convergence and is therefore too expensive to 
apply generally. However, it is possible that the method could be used to 
provide good first approximations to A1 and A 2 for some other method, 
for the convergence can be fast at the outset of the process.

TABLE 7.1. Convergence of the first-order iterative process

Iterations 
or runs of 

model

Value of 
equation 

A! (7.38) A 2

Value of 
equation 

(7.37)

Start from At , A 2 = 0.0001

10
20
30
40
50

10
20
30
40
50

0.0039
0.0174
0.0418
0.0897
0.1700

Start from

2.0215
1.6187
1.3686
1.2165
1.1281

1.6756
0.4047
0.3954
0.3764
0.3493

A! = 4.0, A 2

0.1404
0.1009
0.0739
0.0487
0.0299

0.7046
2.2323
2.2200
2.1949
2.1526

= 1-0

3.4153
2.9098
2.5843
2.4130
2.3264

2.2926
0.0002
0.0014
0.0274
0.0097

0.0231
0.0252
0.0154
0.0084
0.0044

The second numerical method used to solve (7.37) and (7.38) is based on 
an extension of the Newton-Raphson method given in (6.39)-(6.41) to 
systems of equations with two or more unknowns. This method can be 
found in most books on numerical analysis (Milne, 1949; Redish, 1961), 
and is similar to the method of scoring proposed by Rao (1952) for solving 
maximum-likelihood equations. It is also of some interest to note that 
Ginsberg (1972) has suggested a related technique for solving the likelihood 
equations associated with a migration model based on spatial interaction. 
The method will be detailed here for a two-parameter model. From good 
first approximations to the parameter values, called Af and A"£, the best 
values can be computed as

A, = A? + e,, (7.44)
A 2 = (7.45)
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where ex and e2 are differences between the best and approximated values. 
To find ex and e 2 , it is possible to expand functions such as those given in 
(7.37) and (7.38) around the values of X1̂  and A^ using Taylor's theorem. 
For example, taking the function in (7.37) the expansion is

= S r, 'D-WT, A?), (7.46)

(7.47)

Note that equation (7.46) is the two-parameter version of (6.39).
If the terms e l and e2 in (7.47) are fairly small, thus implying that A™ 

and A^ are good first approximations, then approximate values of the 
function can be obtained by truncating (7.46) at terms of the first order. 
This is similar to the process of linearisation used by Broadbent (1968), 
which was described earlier. Expanding and truncating (7.37) and (7.38) 
around the points Af and A^ in this way gives

?, A?)

+ e1
T, A?) flf^A?,

(7.48)

A?) (7.49)

Rearranging (7.48) and (7.49) gives two linear equations in two unknowns 
which can be solved by any of the standard solution methods. The structure 
of this system of equations is clarified using explicit matrix notation

A?) 

A?)

, A1?) A?)

A?)
(7.50)

Matrix equation (7.50) can be written generally for the case of K para- 

metersas -F = Ae, (7.51)

where F and c are 1 x K column vectors and A is a Kx. K matrix. Under 
most conditions a solution to (7.51) will be given by

e =-A-iF. (7.52)
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New values for the parameters can be found as follows

AT +1 = AT + CL (7.53) 

A^ + e2 . (7.54)

These values are now used to compute new values in (7.51) and equations 
(7.51)-(7.54) are reiterated until some convergence limit is reached.

In Table 7.2 and Figure 7.3, the use of this method is shown from two 
different sets of starting points. It is clear that the method is considerably 
more efficient than the first-order process by at least a factor of 10 although 
there are two limitations which must be mentioned. First, good approxi 
mations to A! and A2 are needed to achieve convergence. On some runs 
of the method which were started from poor approximations, the process 
diverged to such an extent that certain values predicted by the model 
exceeded the permissible limit of the computer. Second, as the partial 
derivatives in (7.50) are evaluated numerically in the programme used 
here, the step size used to approximate 3At and 3A 2 affected the convergence. 
For large step sizes (> 0.01), the process tended to oscillate around the 
best values of Ax and A 2 . Therefore, in applying this method, some initial 
sensitivity-testing of the process may be necessary.

Direct search using the Fibonacci/golden section numbers

The search procedure based on the series of positive integers called the 
Fibonacci numbers has already been stated in Chapter 6 as the optimal 
method for locating the maximum or minimum value of a univariate uni- 
modal function. The method was first proven to be optimal by Kiefer 
(1953) and interested readers are again referred to the proof given in 
Wilde (1964). To introduce this search procedure in multivariate terms, 
assume that it is required to find the minimum of a function

/(Alt A2, ..., Afc , ..., Ax)

by varying AA and holding all other parameters constant. The Fibonacci 
numbers are first restated as

] 

2.J
[(6.23)]

The Fibonacci numbers un are defined from Binet's equation in (6.31) or 
another formula for un can be derived by solving the second-order difference 
equation in (6.23) with respect to its initial conditions (Goldberg, 1958).
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TABLE 7.2. Convergence of the Newton-Raphson method

Iterations
or runs of

model*

Value of
equation

(7.38)

Value of
equation

(7.37)

3
6
9

12
15
18
21
24
25

Start from Aj, A 2 = 0.0

0.0000 0.7718 0.0000 2.5343
0.6486 0.2029 3.1132 0.1600
1.2762 0.2927 0.9138 0.8732
0.8410 0.0122 1.7475 0.2123
0.9459 0.0125 2.1376 0.0167
1.0148 0.0014 2.2441 0.0032
1.0117 0.0000 2.2284 0.0006
1.0131 0.0000 2.2320 0.0001
1.0128 NC 2.2312 NC

Start from Aj, A2 = 1.0

3
6
9
12
15
18
21
24
25

1.0000
0.8447
0.9982
1.0112
1.0140
1.0123
1.0132
1.0127
1.0130

0.0897
0.0197
0.0095
0.0003
0.0000
0.0000
0.0000
0.0000
NC

1.0000
1.8458
2.2512
2.2253
2.2343
2.2298
2.2321
2.2309
2.2316

0.7930
0.1142
0.0020
0.0014
0.0006
0.0003
0.0002
0.0000
NC

NC means that the value has not been computed.
* The derivatives are evaluated numerically in the programme and therefore each 

stage of the method is in multiples of 3.

0 X 2 5 
Start from X, = 0.0, X 2 = 0.0 
—»——» Path of solution

0 X 2 5 
Start from X, = 1.0, X 2 = 1.0

Fig. 7.3. Solutions using the Newton-Raphson method.
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With a total of N function evaluations, and on the mth iteration when 
the interval of search has been narrowed to (A|' m - A£' m}, the next two 
parameter values A|>m and A^"1 are selected as

"jV-l-m /j2,m il - ' -
"A'+l-m

A4, m = "jV-m ( A 2, m _ Al , m) + Al, m (7 55) 
M.V+l-m

Note that (7.55) and (7.56) are equivalent to (6.24) and (6.25) but with k 
now indicating the parameter to be optimised and m the iteration number. 
This change in notation is important for it can lead to confusion if not 
made explicit. The generalisation to search by golden section has already 
been demonstrated in Chapter 6 and it consists of replacing the Fibonacci 
ratios in (7.55) and (7.56) by the fractions 0.382 and 0.618 respectively 
(Vorobev, 1961). The method of extending the Fibonacci search to a two- 
parameter model is based on the sequential linear search defined in the 
last chapter although this procedure is illustrated with respect to the 
minimisation of (7.37) and (7.38) in an alternating fashion. A set of outer 
iterations corresponding to each linear search is indexed by m' and, at 
each m', a univariate Fibonacci search is carried out using (7.55) and (7.56) 
above. Then ^^ A™,+1) = mjn Fi(Am| A»-) t (7.57)

A™

F2(A™'+ 2, A^'+!) = min F^A^Af + 1). (7.58) 
A?

On iteration m' + 1 , the optimum value of A£* is found with respect to the 
function F^Aj, A 2) as in (7.57) by holding Aj at the value found on itera 
tion m'. In (7.58), a new value for Ax is found on iteration m' + 2 with 
respect to F2(A 1; A 2) holding A2 at the value found on m' + 1. This procedure 
is continued until some convergence limit is reached. This procedure has 
been applied to estimating the parameters of the Kristiansand model, and 
it has been made more accurate and efficient by increasing the value of TV 
in (7.55) and (7.56) as the minimum is approached. In Table 7.3 and 
Figure 7.4, the convergence and search directions using multivariate 
Fibonacci search are shown from two different starting points; although 
the search procedures show a reasonably efficient convergence in this case, 
there is no guarantee that the process will always converge for such linear 
searches depend upon the precise shape of the response surfaces in 
Figure 7.1.

Multivariate Fibonacci search has also been used to find the minimum 
of the combined function given in (7.39). The process is similar to (7.57) 
and (7.58) in which one parameter is varied at each iteration.
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TABLE 7.3. Convergence of the multivariate Fibonacci search

Start from A, = 0.0

Iterations 
or runs of

model

9
18
27
36
45
^A~\£
12)

Value of 
equation

A i

0.0000
1.0081
1.0081
0.9674
0.9674
The procedure
for the search
convergence

(7.38)

NC
0.0059

NC
0.0050

NC

A 2

2.2542
2.2542
2.1884
2.1884
2.1884

Value of 
equation

(7.37)

0.0044
NC

0.0047
NC

0.0047
repeats itself in all following iterations
is not fine enough to achieve a better

Start from Aj = 4.0

Iterations 
or runs of 

model* Aj

3 4.0000
7 1.9098

13 1.9098
20 1.4589
29 1.4589
39 1.1803
50 1.1803
62 1.0739

Value of 
equation

(7.38)

NC
0.0247

NC
0.0057

NC
0.0017

NC
0.0016

A

3.8196
3.8196
3.0901
3.0901
2.5986
2.5986
2.3606
2.3606

Value of 
equation 

(7.37)

0.2055
NC

0.0044
NC

0.0005
NC

0.0028
NC

NC means that the value has not been computed.
* In each linear search, the convergence limit is computed as limit C/V+1) 

limit (AO/2.0 where limit (0) = 1.0.

0 X 2 

Start from X, = 0.0, X2 = 0.0 

_» Path of solution

0*2 5 

Start from X, = 4.0, X2 = 0.0

Fig. 7.4. Solutions using Fibonacci search.
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mn
A»

min

| A-)], 

?| Af + 1

(7.59)

(7.60)

The use of (7.59) and (7.60) however illustrates some of the problems which 
can occur with search procedures. As all search procedures assume not only 
that the response surface is unimodal but that the surface is concave or 
convex down (Wilde, 1964), surfaces which have ridges, saddle points and 
valleys can be difficult to handle. Such irregularities on the surface act as 
obstacles to the search and quite often the search procedure can terminate 
at such points for they have some of the features which characterise the

X 2 5

Start from X, = 4.0, \2 = 0.0
——— Path of search

-- — - Contours of equation (7.39)

Fig. 7.5. Oscillating solution for variable
Fibonacci search based on minimisation

of equation (7.39).

global optima. In Figure 7.5, the Fibonacci search procedure has termi 
nated in a steep valley which is a characteristic of the surface associated 
with (7.39) shown in Figure 7.1 (/). In such cases, the procedure has to be 
redesigned to avoid such obstacles or other procedures have to be used. In 
concluding discussion of this technique, it is worth noting that this strategy 
of alternating linear search could employ methods other than the Fibonacci 
search. For example, procedures based on the optimisation of a quadratic 
as in (6.42) might be faster, and if so, these could easily be substituted for 
the Fibonacci search.
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Sequential search using the Simplex method
The Simplex method which was first introduced by Spendley, Hext and 
Himsworth (1962), involves the evaluation of the objective function at 
K+ 1 points in ^-parameter space. These points are regularly spaced and 
form the vertices of a regular simplex. The method works by changing one 
point of the simplex at each iteration in such a way that the optimum value 
of the function is approached. A modification of the Simplex method, 
proposed by Nelder and Mead (1965), is developed here for this method 
gives greater flexibility in the construction of the simplex.

For a problem with K parameter values Ak, k=l,2,...,K, the 
simplex is formed by evaluating the objective function at K+ 1 points, 
called TTj, ..., ITK+I , the co-ordinates of these points being parameter 
values. The values of the function of each of these points are called 
A l5 ..., AK+1 , and the superscripts h, v and 1 relate to the highest, second- 
highest, and lowest values of the function. The method will be described for 
a typical iteration for the case of two parameters Aj and A 2 using an 
explicit matrix notation when the search is for a minimum function value. 
From the existing simplex, the centroid of all the vertices, called X, is first 
calculated. Then the highest value of the function Xh is chosen and this 
point is reflected through X to form a new point X*. This reflection opera 
tion is described by

+ w 01 [AY] [w 01 rA^lo I+ .J kHo „] Ul- (76i)
w is a constant called the coefficient of reflection. If A£ ^ A* ^ Alk, then 
X* replaces Xh as the new point in the simplex and a new reflection is 
carried out on the next iteration. If, however, A* < Alk, then the new 
direction in which the reflection is made appears promising and a new 
point X** is found by expansion

o P
p is a constant called the coefficient of expansion. If A** < A^, then X** 
replaces Xh ; otherwise X* replaces Xh and a new reflection is carried out 
on the next iteration.

In the case where A£ > A|, then Xh is replaced by X* if A^ < Aj£. Then 
a contraction operation is necessary where Xh is contracted to

[A**] H-/C 01 FAY r/c 0 A1; 
=

A** o i-*J A
Y] r/c 0 

+J o K
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K is the coefficient of contraction. Xh is then replaced by X** unless 
A|* > min (A|, Ajj) when all points TT are replaced by (nk +nl)!2. The 
method appears to have the useful property that it is able to traverse the 
parameter space efficiently in its search for the optimum. Because of the 
three exploratory operations - reflection, expansion and contraction, the 
method is more able to avoid local optima than other search methods, and 
Mackie (1971) reports that tests of the method show that it converges to the 
same position from several different starting points.

An application of the method is shown in Figure 7.6 and Table 7.4 and 
the coefficients used were based on those suggested by Nelder and Mead 
(1965); values for these constants were w = 1, p = 2 and K = 0.5, thus 
giving a simple reflection, a doubling of length when expanding and halving 
when contracting. The method is much more efficient than the Fibonacci 
search although slightly less efficient than the Newton-Raphson method. 
The main advantage of the method seems to be its generality and ability to 
converge to the global optima from extreme starting values.

Start from triangle with vertices 
(0,01, (0,1), (1,0): numbers show path

0 X2 5 
Start from triangle with vertices 
(5,4), (4,5), (4,4): numbers show path

0

Simplex changes
too complex t
show in this neighbourhood

0 X 2 5

Fig. 7.6. Solutions using the Nelder-Mead Simplex method.
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TABLE 7.4. Convergence of the Welder-Mead Simplex method*

195

Iterations
or runs of

model t

4
14
24
34
44
54

Ai

Start
1.5000
1.8046
1.0359
1.0138
1.0128
1.0129

Value of
equation

(7.38)

from AJ, A 2 =
0.3424
0.0905
0.0030
0.0000
0.0000
0.0000

A 2

0.0
1.5000
3.2890
2.2679
2.2331
2.2311
2.2313

Value of
equation

(7.37)

0.3945
0.0479
0.0060
0.0003
0.0000
0.0000

Start from A x , A 2 = 4.0
4
14
24
34
44
54

2.0000
2.7762
2.4210
1.0596
1.0193
1.0135

0.1667
0.0041
0.0006
0.0058
0.0022
0.0002

5.5000
5.5694
4.9180
2.3063
2.2336
2.2312

0.2084
0.1255
0.1236
0.0120
0.0004
0.0001

* Step sizes for the construction of the initial simplex are +1.0 in both cases. 
t As three vertices are required for the initial simplex, the fourth point is the first 

iteration endogenous to the search procedure.

Quadratic search using conjugate directions
Quadratic search procedures, like Fibonacci search, are based on the 
optimisation of a univariate unimodal function. Such optimisation involves 
fitting a quadratic to three points and finding the maximum or minimum of 
the fitted function. The procedure can then be reiterated until some con 
vergence limit is reached. Taking the case of the function in (7.39) and 
holding K— I parameters constant, the optimum value of Aft in direction 
r) is calculated from

(7.64)

The three lowest values of the function defined from A^., A^, A| and A* 
form the basis for a new minimum which can be progressively improved by 
repeated application of (7.64). It is possible to design a search procedure 
similar to multivariate Fibonacci search but using (7.64) instead of (7.55) 
and (7.56) in the scheme implied by (7.59) and (7.60). Quadratic search
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based on conjugate directions is more efficient, however, for it makes use 
of the concept of quadratic convergence.

Methods which have the property of quadratic convergence, ensure that 
a quadratic function can be minimised in a given number of iterations. 
Several researchers have shown that if the directions of search called 
•t\ k, k = 1,2, ..., K, where YJ^ is a 1 x K direction vector, are chosen to be 
conjugate to each other, then it is possible to find the minimum of a 
quadratic by only searching once along each direction Y) fe . More rigorous 
definitions of conjugacy are given by Box et al. (1969) and by Powell (1964). 
Most methods, however, start with the co-ordinate directions as in sequen 
tial linear search, and gradually replace these co-ordinates with conjugate 
directions. The method can be best illustrated in relation to the search for 
the minimum of the two-parameter function in (7.39). On the mih iteration, 
the search begins along the two linearly-independent directions called 
vfi, rf$- Starting from the preceding approximation to the minimum KO , 
the minimum of (7.39) is found sequentially in each of these directions, and 
the amount of total progress 6 is calculated from

9 = 7T 2 -n0. (7.65)

A search is then made along 8 and a new minimum 7t0 is found. A new set 
of direction vectors for iteration m + 1 is then set up as

The method of search implied in (7.65) and (7.66) has been refined 
considerably by Powell (1964) who has introduced a procedure into the 
scheme for avoiding linearly-dependent direction vectors which can result

Start from X, = 0.0, X 2 = 0.0

0 X2 5 

__ Path of search

Fig. 7.7. Solutions using Powell's
method of quadratic convergence

based on conjugate directions.
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if no progress is made between iterations. The specific details of Powell's 
algorithm are too lengthy to present here, and the reader is referred to the 
article by Powell (1964) which contains proofs of the efficiency of the 
search and its quadratic convergence. Powell's method has been used to 
find the minimum of (7.39) and in Figure 7.7, and Table 7.5 the sequence 
of search is presented. Although the method is efficient from reasonable 
starting points, it converges slowly from poor first approximations and 
may tend to converge to a local optimum from more extreme starting 
points. There are several local optima in the response surface of (7.39) 
which are merely slight depressions in the surface. Unlike Nelder and 
Mead's Simplex method which tends to skim over such local optima, 
Powell's method sometimes converges to these 'false' positions.

T A B LE 7.5. Convergence of Powell's quadratic search procedure

Start from Ax = 0.0

Iterations 
or runs of 

model* A,

8 0.0000
15 2.1029
66 1.8008
77 1.6930

106 1.0232
115 1.0116
123 1.0120
129 1.0129
134 1.0132

A

4.1469
4.1469
3.5511
3.5511
2.2302
2.2302
0.2309
2.2309
2.2316

Value of 
equation 

(7.39)

0.4870
0.1302
0.1228
0.1060
0.0066
0.0004
0.0003
0.0002
0.0001

* The number of iterations is dependent upon the number of local explorations 
needed to determine conjugate directions.

The five methods outlined above for solving the maximum-likelihood 
equations of the retail gravity model have various advantages and limita 
tions. In the following section, a short synthesis of these methods will be 
attempted by a comparison of their relative efficiency in terms of their 
abilities to locate the global optima and their speed of convergence.

A comparison of solution methods

A comparison can be made between these methods in terms of their 
convergence from starting points where the parameters are zero. In Table
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7.6, the time of convergence to within specified limits is recorded for each 
method in terms of the real time used in computation. The cumulative 
number of runs of the model is also presented in Table 7.6, and this 
indicates the variation of the real time per run in each of the methods. It is 
clear from this table that the Newton-Raphson method is the most 
efficient within the limit 10 ~ 3 and that the Simplex method is the second 
most efficient. The first-order method and Powell's algorithm are the least 
efficient although Table 7.6 does not completely reveal the relative advan 
tages of each method. In Figure 7.8 the time of convergence is plotted 
against the convergence limits thus showing that the rate of convergence 
varies widely between methods and also within different limits for each 
method. For example, up to 10 -1 and 10 ~ 2, the Newton-Raphson and 
Fibonacci methods are most efficient and below 10~ 2, the Newton- 
Raphson method has the greatest efficiency.

As no one method dominates, it is apparent that a best search strategy 
can only be evolved by combining particular methods for use over different 
sequences of the search. The search could start using a first-order or 
Fibonacci scheme until convergence to 10- 1 had been reached; the scheme 
could then be switched to the Newton-Raphson method until the limit 10~4 
had been reached and the search could be concluded using Powell's 
algorithm or the Simplex method. Several hybrid strategies can be mixed 
from the available search procedures, and such strategies could be usefully 
tested in future research.

10 6

10 s 

10" 

10 3 

10 2

10-'

10° 

10'

Newton-Raphson

Powell's method

1500 20000 500 1000 
Computer time (in seconds) ————————————————— 

Fig. 7.8. A graphical comparison of the five solution methods.
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TABLE 7.6. A comparison of convergence times for the five methods*

Convergence
limit for
equation
(7.39)f
< 10-1
«ao-2
«ao-3
<1(H
«:10-5

Average time per
iteration

First-
order

182(13)
>700 (50)

NC
NC
NC
14s

Newton-
Raphson

390(15)
468 (18)
546 (21)
702 (27)

NC
26s

Fibonacci

270(18)
540 (36)

> 1350 (90)
NC
NC
15s

Simplex

432 (16)
621 (23)
864 (32)

1107 (41)
1296 (48)

27s

Quadratic

1696 (106)
1696 (106)
1840(115)
2144 (134)

NC
16s

* The convergence times are in seconds and the number of iterations associated with 
each time is given in brackets. All the computation times reported here have been taken 
from runs of these models on the Reading University Elliott 4130 computer. In the 
author's experience, this machine is about 10 times slower than the Reading University 
ICL 1904S, and about 80 times slower than the London University CDC 7600.

t In cases where (7.39) has not been computed explicitly, (7.37) and (7.38) have been 
summed to give an index of overall convergence.

There are other limitations of each method which must be taken into 
account when designing a hybrid search strategy. The first-order process is 
inefficient from starting points with low parameter values (1.0) and there is 
no guarantee that the Fibonacci method will converge, for convergence is 
dependent upon the interaction of the two surfaces (7.37) and (7.38). The 
Newton-Raphson method and Powell's algorithm both diverge from poor 
starting values. The Simplex method has none of these disadvantages and 
therefore this method could be used as an alternative if any of the above 
procedures begin to diverge or converge at too slow a rate. In conclusion, 
it appears that the Newton-Raphson method is probably the most effi 
cient single method, and therefore, it is worth while describing its ap 
plication in the calibration of other models of spatial interaction. In the 
following section, the Newton-Raphson and Simplex methods are again 
illustrated in the context of a two-parameter trip-distribution model of the 
Reading subregion.

Trip distribution modelling
The various search routines already introduced can be easily extended to 
trip-distribution models based on production-attraction constrained models 
of spatial interaction. Indeed, virtually all the statistical work produced in
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this field so far was originally demonstrated in relation to these models by 
researchers such as Hyman (1969), Evans (1971), Kirby (1974) and Cesario 
(1973). The importance of the trip-distribution model and its widespread 
use in traffic modelling is probably responsible for this interest by researchers, 
although the model is perhaps the most mathematically interesting of all 
the models in the family of spatial interaction models discussed in Chapter 2. 
In this section and the next, maximum-likelihood estimates will be pre 
sented for an example of such a distribution model.

It is worth while restating formally the model given in Chapter 2 and 
this is done as follows. The model is subject to the usual origin and
destination constraints 41 1 a = Ui, K

= Df. [(2.58)]
i

The form of the model with a generalised travel-cost function f(ci}) is
Ttt = AtO^DjflCi,), [(2.59)]

where the balancing factors A t and B^ ensuring that (2.57) and (2.58) are 
met, are given as

A ' ~ [(Z60)1

The usual method for calculating the ^4/s and B^s is based on iteration 
and as Evans (1970) has shown, convergence to a unique value for A { Bj is 
guaranteed from any non-trivial set of starting values. In the results to 
be reported here, the 5/s were first set to 1 in this iterative procedure 
and a coarse limit of 10~3 was set for convergence. Alternative but com 
plementary iterative procedures are suggested by Edens (1970) and the 
Bureau of Public Roads (1968). Another possible procedure for setting an 
initial value for one of the balancing factors could be taken from the 
approximations given by Kirby (1970, 1972). For example, A i could be 
calculated from

and then Bj calculated as usual from (2.61), although these procedures 
have not been tested and Kirby's suggestion in this regard is mainly of 
analytical rather than practical import. 

As the calibration methods discussed here are based on iteration, it is
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possible to devise various short-cuts which reduce the need for the 
Af's and B/s to be calculated each time the model is run. It is possible, for 
example, to hold B} constant and to calculate A i analytically over ranges 
where the parameter value is only marginally altered, thus reducing com 
putation time as in the SELNEC Study (Wagon and Hawkins, 1970). To be 
certain about the use of these sorts of methods, it is necessary to experi 
ment, and in a study by Mackie (1971), it was found that for the level of 
accuracy required in calibration, such short-cuts lengthened rather than 
shortened the overall computation time. Therefore, such approximations 
are not used in the model discussed here, but in certain circumstances they 
may be appropriate.

To pursue the maximum-likelihood method of deriving appropriate 
statistical tests for trip-distribution models, it is necessary to rewrite (2.59) 
in a probabilistic form. Then,

TU = TPip (7.67) 

where p{j is the probability of working in i and living in j defined from

Pa = 0A'Mj/(cij)- (7.68)

The model in (7.68) is subject to the following constraints; note that 
a t , bp oi and d^ are clearly related to the non-probabilistic trip-distribution 
model variables A t , O^, Bj and D./. The model is constrained so that

(7.69)

(7.70)

(7.71)

It is clear from (7.70) and (7.71) that oi and dj are marginal probabilities 
whose values are computed from £ T*jjT and 2 T*j/T respectively.

Maximum-likelihood estimates
The particular form of trip-distribution model examined here is based upon 
the deterrence function first suggested by Tanner (1961). This two-para 
meter function has a similar form to a gamma function although con 
straints on its values are less rigid than in the pure gamma case. The
function is ^ \ / -, j \ J-A /-> T>\ f(cti) = exp (- Aj dti) d ,/•. (7.72)

Maximising log-likelihood In L defined in (7.17) subject to(7.69)-(7.7l), the 
following maximum-likelihood equations are derived. The intermediate
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working is lengthy and is thus omitted for it contributes nothing to the 
argument. Furthermore, it also follows the working in (7.20)-(7.34). Then 
the model must satisfy

ai = v, L j .„_ ,—i j % j-\~, (7 - 73)

(7.75)

*„ In </,,. (7.76) 
» i i i

Note that in (7.75) and (7.76), tti is the observed trip proportion calculated 
from 7\*/r. Equations governing the calculation of oi and ^ from data are 
obvious and have been omitted.

The functions to be minimised by the calibration procedure are derived 
from (7.75) and (7.76) and can be stated as

min F^AL A s) = min | SS/»W dti - ££ /« dit = 0, (7.77)
i j i j

min F2(A 15 A 2) = min |SSp« In rfo -SS '/,• In dti \ = 0. (7.78)
i i i j

A composite function A(A1; A2) has also been constructed by summing 
(7.77) and (7.78) and this is used in the Simplex procedure, whereas (7.77) 
and (7.78) are used in the Newton-Raphson method. These applications 
are now described.

Application of the Newton-Raphson and Simplex methods
The model to be tested here uses data from a 23 zone subdivision of the 
Reading subregion. The data base for this area has been produced by the 
Population Census Office from the 1966 Transport Tables and a full trip 
matrix of observations disaggregated by mode, housing type, occupation 
order and industry is available. These data have been aggregated across 
all these classes for this work although a variety of disaggregated resi 
dential location models are hypothesised and tested using this data base in 
Chapter 10. In calibrating the trip-distribution model using the Newton- 
Raphson method, the procedure was initially started from Alf A 2 = 0
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although from this position, it quickly diverged to extreme values. This is 
due to the peculiar response surface generated by this Tanner model in 
which the optimum point lies in a steep valley cutting across the surface. 
In such cases, fairly close first approximations to A 1; A2 are needed and 
from previous experience with Tanner's function reported later in Chapter 
10, the correct order of magnitude for Aj and A 2 appears to be in the 
regions 0.1 and 1.0 respectively. The procedure was then started from these 
points and converged to within IQ~5 in five iterations of the Newton- 
Raphson method. Because each iteration of the procedure involves calcu 
lating two sets of partial derivatives which are found numerically, three 
runs of the model are needed on each iteration. These results are presented 
in Table 7.7.

TABLE 7.7. Calibration of Tanner's function by the 
Newton-Raphson method

Start from At = 0.1, A 2 = 1.0

Iterations
or runs of

model

3
6
9

12
15

A!

0.0822
0.0861
0.0857
0.0858
0.0858

Value of
equation

(7.77)

0.2763
0.0317
0.0034
0.0003
0.0000

A2

1.0228
1.0047
1.0062
1.0061
1.0061

Value of
equation

(7.78)

0.0346
0.0038
0.0002
0.0001
0.0000

In the case of the Simplex method, the procedure was started with an 
initial simplex located at points (0.0, 0.0), (0.0, 0.5), and (0.5, 0.0) but the 
method takes many iterations to determine that the optimum lies in a 
narrow valley which cuts across the response surface. The procedure was 
restarted in the valley from points (0.10, 0.50), (0.10, 0.55) and (0.15, 0.50) 
and Figure 7.9 shows the convergence along this valley. In Table 7.8, the 
convergence of the process is presented from the restart points. In this case, 
it is clear that both methods find it difficult to negotiate the response surface 
in advance and a certain amount of 'eyeballing' is necessary to get the 
procedures onto the right tracks. This illustrates that the calibration 
problem can never be totally mechanised, at least not in these terms, and 
thus the role of intuition can still be fairly large in this particular context.
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Fig. 7.9. Convergence of the Nelder-Mead Simplex method on 
Tanner's function.
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TABLE 7.8. Calibration of Tanner''s function 
using the Nelder-Mead Simplex Method

Start from Aj, A 2 =
Iterations
or runs of

model

5
25
51
75

101

AI

0.1500
0.1500
0.1104
0.0875
0.0859

*•

0.5000
0.5000
0.8082
0.9936
1.0055

= 0.1

Value of equations
[(7.77) +(7.78)]

0.0232
0.0232
0.0154
0.0022
0.0000

Comparisons and hybrid strategies
Comparisons between the two methods are extremely difficult because of 
the badly behaved nature of the Tanner function. The Newton-Raphson 
method appears to be much faster than the Simplex method by about a 
factor of 6; however, the Newton-Raphson method can only be started 
from good approximations to the final parameter values, whereas the 
Simplex method can be started from any position. This suggests the need 
for a hybrid strategy in which the order of magnitude of the parameters is 
established by the Simplex method and then the optimum is determined 
from these points by the Newton-Raphson method. Yet in comparison 
with the traditional methods of calibration by trial and error iteration, 
these procedures are far superior. For example, calibration using the most 
inefficient method of tabulation based on evaluating the function at Afc 
equal subintervals in the given range for K parameters requires

evaluations. Taking the Tanner function, to use this tabulation method to 
find the parameter values to within a limit of say 10~ 2, over the ranges 
Aj = (0.0, 1.0) and A 2 = (0.0, 5.0), would require over 50000 runs of the 
model. This quite formidable number of runs can probably be reduced 
to about 200 using systematic search procedures such as multivariate 
Fibonacci search. The Newton-Raphson method which requires about 
10 runs from the best starting value and the Simplex method requiring 
about 100 runs from the worst starting values, both compare favourably 
with these other methods.
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TABLE 7.9. Relative calibration times in terms of the 
number of zones and degree of accuracy*

Number 
of

zones

20
40
60
80

100
200
300
400
500

Limit of accuracy of the 
Newton-Raphson methodt

(IO-1

3
12
26
46
72

286
643

1142
1784

IO-2

6
23
52
92

144
572

1286
2284
3567

io-3
9

35
78

138
216
859

1929
3426
5351

io-4
12
47

104
185
288

1145
2572
4569
7135

>io-5
15
58

130
231
360

1431
3215
5711
8918

10 runs 
of the 

Simplex
method

10
39
87

154
140
954

2143
3807
5946

Data 
input
time

0
0
1
1
2
8

17
31
48

* One run of the model is based on 33 +10/+1 5J+ 251 J FORTRAN equations where 
/ is the number of origin zones and J is the number of destination zones. 

t The limit of accuracy is in terms of the A^, A 2) statistic.

It is worth while stressing the importance of these speeds relative to 
existing methods and, in Table 7.9, an attempt has been made to judge 
these speeds for the Newton-Raphson and Simplex methods for different 
sizes of problem. It is important to describe how this table has been 
constructed; all the times reported in the table are expressed as a pro 
portion of the time taken to run a 20 zone trip-distribution model once, 
and these times are normalised to a base index of 1. Thus, the times are 
relative and independent of the particular computer installation used. An 
example of how the table is to be used will suffice. Imagine the analyst is 
designing a trip distribution model for 20 zones. Then if the time taken in 
seconds to run this model once, is multiplied by all values in the table, this 
will give the actual computer time needed for a range of accuracy required 
for a model of any number of zones. If however the analyst knows the time 
taken to run a model with a particular number of zones rather than 
20 zones, then multiplication of this time by the first row of the table will 
yield the calibration time. The limits of accuracy on the table are given in 
terms of the Newton-Raphson method; if the Simplex method is required 
prior to this method, then column 6, based on an average of 10 runs, 
should be added to columns 1-5.

Some fairly dramatic techniques have been introduced in this chapter in 
the quest to explore models and to speed up their operation, but the
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research embodied here has only just begun. This chapter of the book is 
least likely to stand the passage of time for already there are new ideas of 
calibration on the horizon, many of which take the mathematics into 
realms way beyond the level of expertise in this book. But the techniques 
here will probably always form the rudiments of any non-linear calibration 
process and thus they are unlikely to be drastically modified conceptually. 
The extension of all the techniques to K parameters is obvious but, in the 
next chapter, the calibration problem will be complicated slightly by the 
notion of using such techniques to calibrate sets of interrelated submodels 
where the parameters of each submodel depend upon one another. Yet the 
focus adopted in the approach to the last two chapters will change in the 
next, where the notion of spatial system design as well as calibration 
becomes a basic modelling problem. Thus, although calibration will still 
be an essential focus in the subsequent chapters, it is now necessary to 
extend the scope of urban modelling by reference to other related problems.



8. Spatial system design and fast 
calibration of activity allocation 
models

Development of the urban models presented in Chapters 2 and 3 can be 
carried out in several ways but substantive improvements seem to focus 
mainly upon two central issues: the problem of disaggregation of the 
model's variables in the quest to achieve a better description of the variety 
in the real world, and the problem of dynamics, essentially concerned with 
incorporating an explicit time dimension into such models. These two 
themes are to be dealt with at some length in Chapters 10-12 where a 
synthesis of many of the ideas in this book will be tentatively attempted. 
Yet there are several characteristics of model design, particularly those 
dealing with design of the spatial zoning system, still to be explored before 
these more ambitious developments are demonstrated.

Questions of model design involving variable definition, measurement 
and zoning have received far less attention than the problems of calibration 
reviewed in the last two chapters. But sound model design may make the 
difference between the success or failure of a modelling project in practice. 
The success of the Pittsburgh model (Lowry, 1964) and its subsequent 
modification and widespread application to many modelling problems in 
Britain (Goldner, 1971; Batty, 1972 a) must be largely due to the careful way 
in which the model was originally formulated and applied. The hybrid 
simulation model of Detroit at present under construction at the National 
Bureau of Economic Research by Ingram et al. (1972) provides another 
example of the principle that good model design is essential in producing 
a model which is robust enough to withstand the inevitable inconsistencies 
and gaps in the data set yet sensitive enough to provide useful insights into 
planning problems.

However, in a small number of modelling projects, there have been 
certain tentative investigations into these more detailed questions of model 
design involving such problems as spatial system design and zone size, 
problems of calibration and problems of data management. In the model 
built by the Centre for Environmental Studies for Cheshire County 
Planning Department (Barras et al., 1971), a fairly substantial amount of 
time was spent in exploring questions of zone size and the design of 
hierarchical zoning systems (Broadbent, 1970a, 1971) as well as problems

208
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of variable definition and measurement (Massey, 1973) and information 
systems (Willis, 1972). As part of the research undertaken at the Centre for 
Land Use and Built Form Studies into townscale models, problems of 
spatial aggregation have also been studied and a cordon model, similar to 
the hierarchical model mentioned above, has been developed (Baxter, 
1971). Many of these model design techniques are diffuse and one of the 
central purposes of this chapter is to pull some of these techniques together 
and to demonstrate their application to an activity allocation model of the 
Northampton region.

The Northampton model was designed using data supplied by the East 
Midlands Technical Plan Unit and thus, the process of model design was 
essentially orientated towards problems of calibration and zoning other 
than those involving detailed study of the data base. This exercise is of 
further interest for the work reported in this chapter was completed in an 
intensive six-week project, including the writing of computer programs, 
thus demonstrating the speed at which such projects can be carried out 
under favourable conditions. Three main problems of model design are 
explored in this chapter. First, the internal design of the spatial system is 
explored in terms of questions concerning zone size and the number of 
zones, together with empirical work on the change in model performance 
and output at different levels of spatial aggregation. Second, the fast 
calibration techniques, originally applied and tested on single spatial 
interaction models and presented in Chapter 7, are extended to activity 
allocation models and finally, questions concerning the external design 
of the spatial system in terms of dummy zones are investigated. Although 
the structural logic of the model has been extensively dealt with in Chapter 
3, it is worth while refreshing the reader's memory by listing the model 
equations here, thus avoiding the need to turn back continually to the 
relevant section in Chapter 3.

The structural logic of the model
To summarise the structure briefly once again, the model has two primary 
functions, the first dealing with the derivation of activities from certain 
exogenously specified activities, and the second dealing with the allocation 
of these derived activities to the zones of a bounded region. The derivation 
of activities is based upon the economic base mechanism in which service 
(non-basic) employment and population can be derived from basic employ 
ment using the appropriate multipliers. The allocation of derived activities 
is based upon spatial interaction models which locate activity at 'destina 
tions ' in accordance with the amount of activity in different' origins'. These 
mechanisms involving derivation and allocation are stitched together
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using the expanded form of the economic base multiplier in which incre 
ments of population and service employment are derived and allocated 
sequentially. These two mechanisms are further strengthened by the con 
straints procedure which is invoked if and when residential population 
exceeds given density limits. Note that in the Northampton model, no 
constraints on the minimum size of service centres are included.

The system of equations used by the model is given in (3.28)-(3.43) with 
(3.46) and (3.48). The inner iteration m controls the generation of activities 
through the expanded form of the economic base mechanism, whereas the 
outer iteration n controls the residential density constraints. Then on any 
inner iteration m, the increment of persons working in / and living in j, 
called T[j(m, n) is calculated from

T,j(m, n) = A ,(«) #» Et(m, n)f\Df , c /; , Aj), (8.1)

- (8 - 2)
Equations (8.1) and (8.2) are equivalent to (3.28) and (3.29). E/(m, n) is the 
increment in workers employed at /, B;-(«) is a weight on residential 
attraction Df, which is less than unity if the density constraint has been 
violated on any previous outer iteration, cij is the generalised travel cost 
between / and j, and A 1 is a parameter of the travel-cost function. The 
functional form of the residential attraction and deterrence in (8.1) need 
not be precisely specified yet, in order that the flexibility of the model can 
be appreciated. Next, population Pj(m, n) is derived from

P}(m,n) = a'£Tlj(m,n), (8.3)
i

and the demand for services by the population in j called Hj(m, n) is
calculated as . „„ . . .H^m, n) = pPj(m, n). (8.4)

Equations (8.3) and (8.4) are equivalent to (3.30) and (3.31); a and ft are 
the inverse activity rate and population-serving ratio appropriately defined. 
The location of service employment at different centres ;' is derived from

S^m, n) = Rfr) HJm, n}f\Dh cti , A 2), (8.5)

Note that (8.5) and (8.6) differ from (3.32) and (3.33) in that no weight on 
Di has been incorporated. S,-3-(w, n) is the number of service employees 
demanded at 7 and working in / and A 2 is a parameter of the service travel-
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cost function. Service employees at / are calculated by summing (8.5) over/

m,n). (8.7)

At this point, the next increment of employment Ef(m+ 1, «) is set as 

Et(m+\, n) = Si(m,'ri), (8.8)

if ££j(m > ") > £<>> where £f is a convergence limit. Then, Et(m+ 1, «) is 
i

substituted into (8.1), and (8. l)-(8.8) are reiterated until the limit is reached. 
These iterations will ensure that the total service employment and popula 
tion generated will converge to their respective regional totals if 0 < a.ft < 1 
which must be the case for non-trivial solutions. It may however take many 
iterations for the process to converge to an acceptable limit and in such 
cases, the process can be speeded up by applying the following approxima 
tion taken from Chapter 2 or by formulating and solving the model in the 
matrix algebra given in Chapter 3. From (2.37), the proportion of activity, 
population or employment generated up to any iteration m is given as

T = l-a/?"^ 1 . (8.9)

From (8.9), it is clear that total employment generated so far can be 
derived from m

S S Et(k, «) = 2 Et(\ - a/?"' +1). (8.10)
i A- = l i

Making the assumption that the final amount of activity in any zone i can 
be approximated from the amount so far located there, then E,(ri) can be 
found by manipulating (8.10) and dropping the summation over i,

Et(n)= S £i(M)(l-a/?BI+1)- 1. (8-11) 
fc=i

Total population Pj(n) can be approximated in a similar way,
m

)(l-a/?m+1)- 1 . (8.12)

All the usual totals of activity and interaction can be calculated from 
equations similar to (8.1 1) and (8.12) and for details, the reader is referred 
back to Chapter 3.

To demonstrate the application of the density constraint, if Pj(ri) > $j Lty, 
where SjL^ is the maximum population limit of zone j, then the value 
Bj(n+ 1) is computed as
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Bj(n+ 1) is now substituted into (8.1), and (8.1)-(8.13) are reiterated until 
the population density limits are met. The convergence of this process 
can only occur if

i i

and experience suggests that faster convergence occurs when the zones 
contiguous to any constrained zone have enough capacity to accept any 
surplus population reallocated from the constrained zones. This completes 
the statement of the model and at this point, the first problem of model 
design can be introduced.

Broadbent's rule as a basis for the design of zoning systems
The design of a zoning system appropriate to a particular model applica 
tion is perhaps the most important, yet the most poorly explored and least 
understood question in model design. The zoning system determines the 
level of spatial description and in interaction models this system also 
determines the amount of interaction detectable in the system. At one 
extreme, the zoning system may be so aggregated that no interaction 
occurs across zone boundaries, thus negating the whole purpose of model- 
building based on spatial interaction. Broadbent (1969o, 1969ft), whose 
work on zoning systems has already been hinted at in earlier chapters, was 
the first to explore such questions; the rule attributed to him suggests that 
the first major problem the model-builder must examine and resolve in 
developing a spatial interaction model is in designing a zoning system which 
detects a sufficient amount of interaction for the model to be meaningful. 
At first sight, this rule may appear somewhat naive but it is surprising how 
low the ratio of inter-zonal to total interaction has been in many previous 
modelling applications, thus implying that the design of the zoning system 
is far less than optimum. For example, in the Central Lancashire model in 
Chapter 4, this ratio is 0.5059 and in the Bedfordshire model (Cripps and 
Foot, 1969o) it is 0.5791; these values are really too low, thus implying 
that there is very little inter-zonal interaction to be modelled. Broadbent 
(1969ft) has also made a preliminary investigation of a zoning system 
suitable for a one-dimensional probability location model in which em 
ployment is concentrated at the origin. This type of analysis, although 
highly theoretical, can easily be extended to a two-dimensional system in 
the quest to gain insights about zoning systems for spatial interaction 
models.

Consider a highly idealised city in which travel is equally likely in any 
direction from the origin to the periphery and in which all employment is
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located at the origin or centre. Residential location in such a monocentric 
radially symmetric city can be described by a population density cone, and 
an appropriate location probability density can be written as

p(r, 8) = Gexp(-Ar). (8.14)

p(r, ff) is the probability of locating at distance r from the centre of the 
city and 6 represents the angular variation about the centre or pole. A is 
a parameter of the function and G is a normalising constant defined to 
ensure that 2)7 m

II'p(r,9)rd6dr= I. (8.15) 
o o 

G is evaluated from (8. 1 5) as

G = g. (8.16)

Note that, in the following discussion, the limit of the periphery of the city 
is taken as oo thus simplifying the ensuing algebra and analysis. In fact, 
this approximation to reality makes little difference to the subsequent 
analysis.

Broadbent's rule implies that the ratio of intra-zonal to total interaction 
should be as small as possible and he states that an acceptable value for 
this ratio might be 0. 1 . The cumulative probability function defined from 
(8.14) gives the radius R from the central origin zone for any value of this 
ratio. Then from (8.14)

w

f f Gexp(-Ar)rd0dr = 0.1, (8.17) 
o o

and evaluating (8.17) gives

l-(l + A/{)exp(-AjR) = 0.1. (8.18)

This ratio of 0.1 is arbitrary and an optimal value for this ratio is likely to 
vary between different applications. For example, if (8.17) or (8.18) is very 
sensitive to changes in R around the value 0.1, it may be worth while 
accepting a larger value for this ratio if this leads to a much smaller value 
for R. Thus, the analyst is trading-off zone size against the amount of 
interaction.

For any parameter A, the value of R can be found by iteration on (8. 18). 
In fact, the value of the parameter can also be calculated from the formula 
for the mean travel time-distance R which is
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R = I* f Gexp(-A/-)r2 d#dr,
o o

and (8.19) is evaluated as

(8.19)

(8.20)

To demonstrate the application of this kind of analysis, the cumulative 
probability distribution in (8.17) is plotted in Figure 8.1 for different values 
of A or R. This graph can be used in the following way: given the mean 
trip-length, the radius R can be found for different proportions of inter 
action retained within that radius. For example, if the mean trip-length 
were 10.0 minutes travel time, the zone radius retaining 10 per cent of the 
total interaction would be about 2.2 minutes in contrast to a radius of 8.4 
minutes for a zone retaining 50 per cent of the total interaction. A similar 
analysis can be made for problems involving the regional boundary. 
Broadbent suggests that the proportion of interaction within the region 
should be at least 90 per cent although this value is arbitrary and subject 
to the same kind of trade-off mentioned above. Using Figure 8.1, with a

Value of the mean travel time R = 2/X

12 3 45 6789 10

Plot of the distribution
function
/>(/•) = 1 - (1+V)exp(-V)

10 15 20 25 30 

Travel time from the origin zone —

35 40

Fig. 8.1. Cumulative probability distributions based on 
mean trip lengths.
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mean trip length of 10.0 minutes, the regional boundary would be at a 
minimum radius of 19.6 minutes from the origin. Although this analysis 
is highly theoretical, it must be possible to extend this method to a spatial 
system with many competing centres, thus generalising these results; at 
present, some research is in progress to achieve this generalisation (Batty, 
1973, 1974).

The problem of locational attraction
In static models which attempt to simulate urban systems whose structure 
has evolved slowly through time, there are unavoidable problems involving 
variable definition and measurement. The most intractable of these 
problems seems to involve the measurement of locational attraction, in the 
residential rather than service sector, and the critical nature of this problem 
has already been revealed in Chapters 4 and 5. The choice of one variable 
which summarises the relative change in residential attraction through time 
is difficult and several researchers have been forced to use proxies such as 
existing population or housing stock. These problems are only likely to be 
satisfactorily resolved in a dynamic context, yet there are certain considera 
tions which can be outlined in the choice of attraction measures for static 
models (Batty, 1971). A more fundamental attack on this problem is 
pursued in Chapter 12.

An important consideration involves the effect of the zoning system on 
the measurements of locational attraction. Broadbent (1970a) following 
Seidman (1969) suggests that the variables in spatial models can be divided 
into two types - extensive and intensive. Extensive variables change by an 
order of magnitude as the zoning system is altered whereas intensive 
variables do not change thus. For example, the absolute amount of spatial 
interaction changes as zone boundaries change whereas the measure of 
locational attraction is only altered in relative terms. In several activity 
allocation models, extensive variables such as population have been 
predicted using measures of locational attraction based on intensive 
variables; in such cases where the zoning system is irregular, bias is being 
introduced into the model. There are two ways around this problem, both 
involving the principle that extensive and intensive variables should not be 
mixed within the same model equations. For example, in many applications 
of residential location models, extensive variables such as population have 
been predicted using intensive variables as measures of residential attrac 
tion. In these cases, it is possible to use the model as a predictor of popula 
tion density or to change the intensive attractor variable to an extensive 
variable based on zone size, in predicting population.

The weighting of such models by variables reflecting spatial magnitude
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is an intuitively obvious conclusion, yet these results can also be derived by 
more formal methods. The method of entropy-maximising as used by 
Wilson (1970 a) in deriving spatial interaction models treats space im 
plicitly by assuming that spatial partition is regular, or that all appropriate 
variables are extensive. However it is possible to incorporate spatial 
magnitude explicitly into this kind of analysis. Only a brief synopsis of this 
modification to Wilson's method will be indicated here for this subject is 
explored elsewhere in some depth (Batty, 1974) and is really outside the 
scope of this book. The task is to define a discrete approximation to 
continuous entropy, thus introducing the idea of space explicitly. Consider 
a model in which p.^ gives the probability of working in i and living in 7. 
Such a probability model would be subject to the usual constraints on 
origins and on total travel cost in the system. Instead of maximising 
discrete entropy, maximise the discrete form of continuous entropy called 
spatial entropy defined as

i } \^j:

subject to the usual constraints. Note that Ly is a measure of space iny and 
that ptiILj is a kind of spatial probability density. The resulting model 
determines the probability density of location,

£H = ^"^ , (8.22)
3 j } l}

and (8.22) can be rewritten as

(8.23)

Equation (8.23) clearly demonstrates how spatial interaction-allocation 
models can be weighted to incorporate space. Note also that if

LI = L2 = ... = Ly,

which is the case where the zones are based on a square grid, the L/s 
cancel from the equations.

The preceding analysis suggests that residential location models which 
are constructed on irregular spatial systems should be weighted to account 
for such irregularities. For example, the residential location submodel of 
the Northampton model .has been specified in this way. Defining the 
functional form in (8.1) and (8.2) and suppressing the iteration indices (m) 
and («) introduced earlier as part of the complete equation system, the 
model is written as
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dii)
' ( }

Note that D^ is a measure of the existing population in/ Substituting (8.24) 
into (8.3) and rearranging gives

which explicitly demonstrates the role of intensive and extensive variables 
in such models. In (8.25), the term Bt D^ is an intensive variable used in the 
prediction of population density, also an intensive variable, in contrast 
to (8.24) where L; B^ Dj is an extensive variable used to predict population. 
To conclude this section, it is worth while specifying the service centre 
location model in (8.5) and (8.6). This model is written as

where F{ is floorspace in /. In (8.26), no spatial weight need be incorporated 
for both FI and S/ 
inbuilt spatial bias.
for both F.; and 5(J are intensive variables and thus the model has no

Spatial aggregation and calibration by the 
Newton-Raphson method
The theoretical results which were briefly discussed in the two previous 
sections have been used along with other criteria in the design of the zoning 
system for the Northampton model. The basic data units on which all 
data were provided comprised 130 parishes and local authorities in the 
County of Northamptonshire, and this fixed an upper bound on the 
potential number of zones. Figure 8.2 presents the geometry of the basic 
data units, but it was decided at an early stage that these units would be 
aggregated to 50 zones so that the model could be run quickly and 
efficiently several times a day. This restriction imposed by computer 
capacity and access was taken with the knowledge that the theoretical 
analysis of zone size suggests that between 80 and 100 zones will meet the 
criteria set down by Broadbent (1969a). Other considerations involving 
homogeneity of zonal activities, natural and artificial physical barriers, 
the nodal structure of the region with regard to main transport routes and 
the placement of zone centroids were also taken account of when zoning the 
region.
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As one of the purposes of this project was to assess the effect of different 
zonal aggregations on model performance, three additional zoning systems 
based on 41, 26, and 23 zones were also constructed and, in Figure 8.3,

13

29

40
38

41 zone system

17

26 zone system 23 zone system

01 2345 miles
Broken lines indicate zone boundaries aggregated into larger units

Fig. 8.3. Alternative zoning systems defined from the 
original data units.
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these zoning systems are presented with the 50 zone system. The design 
of these zoning systems is based on the simple idea that spatial aggregation 
must take into account the differences in the density of different activity 
locations. In the Northampton region, 73 per cent of the population is 
resident in 15 of the 50 zones. Therefore it was decided to aggregate 
systematically the least urbanised zones, retaining the 15 urban zones in 
each of the 3 additional zoning systems. In this way, the greatest possible 
differentiation within the region is contained by these zoning systems. 
Table 8.1 presents the major characteristics of the Northampton sub-region.

TABLE 8.1. Major characteristics of the Northampton subregion

Total number of zones 50
Total land area in square miles 914
Average land area per zone in square miles 18.2820
Total population 429075
Average population per zone 8581
Population density in persons per square mile 469.3961
Basic employment 83831
Total employment 153 562
Ratio of basic to total employment 0.5459
Ratio of inter-zonal to intra-zonal work trips 0.5073

The differences between the performance of the model on these different 
systems will be assessed after the calibration techniques have been intro 
duced. The model was first run through a series of combinations of the 
parameter values Ax and A2 set in the ranges

0 ^ A! < 1.2 and 0 < A2 «S 1.2,

the parameters being fixed at regular intervals of 0.1 within these ranges. 
The differing performance of the 50 zone model produced by these 
different parameter values is presented in Figure 8.4, where the per 
formance is plotted graphically in terms of the r 2 statistic calculated from 
observed and predicted population, the sum of the absolute deviations 
between observed and predicted population, and the absolute differences 
between observed and predicted mean trip-lengths. These response sur 
faces constructed by running the model over a range of parameter values, 
are useful mnemonics for interpreting the performance of the model, and 
also demonstrate the applicability of more systematic search techniques 
which build on their regularity and pattern. A relevant methodology for 
deriving best statistics by the technique of maximum-likelihood has
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already been suggested in Chapter 7 and this technique is of obvious 
relevance to the calibration problem discussed here. From the principle 
of maximum-likelihood comes the general rule for calibrating interaction 
models stated previously which suggests that a unique set of parameter 
values can only be derived if each parameter value is related to a particular

1.0
r2 X 102 for predicted population 

80 60 40
r2 X 102 for service centre employment

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Deviation in mean work trip length X 102

1.0 K --—_
-0

Deviation in mean service trip length X 102 

300 100 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
————————— A2 —————————

0.0 0.2 0.4 0.6 0.8 1.0 1.2
————————— A 2 —————————

Deviations in predicted population X 103 Deviations in predicted service employment X 103

250

0.0 0.2 0.4 0.6 0.8 1.0 1.2 
———————— X 2 —————————

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fig. 8.4. Response surfaces for the 50 zone model constructed by 
systematic variation of the parameter values.



222 URBAN MODELLING

calibration statistic. In short, the calibration problem can be seen as a 
problem of solving a set of K equations - derived from K statistics, in K 
unknowns - the K parameters. In the Northampton model, the two para 
meters A! and A 2 which are related through the model equations are 
associated with two statistics derived as

(8.27)

(8.28)

i j

i, Aa) =

C(A1; A 2) is the mean work trip length primarily associated with Aj and 
S^Aj, A2) is the mean service trip length primarily associated with A 2 . The 
maximum-likelihood technique is not detailed here; interested readers will 
find a related description of the technique in Chapter 7.

From the experience with non-linear optimisation in Chapter 7, it 
appears that the best technique for solving the intrinsically non-linear 
equations given in (8.27) and (8.28) would be based on the Newton-Raphson 
method. This method given in (7.44)-(7.54) is worth repeating in this 
context, thus highlighting the essence of calibrating activity allocation 
models. An approximation to (8.27) and (8.28) can be derived using 
Taylor's theorem and in matrix terms, this approximation is written

C(A 1( A 2) 

5(A1; A,)

™ } Wi\X , A 2 ) 8A™ 0A7 

aS(A?, A™) as(A?, A™)

(8.29)

where m is the iteration number and e1, e 2 are error terms. Then (8.29) can 
be summarised as follows

A~Am + Ae. (8.30)

Given any vector of parameters Xm, then a new vector Xm+1 can be con 
structed by finding e in (8.30) and adding it to Xm. The appropriate matrix 
equation for this operation is

Xm+1 = Xm + (A-Am) A- 1 . (8.31)

Note that in (8.31) if A is a zero vector, as would be the case if the required 
function values were first derivatives at zero indicating a maximum or
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minimum, then (8.31) would collapse to the standard Newton-Raphson 
equation given in most books on numerical analysis (Dixon, 1972).

Good first approximations to Aj and A 2 are always useful in any method 
involving iteration. In a previous section, it was shown that good first 
approximations for A 1 and A 2 can be taken as 2/0"^, A 2) and 2/5(A1; A 2) 
respectively. There are however other approximations which are worth 
computing. For example, Schneider (1959) has suggested that the parameter 
values can be approximated from the known medians. In terms of the 
probability location model of the monocentric radially symmetric city 
outlined earlier, the parameter A can be found from

•m itmu Gexp(-Ar)rd0d/- = \, (8.32) 
o o 

where Rm is the known median value. Evaluating (8.32) leads to

A. — . .
Km

The parameter A can be found by iteration on (8.33). Another possibility 
for a first approximation to A is to relate the parameter to the known 
modal value R0 . Using the probability distribution P(r) defined as

1-n

P(r) = A a exp(-Ar)r = f Gexp(- Xr)r&6, (8.34)

and differentiating (8.34) to find the maximum value, then

^~ = A 2 exp (- Ar) (1 - A/-) = 0. (8.35) 

Evaluating (8.35) leads to the result

A = j-. (8.36)

A fourth approximation to A can be found from the variance statistic 
and to demonstrate this, it is necessary to show that P(r) defined in (8.34) 
is a gamma function. This function has some interesting recurrence pro 
perties and it is usually stated as

CO

= ra exp ( — r)dr
o 

= aF(a) = a(a-l) T(a-l) = ... = a!. (8.37)
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Note now that a has been redefined as a parameter of the gamma distribu 
tion to make the analysis consistent with conventional statistical usage. 
Then, from (8.37) it is easily seen that (8.34) is also a gamma function with 
the following form

= -Ar) = A'+V" exp (-Ar)

It is well known that the variance <r2 of a gamma function has a simple form 
(Mood and Graybill, 1963) given as

«* = . (8-39)

and where a = 1 as in the model presented above, A can be calculated 
from ,

(8.40)

These four approximations have not been tested in the Northampton 
region but in the Reading region, they have been used as first approxima 
tions to the parameters used in the trip-distribution model described in 
Chapter 7. In fact these approximations are so similar to one another, that 
it is worth showing these values. Table 8.2 presents these results for the 
Reading subregion as well as a composite approximation which is a simple 
average of (8.20), (8.32), (8.36) and (8.40).

TABLE 8.2. Approximations to the parameter value Xfrom 
trip length statistics in the Reading subregion

Statistic

Mean trip length R 
Modal trip length Ra 
Median trip length Rm 
Variance o-2

Value of 
statistic

7.2232 
3.6721 
5.6698 

26.3778

Parameter 
value A

0.2768 
0.2723 
0.2960 
0.2753

Approximation as a simple average of the 0.2801 
four statistics

In the Northampton model, only the approximation given by (8.20) was 
used and it was argued that the limits of Aj and A2 would fall within the 
ranges 1/C(A1; A 2) ^ A x < 2/C(Al5 A 2) and l/5(Alf A 2) < A2 ^ 2/5(A1; A 2). 
The lower bounds represent the values of the parameters for a one-
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dimensional system (Broadbent, 1969 a) whereas the upper bounds reflect 
the parameter values of a two-dimensional system. It would be interesting 
to find out how the values of Ax C(A1, A 2) and A 2 S(X^ A 2) change as the 
level of zonal aggregation changes in the system for this might produce a 
useful index of spatial aggregation. As a tentative speculation, it seems that 
the value of such an index would fall as the level of aggregation increased

50 zone system: C = 1.6,
1.2 T — 5 = 1 '6 

1.171,0.857

41 zone system: C = 1.6, 
5 = 1.61.2i——

0.993, 0.905

26 zone system: C = 1.6, 
S' = 1.6 

1.006,0.819

0.0^-
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

23 zone system: C = 1.6, 
_£_ = 1.6 

1.050,0.787

50 zone system: C = 2.0, 
5 = 2.0

41 zone system: C = 2.0, 
S = 2.0

0.633, 0.626

0.0-^- , , , 
0.0 0.2 0.4 0.6 0.8 1.0

1.2—

1.0

0.8

0.6 j

0.4]

0.2

0.0
1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

26 zone system: C = 2.0, 
S = 2.0

0.650, 0.620

23 zone system: C = 2.0,
S = 2.0

1.2 T————

0.701,0.609

Dummy zone system: 41 internal, 
9 external,? = 2.0,5 = 2.0

0.0
0.0 0.2 0.4 0.6 0.8 1.0

0.720,0.713

-Jo.o/— --
1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Parameter

Fig. 8.5. Calibration of the alternative models using the 
Newton-Raphson method.
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and the zones become more coarse but as yet, there is no evidence to 
support such a speculation, thus suggesting an interesting area for some 
future research.

In Figure 8.5, the final parameter values determined by an application 
of the Newton-Raphson method are shown graphically for each of the 
4 zoning systems with the observed values of C(Aj, A 2) and 5(Aj, A 2) set 
first at 1.6 and then at 2.0. The rather peculiar values of these trip lengths 
are due to the fact that the set of travel times {ci}} has been measured in 
arbitrary units. Such arbitrariness in no way affects the working of these 
models and if it is required to relate the trip lengths or the parameters to 
conventional travel times, the trip lengths should be multiplied by and the 
parameters divided by a factor of 5. The performance of the model on each 
of the 4 zoning systems is presented in Table 8.3. As the zones become

TABLE 8.3. Performance of the model at different 
levels of spatial aggregation

Number of zones 50 41 26 23

Parameter At
Parameter A2
r2 population
r2 service employment
Absolute deviations in population

0.8715 0.9935 1.0086 1.0680
0.8575 0.9056 0.8193 0.7871
0.9476 0.9430 0.9147 0.8990
0.9067 0.9033 0.9107 0.9109
158627 173781 217932 230837

Absolute deviations in service employment 25716 25947 26229 26698

NOTE: The mean trip lengths for 
of travel time).

\lt A 2) and 5(A1; A2) are taken as 1.6 (8.0 minutes

coarser, the performance of the model worsens quite markedly in terms of 
the location of population, less so in terms of service employment. In some 
senses these results accord with intuition although it is possible that some 
threshold might exist above and below which performance worsens. Un 
fortunately, this hypothesis cannot be tested in this model for the maximum 
number of zones is fixed at 50. Moreover, there are problems in assessing 
the change in performance between different zoning systems due to the 
fact that there are difficulties in aggregating the set of travel times {ci}} 
which have an unknown effect on the change in parameter values. These 
questions, however, suggest other areas for useful research.
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Dummy zones and the problem of closure
The problem of defining the regional boundary in spatial interaction 
modelling has been handled by several researchers in terms of a set of 
dummy zones. Frequently, other considerations might make it impossible 
to minimise the amount of interaction crossing the regional boundary in 
either direction, and in such cases, the role of the dummy zones is to act 
as a filter or buffer between the system and its environment. In general, 
dummy zones are likely to be larger than the zones within the region 
itself, and in certain cases, there may be different bands of dummy zones 
layered around the region, each band having a different role. For example, 
in the Oxford shopping model designed by Black (1966), an inner set of 
dummy zones was defined to predict flows between zones immediately 
adjacent to the region and zones within the region, and an outer set of 
dummy zones was designed to ensure that the relative attraction between 
the inner set of zones and the region itself was of the right order. Several 
different types of dummy zones can be designed and readers interested in 
the general implications of this approach are referred to Wilson (1970o). 
The hierarchical model (Broadbent, 1971) and the cordon model (Baxter, 
1971) mentioned earlier are also relevant in this particular context.

The problem in the Northampton region was to design a set of dummy 
zones around the region to represent centres having a significant effect on 
the region at the present or in the near future. Furthermore, the set of 
dummy zones involving interaction into the region need not be equivalent 
to the set of dummy zones involving interaction out of the region, although 
in the Northampton model, these two sets were equivalent. The two sets of 
origin and destination zones inside the region are referred to by subscripts 
j and j respectively; the set of dummy origin zones are referred to by k 
and the dummy destination zones by /. Using this notation and noting 
that the links between the dummy zones are irrelevant to the analysis, the 
matrix of travel times {ci}} can be partitioned in the following way. Note 
that the subscripts i andj refer to the 7 origin zones and J destination zones 
inside the region and that the subscripts k and / refer to the K dummy 
origin zones and the L dummy destination zones outside the region. Note 
also that L has been redefined from its previous notation as land.

In applying this idea of dummy zones to the singly-constrained residential 
model given in (8.1) and (8.2), two types of system can be designed. In the 
first system, the origin constraints within / zones inside the region are 
met, and the model is also constrained to predict the total net interaction 
across the regional boundary. The origin constraint is written as

(8.41)
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J, 1

c,v

a/,/ is not 
considered 
or is set 
equal to x

i I

The flow out of the region is called TL and the flow into the region TK. 
The model is constrained to meet

TL = ESr,,, (8.42)

(8.43)

(8.44)
(8.45)
(8.46)

Note that Q has been now redefined from its earlier context in Chapter 3. 
The quantities at , QL and QK refer to the constraint equations (8.41)- 
(8.43) in that order and can be evaluated by summing (8.44)-(8.46) over 
the appropriate subscripts. These normalising factors are evaluated as

The model satisfying (8.11)-(8.43) can now be written as follows.

Tti = OiEiDjKcJ, 
Tu = 

Tki =

1

TL

(8.47)

(8.48)
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- (8 '49)
k j

Equations (8.47) and (8.48) must be solved by iteration and the whole 
scheme can then be built into the comprehensive modelling framework 
outlined at the beginning of the chapter or indeed any of the modelling 
frameworks presented in this book.

The second type of system considered in the Northampton model was 
constrained to a greater degree than the system outlined above. The con 
straints in (8.42) and (8.43) can be replaced by origin and destination 
constraints which turn the submodel dealing with interaction between the 
regional and dummy zones into a type of production-attraction con 
strained interaction model. These equations are written as

D, = 2T«, (8.50)
i

F — VT (R 511 k — £j kj' ^o.*/i^

Note that Z>; and £fc are now the activity totals forming the interaction 
between the dummies and the region. For the intra-regional case, the 
model has the same form as (8.44) and the models consistent with (8.50) 
and (8.51) are written as

Ta = a^Ei Djf(ca\ (8.52)
I [ lib IJ \ US ' V /

Tfc.j = QfcEfcDjj \Cfej). (8.53) 

The quantities ai9 b l and ak are evaluated as

«< = sj>./(cr)+s^A/(^)' (8-54)
y 3 ll i 

1 (8 '55)

"*' sTvfelV (8 '56)
i

Equations (8.54) and (8.55) are solved by iteration. The scheme outlined in 
(8.41) and (8.50)-(8.56) is the one which was chosen for the Northampton 
model. The way in which the dummy zone system was connected to each 
submodel of the activity interaction-allocation model outlined earlier was 
complicated by the population density constraint; the algebra is somewhat
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lengthy and contributes little to what has been already discussed, and is 
therefore omitted.

Figure 8.6 presents a 41 zone system with 9 external dummy zones and 
the network connecting those zones. The travel times between the dummies 
were arbitrarily set at exp(79), the largest number the Reading University 
Elliott 4130 computer could take. In Figure 8.7, the constrained flows 
between the dummies and the zones inside the region are mapped, thus 
demonstrating the magnitudes of the flows across the regional boundary. 
In proportional terms, these flows are small, at present, 4 per cent of the 
working population living in the region working outside it, and 2 per cent 
living outside the region working within it. The performance of the 41 zone 
model with these dummies is not quite as good as the original 50 zone 
system although the performance is acceptable and the model has a greater 
relevance if used in a predictive context. In fact, the East Midlands

Zone 50: Coventry

Zone 45: Leicester

Zone 46: Stamford

Zone47: 
.' Peterborough

g« x Zone 48: Bedford

Zone 42: Banbury ,rvj

Zone 49: Milton Keynes

01 2345 miles E-J Internal zone boundaries
U m *^^==^*^==3 '---' Dummy zone boundaries

Urban areas 
Road network

Fig. 8.6. Definition of the internal and external (dummy) zoning systems.
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Technical Plan Unit were especially interested in the effects that changes 
in the large towns and cities outside the region would have on the location 
of activities inside the region, and this model was designed with such 
predictions in mind. These predictions are not included here but the use of 
the model in such a context is worthy of mention, and followed the ideas 
presented in Chapters 4 and 5.

Zoning systems: the fundamental problem of model design
Several questions of model design have been broached in this chapter and 
it seems that this area of urban modelling provides a potentially rich field 
for further research. In particular, the Northampton modelling project 
demonstrates that techniques are now available for speedy and efficient 
design and calibration of activity interaction-allocation models, and such

Fig. 8.7. Interaction between the internal and external zoning systems.
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techniques are of fundamental importance to applications where fast 
model design is critical. But perhaps the most important issues raised in 
this chapter concern the definition and design of zoning systems. Although 
the theoretical work reported here suggests that a large number of zones is 
necessary for sound urban modelling, it is often impossible to meet such 
criteria. However, the model-builder must be continually aware that in 
any application, he is always operating at the limits of practical feasibility 
and theoretical acceptability. Such a compromise between theory and 
practice inevitably imposes strict limits on what the model can and cannot 
be used for.

The problem of zoning also suggests that the work of theoretical 
geographers on regionalization and map geometry might be linked in 
some way to these modelling issues, thus tapping a field of research which 
hitherto has largely not been used in a practical context (Tobler, 1963). 
Indeed, the problem of optimum zoning might even be considered as the 
problem of geography. Most work in this field so far has been descriptive 
with little emphasis upon optimum zoning appropriate to particular 
spatial processes. It is in this area that the greatest research is needed; 
there are, however, signs that some progress is being made along these 
lines (Batty, 19726, 1974; Masser, Batey and Brown, 1973). Furthermore, 
the whole question of measurement of locational attraction and the 
relationship between the demand for and supply of different locations is 
of prime importance, and is likely to provide another fruitful area for 
further research. Although many of these issues might only be ultimately 
resolved in terms of model structure, there still remain many, useful 
improvements and innovations to be made in model design which may 
make the difference between success or failure in a practical planning 
context.

These problems of spatial system design also have important repercus 
sions on more immediate problems such as computer efficiency and repre 
sentation. In the next chapter, ways of designing zoning systems in which 
their inherent information content is traded-off against size are explored 
in terms of hierarchies, and methods are suggested for speeding-up, 
reducing storage space, approximating certain measurements of distance 
and generally making more feasible in practical terms the operation of 
activity allocation models.



9. Hierarchical modelling

This chapter, like the last, is primarily concerned with elaborating and 
exploring, in a somewhat less direct way, the intractable and pervasive 
influence of space on the design and calibration of numerical models. 
Previous chapters have shown that calibration problems and issues con 
cerned with the numerical analysis and operation of models have yielded 
fairly readily to the application of standardised techniques but questions 
of space, particularly those dealing with the design of optimum zoning 
systems, have not yet been handled in a sufficiently rigorous way for 
these problems to have been explored in depth. Most of the research groups 
working in urban modelling have looked at this problem in various ways 
but the usual emphasis has been on techniques for speeding-up computa 
tion or cutting down computer storage, as for example in the hierarchical 
interaction model designed by Broadbent (1971), and the cordon model 
applied by Baxter (1971). Yet there is an urgent need for further explora 
tion of theoretical and practical criteria for defining zone size and shape, 
and although certain studies have tentatively broached these problems 
(Broadbent, 1970a; Batty, 1972ft; Masser et al, 1973) such matters are 
far from being resolved. The description of space is the central problem of 
theoretical geography (Bunge, 1966), and although investigation of such 
problems has only just begun, significant progress is seemingly being made 
(Cliff and Ord, 1973).

This concern for space provides a focus for the problems of spatial 
decomposition in urban modelling to be discussed here. In particular, the 
idea of building efficient urban models on spatial systems organised 
hierarchically continues the problems of system closure and dummy 
zoning discussed in Chapter 8. Yet there is another focus, equally im 
portant, but perhaps of conceptual rather than technical import. Urban 
models should be capable of generating insights into the functioning of 
spatial systems as well as providing a means for simulating urban pheno 
mena. Thus modelling should be able to contribute to theory in this way 
rather than being solely concerned with the operational description of 
theory. However, it is not easy, in the social sciences, to point to work in 
which real insight has occurred. This is partly due to the nature of the

233 9-2
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subject matter and its presentation but it is also due to the rather ill- 
defined nature of social and economic systems. Where insights have 
flourished, however, dramatic progress has been made and new inter 
pretations of the subject matter have helped benefit the task of research 
in the field. That such insights can be of immense significance has been 
cogently illustrated by de Bono (1967) in his concept of lateral thinking 
and by Koestler (1964) in his analysis of the creative act. The work of 
Alexander (1964), for example, in which he identifies the current dilemma 
in architecture as being due to man's inability to handle complexity reveals 
immense insight and his work has been widely acclaimed in the design 
sciences. The analysis of planning as problem-solving by Rittel and Webber 
(1972) who suggest in Macluhian fashion that 'the problem is the solution: 
the solution is the problem' provides another example of real insight 
where such insight originates from turning a problem on its head and/or 
inside out in the quest to capture its essential significance.

Returning to the field of urban modelling, there is a beautiful example 
demonstrating such insight to be found in an article in Nature by Tobler 
and Wineburg (1971). These authors have inverted a gravity model for use 
in an archaeological problem in a most ingenious way. From data con 
cerning the movements of merchant caravans in Central Turkey in the 
pre-Hittite age, taken from the famous Cappadocian tablets, Tobler and 
Wineburg have used the gravity model, not to predict these flows but to 
predict the associated distances between origins and destinations in an 
effort to find the relative locations of the sites. In formal terms, the 
inverted gravity model can be written

I/A

where Oi and Dj are measures of the origin and destination activity 
respectively, T*j is the observed number of merchant transactions between 
/' and j, G is a scaling constant, di} is the distance from / to j and A is a 
parameter. From the predicted distances, Tobler and Wineburg have used 
a multidimensional scaling programme to find the actual co-ordinates of 
the various sites in terms of three known sites, thus providing the archaeo 
logists with alternative results on 'where to dig'. The use of a gravity model 
in this fashion is not new and, despite the obvious limitations of such 
analysis, the appropriateness of this application is beyond dispute. Indeed, 
the techniques to be described in this chapter, some of which involve such 
inversions, flow directly from this idea of using models to predict structures 
which are normally taken as given but which are often poorly specified in 
terms of available data. It is hoped to demonstrate the practical advantages
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of such an approach both in terms of speeding-up models, cutting down 
computer storage, and improving model accuracy.

The various short-cuts and tricks which can be applied in model design 
when spatial systems are decomposed or partitioned into hierarchies or 
sets where different criteria apply, are described using a trip-distribu 
tion production-attraction constrained model as example. By way of 
introduction, various measures of hierarchical decomposition due to 
Theil (1972) set the context to an examination of three different models in 
which a mixture of analytic and iterative solution is used to speed-up their 
running. A further problem concerns the use of inverted models in finding 
unknown or difficult-to-measure information such as distances across 
bridges, intra-zonal distances and measures of locational attraction, and 
these lead quite naturally to possible interpretations in terms of the 
geography of perception. These models and their short-cuts are illustrated 
using a 29 zone model of Merseyside, decomposed into two sets, the 21 
zone Liverpool set and the 8 zone Wirral set. The performance of these 
models on this system is then presented and this provides a comparison of 
increased speeds, storage and accuracy. But first, certain notions concerning 
spatial decomposition will be introduced.

Measures of spatial decomposition
One of the traditional concerns of theoretical geography relates to ways in 
which regions can be aggregated or disaggregated to meet certain measure 
ment criteria such as those involving homogeneity. For example, it may be 
necessary to study certain areas in more detail than others for practical or 
theoretical purposes; such is the case in urban modelling where it is 
necessary to take account of a spatial system in its wider environment 
using dummy zones where the modelling of urban phenomena is at a 
coarser level than in the spatial system itself. The Oxford shopping model 
described briefly in Chapter 8, is a case in point (Black, 1966) in which an 
inner ring of dummy zones accounting for flows between the system and its 
immediate environment is used, and which in turn is surrounded by an 
outer ring of zones designed to balance the competition on the inner set of 
dummies with the competition on the system itself. This kind of logic is 
similar to that used by Wilson (1970a) in his study of missing information 
and entropy-maximising and also relates to the arguments of Broadbent 
(1971) and Baxter (1971). To introduce measures of decomposition, 
consider a spatial system which is partitioned into K origin regions called 
Zk, k = 1, 2, ..., K, and L destination regions, Zz , / = 1, 2, ..., L. In each 
setZfe, there are Ik origin zones i, i — 1,2,..., Ik, and in each set Z;, there
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are Jl destination zones j, j = 1, 2, ...,Jt . In the following presentation, 
the summations are over all origin and destination sets and/or zones unless 
otherwise explicitly stated. First define a probability of interaction p(j from 
the known trips T^ on each i-j pair

Pi, = Tfi^ZTtt = WT. (9.1) 

The total within-system interaction probability Pw can be defined as

S S /»«, * = /, (9-2)
fc I isZicJEZi

and the between-system probability Pb is calculated from

S S />«, * * /• (9-3)
k I

If it is required to model within-system interaction in a fine manner in 
contrast to between-system interaction which is to be modelled in a coarse 
manner, then it is necessary to choose a decomposition which maximises 
(9.2), which in turn implies minimisation of (9.3). To express this idea, the 
ratio />w/pk which is a crude measure of the density of interaction should 
be maximised.

A more sophisticated decomposition statistic is based on the notion of 
entropy first defined in an information-theoretic sense by Shannon (1948) 
and widely used in econometric decomposition analysis by Theil (1972). 
Information or entropy H is defined from

H = -2Zpij lnpii, (9.4)
i j

where the probabilities sum to 1. Define Pkl as the probability of interaction 
between set k and set / calculated from

PH= 2 S/>«. (9-5)
ieZtjeZi

Then entropy H can be expressed as the sum of a between-set entropy and 
a series of weighted within-set entropies defined by the entropy decom 
position principle (Theil, 1972) as

H = -SSJ»w In Pw -SSPft, S S %I In |ii. (9.6)
k I k I ieZtjeZi ^kl ^kl

Taking each term in (9.6) and tracing its implications for disaggregation, 
consider first within-set entropies. A choice of zoning system which 
maximises within-set entropy for i,jeZk and minimises this entropy for 
i e Zk, j e Zj, k + /, is required. With regard to between-set entropy, the
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entropy Pkl In Pkl for k = / must be maximised and for k + I, this entropy 
must be minimised. In formal terms, this problem is equivalent to maxi 
mising the ratio of (9.6) with k — I to (9.6) with k + 1. A demonstration 
of these ideas will be given later in relation to the Merseyside region. Given 
that the zoning system and its hierarchy have been chosen to minimise 
information loss, then the various short-cuts arid inversions described in 
the following sections are likely to be of relevance.

Doubly-constrained models based on fast analytic-iterative 
solution
The doubly-constrained trip-distribution model referred to as the produc 
tion-attraction constrained model in the family of interaction models 
(Cordey-Hayes and Wilson, 1971) satisfies constraints on the activities 
Of and Dj located respectively at origin zones i and destination zones j. 
Formally, these constraints are stated in (2.57) and (2.58) and are restated

« = 0, [(2.57)] 

tJ = D,. [(2.58)]

The model satisfying these constraints can be of the type used by Furness 
(1965) or of the more conventional gravity-type given in (2.59) and redefined

here aS Ti} = a{ Oi b} D, exp (- Ac,,), (9.7)

where cti is the travel cost between i andj, often measured in proportion to 
time or distance, A is a parameter of the negative exponential distribution 
and ai and bj are balancing or normalising factors ensuring that the 
constraints in (2.57) and (2.58) are satisfied. These factors are evaluated as

Ui = ' (9-8)

*' = -- (9' 9)

Of and bj can be found by iteration. As Evans (1970) has demonstrated, 
their product a{ bj is unique although the values of ai and bj will depend 
upon their starting points and any other constants in the gravity model 
equations. Note that the results in this and the following sections can be 
easily generalised to singly-constrained interaction models.

One of the central themes in this chapter revolves around the idea that 
it is worth while modelling different parts of a spatial system in different
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degrees of detail, for example by modelling fine and coarse interactions or 
by modelling interactions with fine and coarse models. To relate this idea 
to distribution models, write constraint equations (2.57) and (2.58) as

S y«+S S Tti = Ot , ieZk , k*l, (9.10)
jtZk I jeZi

S 7« + S 2 Ti} = Dp yeZfc , k*l. (9.11)
isZt I ieZi

Assume that the first terms on the left-hand sides of (9.10) and (9.1 1) are 
to be modelled using a fine model and the second terms using a coarser 
model. As the interactions {Ttl} are known, then it is possible to find a set 
of additional travel costs {c,*} which gives a perfect fit for any interaction on 
an /-_/' link. In such cases it is possible to express the interactions between 
the decomposed sets of the system as

= 0,0, exp (-Ac,,) exp (-Ac,*), ieZk, jeZ,, k + l (9.12) 
As TIJ is known from data, now called Tfi, c,*- can be found analytically

.!L£I_!LZ«_ C .. ieZlf iez, k *i (9i 3)i i ti» ky J /* / > V • /

from ,. „ , „ , ^
A A A 

or a new total travel cost Cti is found from

Ct] = ctj + c* = A- 1 In (^jS+} , i e Zft , j eZt, k * 1. (9.14)

Therefore, (9.12) is used to predict inter-system trips and an equation 
similar to (9.7) is used to predict intra-system flows

Ti} = A i Oi Bj Dj exp (- Ac,y), i e Zt, j eZ,, k = /, (9.15)
where A i and Bj are normalising factors similar to ai and bj in (9.8) and 
(9-9).

The evaluation of these normalising factors provides the most interesting 
aspect of this development. Substituting (9.12) and (9.15) into (9.10) gives

i*Zi i i^'/.i
x exp (- Acw) exp (- Ac$ = O,, i e Zft , A: ^ /, (9.16) 

in which the O/s can be cancelled and the form for A L found as
1 -S S 0, exp (- Acw) exp (- Ac$ 

^ i= I|S*S^Dy exp (-Ac,,)————• /6Z* *'t/-
J'e^t

(9.17)
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In a similar fashion, (9.12) and (9.15) are substituted into (9.11) giving 
8,0, S ^0<exp(-Ac0)+Z>,S £ 0,

ie-Z* Z ie Z;

x exp ( - Ac,-,,.) exp ( - AcJJ) = 0lf i e Zfo fc * I, (9.1 8) 

which simplifies to
1-2 S 0,exp(-Ac,y)exp(-<$

«. = —— " e ^, , ^ ——— - — - — - ——— , yeZfc> )fc ^ /. (9.19) 
3 S ^Ofexpf-Ac,,) ' J k ' ^ ^ '

ieZj.

Equations (9.17) and (9.19) are balancing factors, modified to take account 
of the inter-system trips, and these factors will converge to a unique product 
A t Bj from any starting point. To develop an alternative interpretation for 
these factors redefine (9.12) in probabilistic terms as

Tij = OiPii, icZk, jeZlt k*l, (9.20) 
where p{i is calculated as

Pii = Dt exp ( - Aciy) exp ( - Ac$, i e Z,, k + I. (9.21)

Substituting (9.21) into constraint (9.16) and (9.18) yields the balancing 
factors

At= S«P'(-^)' /ez- *"'• (9 '22)
jeZt

and

„ . 
S ^ i Oi

(9.23)

Comparing (9.22) and (9.23) with (9.8) and (9.9), it is clear that these 
equations are related by

(9.24)
I jeZ,

*,*/. (9.25)

Then the model (9. 1 5) can be written as 

Tif = A i Oi Bj Di exp (-Ac,,),

= «<fl-S S />«) OiA/l-S S
\ J ;eXi / \ Z ieZi

= ai Ofbi Df exp(-^cii), ieZk, jeZ,, k = /. (9.26)
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From (9.26), instead of weighting the A^s and jB/s, the origin and destina 
tion totals Oi and Z>y are weighted to account only for activity within the 
spatial system. New origin and destination totals are defined from

ieZk, k = l, (9.27)

k = l (9.28)

Using the model whose development is outlined in (9.10)-(9.28) in 
preference to the model in (9.7)-(9.9), a model involving the iteration of 
(71 + /2 +... +IK) (J1 +JZ + ... +JL) equations has been transformed to one 
involving f1J1 +I2J2 + ...+IKJL iterations (K = L) and

... +JL) +... + IK(Ji+J2 + ••• +Ji)

analytic solutions. In the case where there are K origin and destination sets 
and IK origin and destination zones in each set, the reduction in computa 
tion time for this model is in the region of l/K which is substantial if the 
system is divided into several regions. Moreover, the model predicts 
exactly the inter-system trips Tit , i e Zk,j eZr,k ^ I, although, as in many 
of these kinds of problems, zero entries in the trip matrix have to be 
ignored or new estimates included by some sort of smoothing procedure 
(Chilton and Poet, 1973). The advantages of using such a coarse model in a 
predictive sense are only realised when this type of model is examined in a 
forecasting context: as in more refined models, changes in activity at the 
origins and/or destinations and changes in inter-zonal distances can be 
reflected in these coarse models, although such models cannot be subject 
to origin or destination constraints. However, as in any modelling venture, 
the use of these procedures is a matter of judgement reached by weighing 
information loss and weaker predictive power against improved accuracy 
and computer feasibility.

Hierarchical interaction models soluble by iteration
In contrast to the previous model in which computer time, not storage, is 
reduced, the hierarchical interaction model due to Broadbent (1971), in 
which computer storage is conserved, will be outlined in this section, in 
preparation for its speed-up which is described in the next section. Broad- 
bent's hierarchical model works on the principle of modelling fine zone 
interaction within any region but coarse zone interaction between a fine 
zone in any region and all the zones of any other region. The model has
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similarities to Baxter's cordon model developed for the Cambridge urban 
model (Baxter, 1971), although Broadbent's notation is more relevant to 
the approach presented here and is thus used.

The origin and destination constraints given previously in (2.57) and 
(2.58) and then in (9.10) and (9.11) hold but the inter-system interaction is 
at a coarser level of aggregation. First define the coarse level interaction 
Tu from any zone /, i e Zk to region Z,, k + I, and the interaction ry from 
any zone j, j e Zk to region Z,, k ^ /• Formally,

Tu = S Tti , ieZk, k + l, (9.29)
jeZi

7y= S Tiit jeZk, *//. (9.30)
ieZi

Constraint equations (9.10) and (9.11) can now be written using (9.29) 
and (9.30) as ^ T = . ^ ;> (9J1)

J6Z* Z

Z VS^y =-D,, ;eZto *//. (9.32)
t'e^t 2

First, for the model predicting the regional trips given in (9.29) and (9.30), 
appropriate regional distances cit and c}j are required. Using a doubly- 
constrained distribution model, inter-system trips are computed from

Tt} = A i Oi BjD} exp [- Afo, + cv)],

= A i Oi BJ DJ exp (- Aq ,) exp (- Acy), i e Zk, j eZt, k =£ I.
(9.33)

Substituting (9.33) into (9.29) and (9.30) respectively, the coarse-level trips 
can be predicted from

Ttl = A i O i exp (- Aclz) S B, Dt exp (- Acy), / e Zk, k* /, (9.34)
yeZ;

7y = 5, £>,• exp (- Acy) S ^ i Oi exp (- Ac i7), 7 e Zte A: * I (9.35)
is 2*

Equations (9.34) and (9.35) contain the essential logic of the hierarchical 
model in which flows are predicted from an origin zone i e Zfc to region 
Z/; k 7^ /, and are then distributed to zone7 e Zl from the regional to zonal 
level. Note that this is only made possible by the use of the negative 
exponential deterrence function which can be split. Broadbent (1971) 
visualised this process as one in which traffic was distributed between 
regions on a higher-order network and within regions on a secondary 
network: this interpretation has not been kept here where trips are distri 
buted directly on a network ciz ->cw rather than cik -> ckl ->• cy as in 
Broadbent's model. The balancing factors are easily defined by substituting
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(9.34), (9. 35) and (9.15) into (9.31) and (9.32); these factors are evaluated as

________________1_______________
i ~ £ BJ Dj exp (- Acfy) + £ exp (- Aq z) £ 5,. Z>3 exp (- Acw)'

' ieZk, k^l, (9.36)

D _ _____________________________________________________________________

J ~ _£ ^i0fexp(-Aciy) + £exp(-Acy) H A i Oi exp (-Aciz)'

7'eZt, A:^/. (9.37)
Measurement of the distances ctl and c w is likely to be difficult for there 

are few guidelines to use. Two possible schemes suggest themselves, the 
first based on measurement from disaggregated trip data, the second on 
the basis of disaggregated models. From disaggregated trip data, cu and 
Cjj, i e Zk,j eZl; k ^ I, can be measured by the following mean trip lengths

X
(9.38)

jeZ, k*l. (9.39)

This scheme can be carried out for all regions, although it is likely to lead 
to estimates for ci{ and Cy which are biased upwards. In other words, 
cit + Cij ^ c tj, for all i and j; although this is only speculation, it has in 
fact been borne out in practice.

Another scheme for finding aggregate distances in terms of predicted 
rather than observed trips, has been suggested by Beardwood (1972). If it 
is required to ensure that the aggregated model predicts trips similar to the 
disaggregated model, then in terms of, say, (9.34), the trips Tu can be 
predicted from
Ta = A i Oi 2 (fi,/>y)exp(-Ac«)exp(-Acw), ieZk, k * I, (9.40)

i*Zi

or from
r«= £ ^O^fl, exp (-Ac,,), ieZk, k * I (9.41)

jeZi

Comparing (9.40) and (9.41) and rearranging, the aggregated deterrence 
function can be predicted from

ieZk , k + l 

(9.42)
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The same kind of analysis can be performed on (9.35) and this gives

exp ( - Ac,,) exp ( - Ac w) = iez" . ——— , jeZ,, k + I.
2j -^i ui
icZt

(9.43)
Values for ci{ and c w can thus be chosen from some iterative scheme based 
on (9.42) and (9.43). In the following applications, these aggregated 
distances are based upon (9.38) and (9.39), although in future applications, 
a test of the scheme given in (9.42) and (9.43) would be desirable.

The great advantage of this model is in terms of storage reduction over 
the doubly-constrained non-hierarchical equivalent. For example, storage 
of one matrix, say the distance matrix, is reduced from order

to

When K = L and Ik — Jt for all k and /, and when K is large, storage is 
reduced to approximately (l/K)th the storage needed by the non-hierarchical 
model , a saving similar to the saving in computer time of the previous model. 
However, iteration of the A t 's and 5/s is over the whole system of regions 
and there are no constraints on the actual amounts of interaction originating 
from or entering a region; in the following section, this model will be 
modified to account for such constraints.

Faster hierarchical models based on analytic-iterative solutions
The simplest way to speed-up the operation of the hierarchical model is to 
predict analytically factors c* and cft which relate to observed flows Tft 
and TI*J, thus following the same logic as in the speeding-up of the non- 
hierarchical model outlined in (9.10)-(9.28). The trips Tu and ry are 
predicted by a coarse model

Ttl = Oi Dl exp (- Ac,,) exp (-AcJ), i eZfc, k * I, (9.44) 
ry = O l D, exp ( - Acy) exp ( - Ac,*.), j eZk, k* I. (9.45) 

Then the factors cj and cfj can be predicted analytically from

k*,, (9.46) 

- 6 Zft> ^ , (9 4?)
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Substituting (9.44) and (9.45) into the hierarchical constraint (9.31) and 
(9.32) and using the doubly-constrained distribution model in (9.15), the 
balancing factors are derived as

At= v a n exnf A.I —— > ' eZ*- k * *• (9 '48)2j ^ i*j exp ^— ACjyj
jeZ*

1 - £ O; exp ( - Acy) exp ( - AcjJ)

These balancing factors have the same form as the factors in (9.17) and 
(9.19) although in this case, the model has now been speeded-up by 
approximately the same order as the non-hierarchical model, and yet 
retains the storage advantages of the hierarchical model. This is a much 
cruder approximation to reality for the origin and destination totals in 
each region are highly aggregated and thus a substantial amount of infor 
mation has been lost along with a large reduction in the model's predictive 
power. As this model is so similar to its non-hierarchical equivalent, it has 
not been used in the application to be outlined in a later section, although 
in terms of speed and storage it is certainly the most efficient of the models 
presented here.

The second model presented in this section rests on the idea of designing 
a model which satisfies exactly the constraints in (9.29) and (9.30). This is 
accomplished by predicting the distances c*., and c,* by a combination of 
iterative and analytic solution. Then for inter-system trips, the following 
model is used

= Oi Dj exp ( - Ac?,) exp ( - Ac,*), i e Zk, j eZ,, k + I. (9.50) 

Substituting (9.50) into (9.29) and (9.30) and rearranging gives

T{1 = 0, exp (- Acf,) 2 D, exp (-Ac,*), i e Zk, k* I, (9.51)
jeZt

Ttj = DJ exp (- Ac,*.) S Oi exp (-Ac?,), j eZk, k* I (9.52)
ieZi

The appropriate distances can be found by solving (9.51) and (9.52) for 
i e Zk, j e Z,, k + I iteratively and choosing new values for cf, and c,* from

c* = A-1 In iez, , ieZk, k * I, (9.53)
T*1 a J
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and p, S
eft = A' 1 In V*. , 7 6 Z,, * * /. (9.54) 

L TO J
Iteration on (9.51) and (9.52) is similar to the iteration required to find the 
balancing factors A i and Bj. These normalising factors can be found by 
substituting (9.51) and (9.52) together with (9.15) into (9.31) and (9.32) and 
rearranging. First for trips leaving the origin region Zk

A i Oi % ^.expt-Ac^ + OiSexpt-Ac?,) Z £>, exp (-Ac,*)
ieZt I isZi

= 0it ieZk, k + l, (9.55) 
and solving for At gives

1 - S exp ( - Ac?,) % Dt exp ( - Ac*,)

jeZt

Then, for trips entering the destination region Zk

j exp (-Ac,*.) 2 Oi exp (- Ac?,)
teZt

— D j <= 7 If =£ I (Q *\"7\— Vj, JtZ,k, K f I, (y.3l)

and solving for B^ gives

1 - £ exp (- Ac,*-) £ Oi exp (- Ac?,)

The same probabilistic interpretation can be developed for the two 
models outlined in this section as in the model presented in (9.10)-(9.28). 
In the last model, developed in (9.50)-(9.58), the number of iterations 
required is slightly less than in Broadbent's hierarchical model; the 
reduction is achieved by breaking up the iterations into main diagonal 
iterations, of the supermatrix and off-diagonal iterations, whereas Broad- 
bent's iterations are over the whole supermatrix. Thus, Broadbent's model 
is also likely to converge more slowly than in the model outlined above. 
To demonstrate this point a little more cogently consider the supermatrix 
presented below in which the essential nature of the iterative process is 
displayed: the main diagonal elements denoted by Ik Jk involve the com 
putation of AfBj factors as in (9.56) and (9.58) whereas the off-diagonal 
elements QkJ, k + I denote iteration based on (9.51) and (9.52). The 
reduction in iterations can be formally compared as follows. In Broad- 
bent's hierarchical model, (I1 +I2 + ...+IK)(Jl +J2 +...+JL) equations
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are iterated whereas in the modified model /j/j + 72/2 + • • • + IK^L (where 
K = L) + K(f1 + I2 +...+IK)+L(Jl +J2 +...+JL) equations are solved by 
iteration. Apart from the increased accuracy of the modified model, com 
puter time is cut to about llK+2/k of Broadbent's model (where there are 
K origin and destination regions each with k origin and destination zones).

Hierarchical articulation problems: barrier effects
The logic of predicting certain elements of spatial structure using inverse 
forms of conventional urban models is nowhere more apparent than in 
cases where structure is almost impossible to measure in any objective 
sense. Such is the case in systems which are divided by natural barriers 
such as rivers or mountain ranges where the connecting link, be it a bridge, 
tunnel or ferry, has an important but unknown effect upon contact- 
interaction between the two systems. In graph-theoretic terms, such a 
point of connection is called an 'articulation point' whose removal from 
the graph separates the two systems into two disconnected subgraphs. In 
such instances, it is possible to develop a model in which prediction 
alternates between simulating the interaction between the two systems and 
deriving an appropriate measure of distance between the two systems. An 
example of this problem is presented in the transport network of Mersey- 
side illustrated in Figure 9. 1 where the articulation point between the two 
subsystems is clearly marked. Prediction of the relevant inter-system 
distances can be accomplished using the following equation system where 
n denotes an iteration of the overall system. First,

T{j(n) = A { (n) £>3 exp [- Aci;-(n)], for all k and /. (9.59)
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Then new distances c,- ;-(n+ 1) for the next iteration n+ 1 are calculated from

fc,-,., / e Zj,, /' e Z,, k = I, 
= 3 (9.60)

where c*(«) is predicted from

(9.61)

This system given in (9.59)-(9.61) can be iterated until |C O.(«+I)-CO.(T?)| 
is less than some limit for / e Zk, j e Z,, k + I.

The average additional distance factor on the link between the two 
systems Zk and Zl can be found by computing the appropriate mean trip 
lengths. Then

£ S

H Urban area, 1966

— Major transport network

Fig. 9.1. Transport network and urban area on Merseyside.
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-lk ~

Apart from the additional accuracy imparted to the model by this process, 
the whole methodology could be helpful in studying the ways in which 
people perceive distance. The analysis can easily be extended to deal with 
several links across natural barriers and the use of the model to study 
perception of distances over the system as a whole could provide an inter 
esting way of tackling the definition of mental maps. Further applications 
abound : for example, use of the model in predicting locational attractions 
in proportion to the factors BjDj could also be developed along lines 
already suggested by Masser et al. (1973) and Baxter and Williams (1972).

The intra-zonal distance problem
Perhaps the most important measurement problem of all in spatial model 
design concerns the question of intra-zonal distances. This is a practical 
rather than theoretical problem for if Broadbent's rule is adhered to in 
constructing zones, then such distances should be no more difficult to 
measure than any others. But in practice, a much larger proportion than 
Broadbent's measure of 10 per cent of the interaction in the system, is 
often retained within the zones themselves. In Notts.-Derbys., this pro 
portion was 52 per cent whereas in Northampton, it was 66 per cent and in 
Central Lancashire 67 per cent. In such cases, the model is likely to be most 
sensitive to variation in intra-zonal distances, and a great deal of will 
power is needed if the model-builder is to avoid continual alteration of 
such distances in the quest to remeasure and recalibrate the model.

The simplest measure is based upon the assumption that the zone is 
evenly spread with a population at a constant density. Then on the assump 
tion that the zone is roughly circular in shape, an approximation to cu can 
be found from

Cii = V2'

where ri is the radius of the zone in terms of travel cost, in this case. 
A slight modification to this gross simplification can be made, if it is 
assumed that the population density varies in a regular way, and if it can 
be described by a mathematically tractable function, fitted of course to 
the particular zone in question. Using the function given in (8.19), and 
assuming that the population density varies around some pole or centroid 
in the zone, then cu can be calculated from
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ci{ = f f Gexp(-A/-)r2 d0dr, 
o o

/ 1- \
(9.62)

where ri is the radius of the zone. Equation (9.62) is clearly a mean trip 
length which is affected by the finite boundary of the zone. These two 
methods are highly approximate and are probably of more analytical than 
practical interest, but in certain circumstances may be the only methods 
available. A method of zoning based on (9.62) is presented in a related 
paper by the author (Batty, 1974).

The most consistent way of defining intra-zonal distances is from trip 
and distance data disaggregated within each individual zone. The intra- 
zonal distance problem can be seen as a problem in finding the mean trip 
length within any zone. If any zone / is divided into x origin zones and y 
destination zones, then cit can be found from

x y

Measurements of cxx in turn could be made in the same way and so on, 
thus implying that the problem has the characteristic of a set of Chinese 
boxes. However data are not usually available for such a process and thus 
these more elegant methods are often impossible to use. Finally, in the 
spirit of the methods advocated in this chapter, it is possible to predict cu 
using an equation of the form given in (9.61). Then

c«(«+l) = c«(«) + <$(«), (9.63) 

where

cfM = A- in
I ru(n> }

No suggestion that (9.63) and (9. 64) be used as a basis for the sole measure 
ment ofcit in modelling applications, is implied here for (9.63) and (9.64) 
represent an exploratory scheme for investigating the influence of space 
and distance in interaction models. The final choice of c it must clearly 
rest on many issues, and might be based on some synthesis of all the methods 
presented in this section.
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Application to a simple hierarchy: Merseyside decomposed
The decomposition of Merseyside into two subsystems - a 21 zone system 
based on Liverpool and an 8 zone system based on Wirral - is illustrated 
in Figure 9.2. This decomposition arising from the natural barrier of the 
river is also a good partition according to the measures of decomposition 
presented in an earlier section. An examination of the trip matrix for 
Merseyside reveals dense flows within Liverpool and within Wirral but 
sparse flows between the two subsystems; these flows are illustrated in 
Figure 9.3. Equation (9.2) shows that 94 per cent of all flows occur within 
Wirral and within Liverpool and the ratio of (9.2) to (9.3) is about 15.3, 
demonstrating that there is 15 times as much interaction within these 
systems as between them. The ratio of within-system, not set, to between- 
system entropies from (9.6) is about 12.2 thus confirming the excellence of 
this natural decomposition in interaction and information loss terms. The 
values of these various decomposition statistics are presented in Table 9.1. 

Six of the models developed in this chapter have been run for Mersey- 
side; by way of a bench mark, the doubly-constrained trip distribution 
model given in (9.7)-(9.9) can be compared to the five other models - the 
speeded-up doubly-constrained model in (9.10)-(9.28), Broadbent's hier 
archical model in (9.29)-(9.37), the speeded-up hierarchical model in 
(9.44)_(9.58), the hierarchical articulation model in (9.59)-(9.61) and the

Liverpool

Fig. 9.2. Hierarchical zoning of the Merseyside region.
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TABLE 9.1. Measures of decomposition applied to Merseyside

Liverpool Wirral ->
Decomposition Liverpool Wirral -> Wirral Liverpool

statistic Merseyside subsystem subsystem subsystem subsystem

Percentage of trips
Total entropy and

percent of total
entropy*

Within-set entropy and
per cent of total
entropy*

Between-set entropy and
per cent of total
entropy*

1.0000
5.5535

(1.0000)

4.8315
(0.8700)

0.7220
(0.1300)

0.7554
4.1089

(0.7528)

3.9690
(0.7147)

0.2118
(0.0381)

0.1826
0.9548

(0.1719)

0.6443
(0.1160)

0.3105
(0.0559)

0.0104
0.0893

(0.0161)

0.0415
(0.0075)

0.0477
(0.0086)

0.0510
0.3284

(0.0591)

0.1766
(0.0318)

0.1518
(0.0273)

* Figures in brackets are the relevant percentage.

12 Trips (in thousands)

Fig. 9.3. Trip distribution on Merseyside.
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intra-zonal distance model in (9.63) and (9.64). For each of these six 
models, a series of statistics demonstrating goodness of fit to the observed 
trip distribution {r^.} has been computed. First the r2 statistic is calculated 
and second, a measure of information difference used by Theil (1972) is 
used. This measure is defined as

i i ij
(9.65)

where p{i is the probability of interaction predicted by the model (T^jT) 
and pfj is the observed probability (TfjjT). The minimum value for H* 
occurs at zero when ptj = pf} for all i and j, otherwise (9.65) is always 
positive. Two other statistics are based on the intercept w and slope p of the 
regression line relating observed to predicted trips

Ti} = w+pT%. (9.66)

In the case of (9.66), a best fit occurs when the intercept w is zero and when 
the slope p is equal to one.

Each of the models has been run with a value for A calculated for the 
29 zone doubly-constrained model. The value for A has been found by

20000
15000
10000
5000
0 Aggregated work trips 

Fig. 9.4. Hierarchical trip distribution on Merseyside.
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use of a linear interpolation formula first suggested for calibration by 
Hyman (1969), and presented previously in (6.21). The value to which 
A converges using (6.21) is 0.5281. The goodness of fit statistics are pre 
sented in Table 9.2 and it is clear that, in general, the hierarchical models 
perform less well, but only slightly so, than the non-hierarchical models. 
Indeed, on all statistics, the speeded-up models have a similar performance 
to the original models and real differences between them exist in computa 
tional rather than performance terms. A diagrammatic presentation of 
performance is given in Figure 9.4. In the articulation problem, the values 
of the mean trip lengths from the scheme in (9.60) and (9.61) taking 
Liverpool as Zk and Wirral as Z,, were computed as 0.5004 and —0.0203 
respectively. This shows that the perception of persons living in Liverpool 
but working in the Wirral is on the average about one-half mile greater 
than the measurable distance whereas the distance perception of those 
living in Wirral and working in Liverpool is more or less equal to the 
measurable distance. This is a reasonable result given the relative attrac 
tion of Liverpool over Wirral and noting that the mean trip length in the 
system as a whole is 2.5371 miles.

TABLE 9.2. Performance of the distribution models

Type of model

Doubly-constrained
in (9.7)-(9.9)

Speeded-up doubly-

Theil's
statistic

from
(9.65)

0.1180

0.1029

Coefficient
of

determination
r2

0.8477

0.8425

Intercept
w from

(9.66)

68.3299

37.4701

Slope p
from
(9.66)

0.8787

0.9913
constrained in (9.10)-
(9.28) 

Broadbent's hierarchical 0.1198 0.8309 48.6654
model in (9.29)-
(9.37) 

Short-cut hierarchical
model in (9.44)-(9.58) 

Hierarchical articula 
tion model in (9.59)-
(9.61) 

Intra-zonal distance 0.0015 0.9989 8.2677
model in (9.63)-(9.64)

Optimum value 0.0000 1.0000 0.0000

0.1729 0.8362 19.2923

0.0997 0.8726 47.4060

0.9135

0.9408

0.9157

0.9849

1.0000
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Finally, it is worth while comparing four of these models in terms of the 
computational time required for their running, and the space necessary 
for their storage in the computer. With regard to storage space, the doubly- 
constrained model and its speeded-up version require the storage of 
matrices equal in dimension to the total number of zones, in contrast to 
the hierarchical models - Broadbent's model and its speeded-up version - 
which require substantially less storage. In terms of computational times 
required, the speeded-up models are faster than their slower equivalents, 
due to the fact that iteration occurs over decomposed sets of model 
equations, rather than over the total set. To compare performance, 
computer time and storage, a crude index has been constructed relating 
these results. This index V is defined as

9i-2
V =

(e + V

where r 2 is the coefficient of determination, e is the number of equations 
solved as a proportion of the doubly-constrained distribution model 
equations and s is the storage needed as a proportion of storage required 
for the doubly-constrained distribution model. This index is equal to 1 
when the doubly-constrained model gives a perfect fit, and models which 
are deemed 'more efficient' than the doubly-constrained model score 
higher values of V. Table 9.3 provides a comparison of the various com 
puter times, storage and efficiency indices for the four models, excluding 
the hierarchical articulation model which is not comparable. Clearly, the 
index of efficiency is weighted in favour of the short-cut models, as this 
index does not consider any criterion measuring information loss and 
lower predictive power. Nevertheless, the short-cuts presented in this 
chapter are significant even in the context of a two-system hierarchy and 
these short-cuts are positively dramatic when systems are partitioned into 
several subsystems.

Unresolved problems of model design
The logic underlying the decomposition and partition of systems into 
subsystems to which various fine and coarse models can be applied, can 
in principle be extended to any modelling venture involving a natural 
hierarchy. For example, this kind of approach can be extended to input- 
output modelling as is demonstrated by Theil (1967), and in spatial inter 
action terms, these ideas seem immensely suitable for migration problems 
involving intra- and inter-regional movements. Extensions of the frame 
work to handle other problems of missing information such as problems 
of intra-/onal distance, and locational attraction appear promising but at
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every step, improvements in specification, accuracy and computational 
efficiency must be cautiously balanced against theoretical relevance, 
information loss and lower predictive power.

Another possibility is raised by the applications in this chapter. It might 
be possible to use such model inversions as crude design tools involving 
the design of urban structures such as transport networks. Given an 
idealised trip distribution, it is possible from an already calibrated model, 
to find the appropriate distances or travel times, thus giving some idea 
of the form of the relevant transport network. Some sort of iterative design 
process could be worked out in which these applications would fit. Future 
research could investigate all the leads mentioned here, but an important 
piece of work involves the use of these techniques in a wider framework of 
activity-allocation modelling, in similar fashion to the application of the 
hierarchical model to the Cheshire region (Barras et al., 1971). In developing 
faster and more efficient urban models, such applications are essential; 
coupled with the fast calibration techniques described in Chapters 7 and 8, 
these techniques can make the difference between infeasibility and 
feasibility in a practical planning task as well as in research and develop 
ment. Thus, the techniques described here appear to be of some import and 
in the quest to make urban modelling a less formidable and more practical 
proposition in planning practice, such techniques could provide the anchor 
for the design of relevant models.

The problems of model design addressed in this and the previous chapter 
are far from being resolved and the dilemmas inherent within these 
problems suggest that they have a perennial nature. As in the calibration 
problem, the techniques presented here are likely to be changed beyond 
recognition in the next decade as such problems begin to be tackled 
systematically by researchers. Yet there is another dimension of problems 
concerning substantive rather than methodological issues and in the rest 
of this book, such problems of disaggregating urban models and making 
them dynamic will be explored. In this quest, the techniques already 
described in this book continue to play an essential part.



10. Disaggregated residential 
location models

Any examination of the history of urban modelling during the last decade 
reveals a curiously strong distinction between theory and practice. There 
is a class of urban models briefly referred to in Chapter 1 which are based 
on essentially theoretical statements of urban phenomena and the develop 
ment of such models has been largely governed by mathematical analysis 
of their causal structures. In contrast, the model designs already introduced 
in this book have been constrained by the need to construct operational 
tools capable of being used in forecasting, and the emphasis here has been 
on empirical rather than theoretical analysis. Yet the distinction between 
these two classes of model becomes even sharper when their formulations 
are contrasted. Theoretical models of urban structure tend to be deeply 
rooted in the micro-economic theory of both the consumer and the pro 
ducer and usually their formulation is highly abstract and exceedingly 
elegant. As these models are stated using continuous mathematics for ease 
of analysis, the spatial dimension is difficult to handle comprehensively yet 
such models display a richness of detail which is lacking in their more 
operational counterparts.

Operational models of urban structure, on the other hand, are usually 
formulated in discrete mathematics which enables the spatial dimension 
to be easily incorporated. Although such models imply certain hypotheses 
concerning micro-economic behaviour, their previous exposition has shown 
that they tend to be constructed at a level of detail which inhibits empirical 
verification of such assumptions. Therefore, such models are frequently 
regarded as statistical descriptions of urban phenomena in which the focus 
lies on estimating or calibrating the model to fit the data. In the quest to 
design more relevant urban models, there is a clear need to integrate the best 
features of both approaches. In particular, this need has been recognised 
by researchers working with models of urban housing markets and resi 
dential location where the distinction between theory and practice is most 
marked. Already, there have been some notable attempts at building 
operational models of the housing market based on the classical economic 
theory of such markets. An early attempt by Kain (1962) using econometric 
methods is worthy of note and a more recent attempt by Wilson (19696)

257
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at linking micro-economic assumptions with spatial interaction and trip- 
making models has had some success (Cripps and Cater, 1972; Senior and 
Wilson, 1972). The difficulty of handling the spatial dimension using 
the classical approach is highlighted in a paper by Papageorgiou and 
Casetti (1971) who reveal the rather cumbersome nature of any solution 
procedure designed to generalise the classical model.

What then are required in the design of operational models of the 
housing market are forms incorporating both the flexible solution pro 
cedures characteristic of the operational econometric and spatial inter 
action models and the assumptions governing the micro-economic 
behaviour of consumers in these markets. In this chapter, a series of 
related models labelled collectively disaggregated residential location 
models, are presented and elaborated. In particular, the classical theory of 
the housing market provides the key set of assumptions for these models 
which all reflect, to a greater or lesser degree, the micro-economic theory of 
such markets. These models have been applied to two different spatial 
problems based on data from the Reading subregion, and the performance 
of these models is also explored and evaluated in a similar fashion to the 
previous modelling applications outlined in this book. However, before 
these models are stated, it is necessary to introduce and review the classical 
theory of demand in housing markets which forms the basic assumptions 
adopted in these residential models.

Classical approaches to modelling the housing market
The demand by individuals for residential space in particular locations in 
the urban system can be treated as part of the wider theory of consumer 
behaviour. As space at particular locations commands a price or rent, space 
can be handled in the same manner as other economic goods which are 
purchased by consumers. As a preliminary to a statement of the method by 
which space is allocated and purchased by the individual, it is worth while 
briefly reviewing the classical theory in general terms. Any consumer con 
fronted by the purchase of a set of goods xlt xz, ...,xm will attempt to 
maximise the utility U associated with various combinations of these goods. 
Utility must, however, be maximised subject to the constraint that the 
consumer spends no more and no less than his income w: this is the so- 
called budget constraint. Formally, utility is expressed as a function of the 
set of goods,, U=U(x,,x»...,xm}, (10.1) 

and (10.1) is maximised subject to
m

w - S Pt Xi = 0, (10.2)
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where pt is the price of good xt . To maximise (10.1), a Lagrangian L is 
constructed as follows

/ m \
L = U(Xl,x2,...,xJ + ft(w- L pixA, (10.3)

\ i = i /
where ft is the undetermined multiplier. Differentiating (10.3) with respect 
to each xt and setting the resulting equations equal to zero, leads to the 
first-order conditions for a maximum

|£ = Ux -ftpt = 0, i = 1, 2, ..., m, (10.4)

where UT . is the partial differential of U with respect to x{ . By mani 
pulating (10.4), the first-order conditions can be written as

%-%• "*
Equation (10.5) can be interpreted as the well-known result that equi 
librium occurs when the ratio of the marginal utilities is equal to the ratio 
of the prices. Differentiation of (10.3) with respect to ft leads to the budget 
constraint in (10.2) being satisfied. The second-order conditions are too 
complex and lengthy to present here: interested readers are referred to the 
appropriate section in Henderson and Quandt (1958) for an elaboration of 
these conditions.

The utility-maximising model presented in (10.1)-(10.5) has formed the 
starting point for all serious contributions to the theory of the housing 
market during the last decade. Most authors have formulated their models 
for the case of a highly idealised city in which housing is distributed sym 
metrically around a pole which contains the source of employment. Thus 
the supply side of such models is implicit rather than explicit and equi 
librium between the demand for and supply of space has usually been found 
by determining the margin of development in the city which in turn deter 
mines the rent profile in the fashion first introduced by Von Thunen (Hall, 
1966). Perhaps the first researcher to develop explicitly the utility-maxi 
mising approach to residential location was Alonso (1964) although the 
approach is implicit in the work of Wingo (1961). The most complete 
statement, however, is to be found in the writings of Muth (1969) who 
examines several different utility functions, thus demonstrating the power 
of this type of analysis in explaining the structure of the housing market. 
Mills (1972) has also adopted this framework in formulating urban models 
which include not only housing but other economic markets.

There has recently been a spate of literature devoted to extending this 
line of research. Among the most important contributions, Beckmann's
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model (Beckmann, 1969) and its revision by Montesano (1972) are 
particularly neat statements of the problem which take account of variable 
incomes in the housing market. Solow (1972) has rigorously built the 
transportation component into the model, thus reflecting such phenomena 
as congestion, while Casetti and Papageorgiou (1971) have generalised 
the Alonso model and derived explicit density and rent profiles from their 
analysis. Yet in all of this work, the authors find it difficult, although not 
impossible, to generalise their conclusions to cities with many centres of 
employment and other imperfections in the real market.

As a demonstration of the pertinent conclusions from this stream of 
analysis, consider the following statement of utility which is a function of 
the amount of residential space demanded called q, and a composite of all 
other goods demanded called z. For an individual in the market, this
function can be written as .U = zaqb , (10.6)

where a and b are parameters reflecting the relative importance of z and q. 
Equation (10.6) must be maximised subject to the budget constraint which
is now stated as w-vz-s(r)q-cr = 0. (10.7)

In (10.7), v is the price of the composite good z, s(r) is the price or rent of 
the space q demanded at location r and c is the unit cost of transport. The 
location r refers to the distance between the location of employment and 
residence. Maximising (10.6) subject to the budget constraint in (10.7) 
yields two first-order conditions which are written as follows

^ = — (10.8) bz s(ry ^ '

*o=-c. (10.9)

Equation (10.8) has the same role as (10.5) explained previously whereas 
(10.9) implies that the marginal cost of purchasing space at r must be equal 
to the marginal savings in transport cost. Explicit demand functions for the 
quantity of space demanded at any location and the demand for the com 
posite good can be found by expressing q and z in terms of each other in 
(10.8) and substituting the results into (10.7). Solving for q and z gives

(1-1) 0-
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where t\ = bl(a + b). Equations (10.10) and (10.11) imply that the total 
expenditure on space and on the composite good z demanded at any 
location r are constant proportions of the budget. This completes the 
statement of the classical model and now it is necessary to examine the 
spatial implications of this approach.

Spatial analysis of the classical model
The main type of spatial analysis of the classical model concerns the form 
of the price or rent function s(r) and the spatial demand and supply 
relationships in an idealised monocentric radially symmetric city bounded 
at radius R. Analysis of the form of the rent profile s(r) has suggested that 
as the distance r increases in any direction away from the pole, which is 
usually taken to be the CBD, the function s(r) is monotonic decreasing. 
A particularly cogent demonstration of this result is given by Solow (1972) 
but Mills (1972), Muth (1969), Beckmann (1969) and Casetti and Papa- 
georgiou (1971) all present similar results. Of some interest is the possibility 
that this function might take a negative exponential form for this would 
imply that the density function q~l would also be negative exponential. 
Muth (1969) has shown that this result could occur if the own-price 
elasticity of demand for space is —1. Indeed, Muth (1969) argues that 
empirical evidence justifies this value for the elasticity. To demonstrate 
this result more formally, the demand function in (10.10) can be written as

where G is now constant. Substituting for q in (10.9) above gives a dif 
ferential equation which can be solved for s(r)

*——*. 00.13)

Then solving (10.13), the rent function s(r) is

j(r)= gexp(-Ar), (10.14)

where Q is the rent at the CBD or at the edge of the CBD when there is no 
housing at the centre. The parameter A is defined as cjG. A similar analysis 
for q-1 shows that the density function is also negative exponential.

With regard to the demand and supply of space in the idealised city, 
most researchers have assumed that the supply of space is fixed, and that 
land is available for housing between r = 1 and r = R. If at distance r,
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a fraction 0>(r) of land is used for housing, then the population P(r) con 
tained within a small ring of width dr is given as

P(r) = 2ffO(r) rq~\

Note that this analysis can be easily generalised to other monocentric 
cities where a pie-slice of 2n-6 radians is not available for development 
(Mills, 1972). Then the total urban population P must satisfy

= £ P(r)dr = 2n fo(r)^-1 dr. (10.15)

Generally, (10.15) must be solved iteratively together with (10.9)-(10.1 1). 
This approach to the supply side of the housing market is somewhat crude 
although it has been demonstrated by Muth (1969) that these conclusions 
are not substantially altered when housing producers are considered 
explicitly. In the ensuing analysis, the emphasis will be restricted to the 
demand side of this model and the supply of housing will be taken to be 
exogenously determined.

The limitations of the classical approach in providing explicit formula 
tions for operational models can be clearly seen in the previous exposition. 
The assumptions of monocentricity, and uniformity of utility between 
individuals must be relaxed in designing realistic residential location models. 
Although there have been empirical tests concerning the form of the 
density and rent functions on strongly monocentric cities such as Chicago, 
the classical model can never be operational in the sense in which discrete 
urban models are operational. Indeed, it can be argued that the purpose of 
the classical approach is to provide insights into certain basic conditions 
which must be represented in any operational model if it is to be at all 
relevant. It is in this spirit that the following series of residential models is 
presented.

Elementary residential location models
Perhaps the most important spatial relationship suggested by the previous 
analysis involves the demand function relating the demand for space to its 
price and to the individual's budget. This relationship which is presented 
in (10.10) can be rewritten as

qs(r) = i/r(w-cr), (10.16)

where the horizontal bars denote averaging. Equation (10.16) suggests 
that, over the whole population, the average price paid for housing is equal 
to the average expenditure available. Thus, the strong conditions implicit
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in (10.10) have been relaxed to take account of imperfections in the market 
caused by land taxes and subsidies, differences in tastes, planning controls, 
and other factors. Although it is certain that the average price paid for 
housing co-varies with income, within any income group both price paid 
and expenditure available are likely, to some extent, to vary independently 
of each other. Such a conclusion can be derived by considering variation in 
the parameters a and b in the utility function in (10.6). However, there are 
many other factors which affect the variance in price and expenditure and 
such imperfections in the market must be accounted for by any operational 
model.

To introduce residential location models which attempt to build on these 
micro-economic assumptions, it is worth while tracing the development of 
such models from the simplest case. There are two reasons for this : first, 
several of the models developed in this chapter and applied to the Reading 
subregion are based on these simpler forms, and second, the rationale for 
making these models more complex and hopefully more realistic can be 
presented as it has evolved. The basic residential location model which has 
been quite widely applied within the context of the more general activity 
allocation model is well known and has already been presented formally 
in (2.75)-(2.78). That model is formulated as an attraction-constrained 
model in Wilson's terms (Wilson, 1969 a, 19696), although in this chapter, 
all the models have the reverse form which is production-constrained. 
A simple two-parameter model based on (2.75)-(2.78) is applied here and 
is given as _ I/A I ._AJ noi71

1 = A Z" c i > U U - l I)

All terms are as defined previously but note that Hj is now the amount of 
housing in zoney. This model is subject to the production constraint

i - *'
The appropriate maximum-likelihood equations used in the solution of 
(10.17) and (10.18) can be derived from the analysis in Chapter 7 and are 
stated as „__ ,. „ = ^rXln H (10.20)

In cti = £2r*. In Cii . (10.21)
i j i 3

Note also that Tfi are the observed, Ttj the predicted trip values.
In developing these models towards the classical theory presented above, 

disaggregation of variables into discrete classes is essential. As a first step,



264 URBAN MODELLING

the model in (10.17) can be disaggregated into income groups. Then T"3- 
now represents the numbers of workers living in i and working in j and 
earning an income in the group w. Other variables can be appropriately 
notated using w as a superscript. One version of this disaggregated model 
can be written as

exp (- Ajfcw), (10.22)

. (10.23) '=
i 

This model is subject to the constraint
£f, (10.24)

and the appropriate maximum-likelihood equations can be written as
= ?S 7Tf In Hf, (10.25)

i i

= SS7yy%. (10.26)

Note that the asterisk denotes an observed value and not summation as is 
used by some authors. A third model which has been developed replaces 
the two-parameter term in (10.22) by a modified gamma function, or more 
specifically by the function due to Tanner (1961). This model has the form

T% = AfEfc^ exp (-Ajfay), (10.27)

Af = l (10.28) Sc-A exp(-A^ci}.) 
i

Equations (10.27) and (10.28) are subject to (10.24) and the maximum- 
likelihood equations are given by (10.26) and a further equation

g In cti = SS rj}* In cti . (10.29)

In the above description, the maximum-likelihood equations have not 
been scaled by the total trips in the appropriate system or subsystem but 
this could easily be achieved, if required.

Residential location models based on simple micro-economic 
assumptions
The introduction of a micro-economic component into residential location 
models based on spatial interaction was first suggested in a remarkable



Residential location models 265

paper by Wilson (19696) which is also reproduced in his book (Wilson, 
1970a). Wilson proposed a production-attraction constrained model in 
which the focus was upon distributing persons earning income w to 
housing of type k, rather than allocating persons to housing in a particular 
zone. The relevant constraints are stated as

= H > (10-30)
i w

a .
ijYYTV'.fc — Fw (\(\ -1 — t-'i- \i\).:

i k

The distribution of trips according to the constraint equations (10.30) and 
(10.31), is also influenced by what Wilson calls the budget term; this is a 
term which suggests that the average person balances his budget with 
regard to the terms in (10.7) but that there are individuals who expend 
more or less than their available resources. The distribution around this 
average is assumed to be normal, and this logic is reflected through an 
additional constraint equation of the form

222 Tf <%)]* = o-l. (10.32)
i i k

skj is the price of house-type k inj and cf} is the amount expended on travel 
which can be quite different from c tj . <r* is a variance term showing the 
total variation around the mean which in this case is a mean value of zero. 

The appropriate model derived by Wilson using the method of entropy- 
maximising, can also be derived heuristically. The model is written as

* exp (- X£ci}) exp {- *?[sf -*«(»-$)]*}, (10.33)

nn 341 -»-

Ej = 22 /W exp (- A?c<,) exp {- An.tf-^»(W -<$)]•}' (10' 35)
i w

The appropriate maximum-likelihood equations for this model include 
(10.32) together with

1 '"*/" _ VYYT"**/- (\(\ 1f.\ij Cn — Zi2j2j-i a Cij- (.lu.joj
i j k i j k

In the rest of this section, the budget term is not written out explicitly but 
is rewritten according to the following substitution

10-2
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The budget term in the above equations then becomes

A version of Wilson's model which has been fitted to the Reading sub- 
region by the author and his colleagues (Cripps and Cater, 1972) is based 
upon a production-constrained residential location model. This model 
which is obtained by dropping constraint equation (10.30), can be written

JJJ* = A^EVH1} exp (- AJfa,) exp [- A?(>$)«], (10.37)

(1 °' 38)i exp (- Ajfa,) exp [- A^OW
j k

The maximum-likelihood equations are the same as those mentioned above 
but the model not only distributes persons between incomes and house 
types but also locates them in space.

A further version of the model with three parameters, that is an additional 
parameter on house type H^, has been fitted. This model is a little more 
consistent than that in (10.37) and (10.38) and can be written as

rjj* = AtE?(HfyS exp (- A-c,,) exp [- A^)2], (10.39)

A W __ ____________________________ I ____________________________ ,-IQ AQ\1 *

An additional maximum-likelihood equation related to A£; is now required 
and this is given by

f In H* = 22S Tff* In H$. (10.41)
i j k i i k

Although these models take account of budget considerations, there are 
immense difficulties in finding an interpretation for A"', as will be discussed 
a little later, and to counter such problems, another model based on a 
somewhat more direct statistical logic has been applied. This model can 
best be discussed in probabilistic terms and the following section is con 
cerned with the statement of this model.

A probabilistic residential location model
An analysis of the budget balance equation in (10.32) is somewhat 
difficult if an explicit statistical comparison with conventional variance 
functions is sought. It appears that &1, is a type of co-variance, rather than 
a simple variance statistic, measuring the amount of co-variation between 
the distribution of rents or prices of housing and the actual expenditure
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distribution on housing from individual budget allocations. The confusion 
over interpreting the parameter Ai" alluded to above is probably caused by 
this difference from conventional usage. Therefore a more direct statistical 
model accounting for both variance and co-variance in these two distribu 
tions and based upon the standard bivariate normal distribution has been 
proposed. It is important to note that this model is no more 'correct' than 
Wilson's model although the parameters are easier to interpret, and in the 
event, the model is considerably easier to calibrate.

To introduce this model, a probability p^f is defined which gives the 
proportion of persons working in i and living in a house type k at j for a 
particular income group w. This probability is defined from

nrwk 
wk _ 1 i]

i i k

These probabilities sum to 1 for each income group w and the model 
estimating their value is derived according to the following constraint 
equations reflecting variation within the housing market. Two constraints 
relating to the variance in the rent-price distribution {s%} and the housing 
expenditure distribution {\jfw(w — c*,/)} are first presented. The appropriate 
constraint equations can be stated

, (10.42) 

= <- (10.43)
i j k

The constants ^ and nz in (10.42) and (10.43) respectively refer to the 
relevant means of these two distributions. The co-variation can now be

written as ESS/W^i) [^Of-cfc)-^ = <& (10.44)
i j k

To simplify the following presentation, the price and expenditure distribu 
tions are redefined as k _ k

Xj = Sj — /*!,

and «i. . .- j, vyl] = if(w-c*j)-p2-
The probability model consistent with ( 1 0.42)-( 1 0.44) can now be presented. 

The model has three parameters, one relating to each of the three con 
straint equations and is based on the following standard form

«* = exp -
»' 2 ' 2-' l ' }

j k
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Equation (10.45) is the discrete form of the bivariate normal distribution 
(Mood and Graybill, 1963) based on an assumption that the partitioning 
of the continuous density is into equal sized intervals or units. If this is the 
case, then a good first approximation to the parameters of the model in 
(10.45) can be taken from

2(1-P2 

1Ar = 27r:
and

p is the correlation coefficient which can be estimated using bivariate 
regression analysis and this represents the most appealing feature of the 
model for it means that the iterative and often time-consuming calibration 
procedures characteristic of intrinsically non-linear urban models can be 
avoided. An interpretation for the parameters can also be made at this 
stage: \'{ and Ajf help to scale the probabilities so that the expected means 
and variances are reproduced by the model. Clearly, the values of Ai'' and 
AJJ' will be partly related to the values of cr2,^ and CT* v The parameter A£' 
controls the co-variation between prices and expenditures and the range 
of p is between — 1 and + 1 . If there is zero correlation, then the co-variance 
must also be zero and the bivariate model then becomes the product of two 
univariate densities. It is difficult to argue what the value ofp is likely to be 
on a priori grounds for this would anticipate the degree of randomness 
inherent in any particular housing market. However, on intuitive grounds, 
p is likely to be positive for this would imply that location had a measurable 
effect on the purchase price of housing.

The means /i 1 and /* 2 can also be set equal to one another according to 
the budget balance argument contained in (10.16). Then rewriting (10.16) 
using the notation of this section gives

SSS/»J5*4 = vKw-SSS^ft). (10.46)
i j k i j k

From (10.46), ijr, the proportion of the budget available for housing after 
transport costs have been deducted, is calculated from

HO 471
j k i i k



Residential location models 269

The relationship between the model in (10.45) and the models derived from 
Wilson's work given in (10.30)-(10.41) can be related and compared 
formally; furthermore, this model can be derived using the entropy- 
maximising method (Tribus, 1969) and these extensions are carried out in 
a related paper by the author (Batty, 1972c) in which a slightly different 
interpretation and presentation of some of the material in this chapter is 
given.

The final step in outlining this model is to embed it in the spatial inter 
action framework used in making it operational. Two versions of the 
model both using the probability distribution {p'$} have been designed and 
these are stated below. The first model is unconstrained in the sense 
defined by Cordey-Hayes and Wilson (1971) and described in Chapter 2. 
For each income group w, the total numbers of workers £"' are allocated 
to both workplace and residence using the following equation

Tff = £">?/'. (10.48)
Note here that the workers in each income group E"' are calculated by 
summing (10.31) over i

. (10.49)
i i } k

The total number of workers purchasing house type k in zone j is
^ = SrJSA- = E«-S/>J5*, 00.50)

< i

and the total number buying all types of housing at j is
Pt = 22 Tff = £"'Z W- (10.51)

i k i k

The performance of this probability model can be explicitly compared 
with the real situation by calibrating the parameters using (10.48)-(10.51) 
or by comparing predicted to observed probabilities. The second variant 
of the model is production-constrained and each set of parameters Aj", Ajf 
and AJJ" relates to the particular production zone i. In other words

ZS< = i.
i k

The model has a similar form to (10.48)
rwfr _ F"'n"'*' nc\ ^T\ i] - ^iPii » (11OZ)

where it is clear that (10.52) satisfies the production constraint which is 
verified by summing (10.52) over / and k

= Ejr. (10.53)
i k
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Several other variants of this probability model could easily be designed 
according to various accounting systems or by adding explanatory vari 
ables measuring locational cost or benefit. In the next section, however, 
the two models outlined here together with the models described in pre 
vious sections will be calibrated to the Reading subregion.

Application to an urban housing market
The probability model has been applied to a subregion centred on the town 
of Reading which is located in the outer fringe of the London region. In 
terms of population and employment, the area has grown quickly in the 
last two decades and the population of the area had reached 260000 by 
1966. Average incomes are among the highest of any urban area in Britain, 
and the subregion has all the outward signs of economic prosperity such 
as low, almost negligible unemployment, growth in the so-called 'boom' 
industries such as electronics and scientific research, extreme pressure on 
land for housing and industry, and fast inflation in land and house prices. 
The model has been fitted using data collected for 1966, and as a pre 
liminary to discussing data sources, it is worth while examining certain 
requirements for disaggregating the spatial system, income distribution 
and house types into various discrete groups.

There are many requirements relevant to zoning the spatial system but 
perhaps the most fundamental relates to the arguments presented in 
Chapter 8 concerning the number of zones necessary to approximate the 
various spatial distributions to a sufficient level of accuracy. Work by 
Broadbent (1969 a, 19696), already described, and by Angel and Hyman 
(1971) suggests that, for any area with the dimensions of this subregion, the 
desirable number far exceeds this possible maximum number of zones 
available from the data base. Two zoning systems have been defined, the 
first a prototype based upon a division of the subregion into 23 zones, the 
second a more complete system based on 64 zones. The use of these two 
zoning systems reflects the order in which the models presented here were 
developed, and their geometry is shown in Figure 10.1. Similar arguments 
apply to the partitioning of the income and house-type distributions, but 
from practical considerations, only three income groups and five house- 
types can be defined.

Another consideration involves the size of the various zones or class 
intervals. The mathematical form of the model depends upon the assump 
tion that each of the class intervals are equal. This is not often the case for 
boundaries and partitions have to be based on ease of definition, and there 
fore, if such intervals are of variable size, the model must in some way 
account for this. By weighting the probability equation by class interval
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56 62 49

Urban areas

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Abbey
Caversham
Norcot
Minster
Redlands
Christchurch
Woodley
Shinfield
Burghfield
Tilehurst
Kidmore End
Shiplake
St. Nicholas Hurst
Finchampstead
Wokingham
Arborfield
Mortimer
Pangbourne
Goring
Woodcote
Peppard
Henley
Wargrave

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Abbey
Battle
Castle
Caversham
Christchurch
Katesgrove
Minster
Norcot
Park
Redlands
Thames
Tilehurst
Whitley
Norrens
Westcott
Langborough
Evendons
West Wokingham
Embrook
Beech
Burghfield
Englefield

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Grazeley
Pangbourne
Purley
Stratfield Mortimer
Sulham
Sulhampstead
Sulhampstead B.
Theale
Tidmarsh
Tilehurst parish
Wokefield
Arborfield
Barkham
Earley
Finchampstead
Remenham
Ruscombe
St. Nicholas Hurst
Shinfield
Sonning
Swallowfield
Twyford

45
46
47
48
49
50
51
52
53
54-
55
56
57
58
59
60
61
62
63
64

Wargrave
Winnersh
Wokingham Without
Woodley and Sandford
North Henley
South Henley
Checkenden
Eye and Dunsden
Goring
Goring Heath
Harpsden
High more
Kidmore End
Mapledurham
Rotherfield Greys
Rotherfield Peppard
Shiplake
Sonning Common
Whitchurch
Woodcote

Fig. 10.1. The 23 and 64 zone systems in the Reading subregion.

size such problems can be handled, although in the work presented here, 
this has not yet been done (Batty, 19726). The parameter estimates vary 
if the model is so weighted, and therefore the results reported here can only 
be regarded as first approximations, although such approximations are 
likely to be good.

The data base for this study has been compiled from a variety of sources 
but mainly from a special analysis of the 1966 Census of Population. As it
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is not the central purpose of this chapter to discuss the data base in detail, 
the reader is referred to a paper by Cripps and Cater (1972) where this 
problem is exhaustively discussed and elaborated. Classification of the 
population into professional and managerial, white collar and blue collar 
income groups is based on the 1966 Census whereas information pertaining 
to the composition of the average budget in each of these groups was taken 
from the 1966 Family Expenditure Survey. Housing types are classified, 
firstly by tenure into owner-occupied, private rented and public rented 
groups, and secondly the owner-occupied group is subdivided into large 
and small and the private rented group into poor and good condition. This 
classification is not continuous with regard to the size of house-type but 
is based on the present structure of recognisable housing-types in the 
Reading subregion. The rationale for this classification is given by Cripps 
and Cater (1972). The prices which match these house-types have been 
compiled from a special survey of estate agents in the subregion, and at 
this point, it is worth emphasising the doubtful quality of this data and 
the severe difficulties in discounting back and checking the house-price 
data for internal consistency. Rent data in the public sector was obtained 
from the Local Housing Authority records.

The first stage in making operational any model design involves checking 
the data to ascertain whether or not the many commonsense hypotheses 
implied in the model are essentially correct. For example, in this model, 
one hypothesis suggests that average income in the professional group is 
greater than that in the white collar group which in turn is greater than 
that in the blue collar group; also that the different items of expenditure in 
the average budgets are similarly ranked according to income. Table 10.1 
presents the average budget and its composition for each income group, 
and examination of this table does indeed reveal that these hypotheses are 
proved. Only one exception exists, for the average travel cost of blue collar 
workers is slightly greater than that of white collar workers. However this 
is not very significant for the white and blue collar incomes are similar 
in size.

With regard to the average expenditure on each type of house by 
different income groups, there is an implicit hypothesis that for any given 
type of house, professional workers spend more than white collar workers 
who in turn spend more than blue collar workers. Such differences are 
accounted for by location, by variations in taste and most of all, by 
income. There is also an implicit ranking in house prices from owner- 
occupied large to small to private rented good to poor public rented. 
Table 10.2 gives average expenditures on each type of housing for each 
income group and all the hypotheses are proved apart from a deviation in 
ranking in the public sector. Another interesting feature from the data
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TABLE 10.1. Composition of average budgets according 
to expenditures

In £ sterling

Weekly wage
Mean housing expenditure
Mean travel cost
Mean expenditure on the composite
good

Budget ratio \jr
Ratio (1-^)

Professional 
and 

managerial

38.6600
4.1814
0.6472

33.8313

0.1100
0.8900

White 
collar

27.5900
3.1894
0.5604

23.8400

0.1180
0.8820

Blue 
collar

25.5900
2.3224
0.6174

22.6501

0.0930
0.9070

concerns the relative similarity between the white and blue collar groups 
in economic terms. This similarity supports the thesis that real differences 
between these two groups are social rather than economic although a 
significant difference between them does exist in terms of average housing 
expenditure.

TABLE 10.2. Average housing expenditures

In £ sterling

Owner-occupied: large
Owner-occupied: small
Private rented: good condition
Private rented : poor condition
Public rented

Professional
and

managerial

5.2856
3.6700
3.5750
1.9201
0.9182

White
collar

4.7483
3.3789
3.4464
1.8415
0.9260

Blue
collar

3.5887
2.6763
2.6534
1.4358
0.7287

The joint distribution of prices {x%} and expenditures {y$ for each 
income group are diagrammed as three-dimensional solids in Figure 10.2. 
This mnemonic provides an intuitive grasp of the nature of the bivariate 
probability model, for in essence, the task in constructing that model is to 
find parameters which fit (10.48) or its variant to the surfaces contained in 
Figure 10.2. To analyse the detailed shape of these solids, it is necessary 
to present them as probability surfaces. A mapping of the solids onto the 
horizontal plane can be summarised using contours of equal probability.
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These surfaces are presented in Figure 10.3 for each income group, and 
from Figure 10.3, it is immediately apparent that the surfaces are negatively 
skewed on the j^-axes. The calculation of correlation between the xfs 
and y™j's is left until a later section but from Figure 10.3, the correlation 
appears to be low. However, the correlation of expenditure with prices 
over the three income groups is positive and significant. This correlation 
has been computed as 0.3809 (r 2 = 0.1451) which, although low, supports 
the hypothesis that expenditure on housing co-varies with income. Further 
more, this result is of similar magnitude to the one derived by Anthony 
(1970) in association with the econometric model of residential location 
designed by Apps (1970).

Calibration of intrinsically non-linear residential models
The first five residential location models presented in this chapter have 
been fitted to the 23 zone Reading subregion using calibration methods 
based on the Newton-Raphson and Simplex techniques outlined in 
Chapter 7. The two-parameter model described in (10.17) and (10.18) has 
been calibrated using the Newton-Raphson method to solve the maximum- 
likelihood equations in (10.20) and (10.21) from starting points of

Professional and managerial White collar Blue collar

<?, -3

X 
XV 3

-3 Xx#*' <&>'
2000

, 1000
,500

0

Trip frequencies

Fig. 10.2. Bivariate probability distributions as isometric solids.
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Professional and managerial

8 2H 
s.
m
3 o
-C
.£ o-

1-2-1

-3-

0.005

0.02

tW

-3 -2-1

3 

2-

1- 

0-

-1-

-2- 

3

White collar

Blue collar

2 -

1 - 

0 -

-1 -

-2 -

-3 ——I————I————I————I————I—— 
-3-2-10 1 2 3 
Standard deviations in available income

Fig. 10.3. Bivariate probability distributions in the plane.

Aj, A 2 = 0.0. Convergence of the method is fast and the results are 
presented in Table 10.3. Of particular interest in all the five models 
described in this section is the fact that their response surfaces measuring 
the goodness of fit of the trip distributions using the r2 statistic are fairly 
classic in form, in that they are concave-down and unimodal. This result 
is illustrated for the simple model in (10.17) and (10.18) in Figure 10.4, 
where it is clear that the maximum r2 is close to the parameters given by 
solving the maximum-likelihood equations.
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2-

1 -

Fig. 10.4. Response surface for the simple residential model 
based on the coefficient of determination r2 .

TABLE 10.3. Convergence of an elementary residential model 
using the Newton-Raphson method

Start from Aj = 0.0, A2 = 0.0

Iterations
or runs of

model

3
6
9

12

'

A,

0.2225
0.7719
0.5747
0.5760

Normalised
value of
(10.20)

0.0631
0.0593
0.0008
0.0000

^
2.2789
1.1954
1.5178
1.5155

Normalised
value of
(10.21)

0.3103
0.1484
0.0011
0.0000

The two models disaggregated by income group w but excluding the 
budget term have also been calibrated using the Newton-Raphson method. 
The model in (10.22) and (10.23) with maximum-likelihood equations 
(10.25) and (10.26) and the .model based on Tanner's function in (10.27) 
and (10.28) with maximum-likelihood equations (10.26) and (10.29), con 
verged quickly to their best parameter values. The first of these models is 
fairly insensitive to starting values and Table 10.4 presents the appropriate



Residential location models 277

TABLE 10.4. Calibration of residential location model based 
on the function (Hffi" exp (- Af ci})

Professional
group (w = 1):

iterations
or runs

3
6
9

12
13

AJ

0.0000
1.1463
0.1644
0.1663
0.1663

Start from AJ, A* =

Normalised
value of
(10.26)

7.3604
0.7449
0.0617
0.0006
0.0000

•• 0.0000

*i
0.0000
0.3799
0.5698
0.5899
0.5899

Normalised
value of

(10.25)

0.6363
0.1138
0.0097
0.0000
0.0000

Blue collar
group (w = 3):

iterations
or runs

Start from AJ, A| = 0.0000
win ie i;unai 

group (w = 2):
iterations
or runs

3
6
9

12
13

*!
0.0000
0.1800
0.2116
0.2170
0.2170

Normalised
value of
(10.26)

8.2339
0.0410
0.1340
0.0012
0.0000

V
0.0000
0.2327
0.4216
0.4626
0.4637

Normalised
value of
(10.25)

0.8178
0.1580
0.0229
0.0005
0.0000

Start from A», A» = 0.0000

Normalised 
value of 
(10.26)

Normalised 
value of 

(10.25)

3
6
9

12
13

0.0000
0.1594
0.1909
0.1960
0.1960

8.2405
1.0961
0.1316
0.0004
0.0000

0.0000
0.3437
0.5427
0.5797
0.5797

0.6395
0.1357
0.0193
0.0003
0.0000

results for each income group w. In the case of the model based on Tanner's 
function, the procedure only converged from starting points where A™ = 1.0 
and A^ = 0.1. From all other points such as zero, the procedure diverged, 
thus implying that the global optimum exists in a long narrow valley in the 
response surface which can only be located from good first approximations. 
The optimum was located in this case by starting the procedure from 
several different positions and stopping the process if and when it began 
to diverge. These results are presented in Table 10.5.
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TABLE 10.5. Calibration of a residential location model based 
on Tanner's function

Professional
group (w — 1):

iterations
or runs

3
6
9

12
13

V
0.1000
0.0325
0.0752
0.0747
0.0747

Start from A} =

Normalised
value of
(10.26)

2.5644
0.3230
0.0005
0.0000
0.0000

1.0, AI = 0.1

*i
1.0000
1.3390
0.9079
0.9120
0.9120

Normalised
value of
(10.29)

0.3449
0.0684
0.0003
0.0000
0.0000

Blue collar
group (w = 3):

iterations
or runs

Start from A? = 1.0, A! = 0.1
wiiue cuiicu 

group (w = 2) :
iterations
or runs

3
6
9

12
13

A!

0.1000
0.0187
0.1290
0.1254
0.1254

Normalised
value of
(10.26)

3.7004
0.1469
0.0615
0.0002
0.0000

A?

1.0000
0.8067
0.8521
0.9012
0.9013

Normalised
value of
(10.29)

0.4682
0.0602
0.0102
0.0001
0.0000

Start from Af = 1.0, Af = 0.1

Normalised 
value of 
(10.26)

Normalised 
value of 
(10.29)

3
6
9

12
13

0.1000
0.0610
0.1384
0.1400
0.1400

3.3372
0.0904
0.0164
0.0001
0.0000

1.0000
1.2711
0.6085
0.6037
0.6037

0.4059
0.0457
0.0031
0.0000
0.0000

The model developed by Cripps and Cater (1972) given in (10.37) and 
(10.38) was also calibrated using the Newton-Raphson method. The 
results are presented in Table 10.6 in which several major points of inter 
pretation emerge: convergence is extremely fast from starting values where 
Af and Af are zero and only nine runs of each of the submodels, are 
needed to find the best values of Af and Af to four decimal places. Perhaps 
the most important finding from the analysis in Table 10.6 concerns the 
sign of the parameters.
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TABLE 10.6. Calibration of the Cripps-Cater version of 
Wilson's residential location model

Professional
group (w = 1):

iterations
or runs

3
6
9

12
13

Al

0.0000
0.1414
0.1562
0.1568
0.1568

Start from AJ

Normalised
value of
(10.36)

4.6400
0.4256
0.0167
0.0020
0.0000

, AJ = 0.0000

A}

0.0000
-0.0486
-0.0338
-0.0324
-0.0324

Normalised
value of
(10.32)

2.4699
2.2479
0.1675
0.0052
0.0002

Start from A*, A| = 0.0000
VV1111G LUlliU

group (H> = 2) :
iterations
or runs

3
6
9

12
13

*S

0.0000
0.1624
0.2045
0.2087
0.2087

Normalised
value of
(10.36)

5.3748
0.8827
0.0729
0.0001
0.0000

*?

0.0000
-0.0046
-0.0009
-0.0008
-0.0008

Normalised
value of
(10.32)

0.7430
0.5750
0.0165
0.0009
0.0000

Start from Af, A* = 0.0000

group (w = 3) :
iterations
or runs

3
6
9

12
13

A!
0.0000
0.1564
0.1925
0.1952
0.1952

Normalised
value of
(10.36)

0.6202
0.8518
0.0547
0.0003
0.0000

A?

0.0000
0.0066
0.0110
0.0111
0.0111

Normalised
value of
(10.32)

2.9673
0.8257
0.0192
0.0013
0.0000

The parameter A'2" is positive and the final values are of similar magni 
tude to the values found in other models of spatial interaction using 
negative exponential functions of travel cost, for example see Table 6.1. 
In the case of Ajf, however, the sign is the reverse to that hypothesised for 
professional and white collar wage groups, and in all three cases the value 
of Ay is near to zero. The budget term was introduced by Wilson (19696) 
to ensure that most persons allocated by the model, purchased house- 
types which they could afford. In two of the submodels here, the negative
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value of Ai" implies that persons are more likely to purchase housing as 
the difference between available income for housing and house price 
increases. Such a finding is clearly untenable but little significance can be 
attached to these results for, in all cases, the parameters are close to zero. 
In this particular case, the zoning system is probably too coarse to detect 
the variation in house price requisite to the model formulation in (10.37) 
and (10.38), and more realistic results would probably be obtained using 
a finer zoning system. In fact, this was one of the reasons for developing 
the probability model given in (10.45) which is fitted to the 64 zone version 
of the subregion in the next section.

The final model to have been fitted to the 23 zone Reading subregion 
is based on the three-parameter model in (10.39) and (10.40). This model 
has not been calibrated using the Newton-Raphson method but the 
Simplex method has been applied. The results are shown diagrammatically 
in Figures 10.5-10.7 for each income group w. In these diagrams, the 
contours of equal response are difficult to construct, but the response-solid 
could be visualised as a doughnut in which the search is attempting to 
locate its centre. The convergence in this case is quite fast and demon 
strates the flexibility of such unconstrained optimisation techniques. 
A similar presentation in terms of three-dimensional response contours 
is given in a paper by Cesario (1973).

Calibration and empirical verification of the probability models
In this section, the results of fitting the two probability models given in 
(10.48) and (10.52) will be presented and discussed, and a simple test of 
each model's performance as a spatial interaction model will be outlined. 
The model given in (10.48) will be referred to as the 64 zone model in 
which the parameters are estimated for the total system of zones, whereas 
the model given in (10.52) is called the origin zone model for the parameters 
are estimated for each origin zone in the system. In each of these cases, the 
parameters /(%', A^ and A^1 are taken from parameter estimates for the 
continuous bivariate normal distribution. The variances and correlation 
associated with these parameters are calculated using standard methods of 
statistical analysis for grouped data.

The parameters of the 64 zone model are shown in Table 10.7 and it is 
immediately clear from the values presented in this table that the magnitude 
of each parameter is affected by the magnitude of its associated variance 
statistic. Perhaps the most interesting result displayed here, however, 
involves the small negative correlations which exist between house prices 
and expenditures in each income group. This is inconsistent with the 
hypothesis advanced earlier that these correlations should be positive but



Professional and managerial population 

3 .+0.01

Fig. 10.5. Calibration of 3-parameter professional-managerial model by the 
Simplex method.



White collar population 

3 0.01

Fig. 10.6. Calibration of 3-parameter white collar model by the Simplex method.



Blue collar population 

3 0.01

Fig. 10.7. Calibration of 3-parameter blue collar model by the Simplex method.
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such anomalies are obviously accounted for by factors which are not 
included in the classical theory. In fact, this point illustrates the essential 
difference between the classical approach and the approach adopted here. 
Although such anomalies cannot be explained by the classical model, this 
does not discount the value of this model for its purpose is to lay bare 
certain fundamentals. The probability model, on the other hand, assumes 
such fundamentals but has enough flexibility to account for other factors 
which might appear to be random. In one sense, these low correlations 
reflect the performance of the classical model whereas such statistics are 
accepted by the probability model as independent variables.

TABLE 10.7. Parameter estimates for the 64 zone 
probability model

Professional 
and managerial 

(w= 1)

Variance in prices
Parameter A^
Variance in expenditures
Parameter Af
Co-variance
Parameter AJ
Correlation p

2.5428
0.2029
0.0031

162.5684
-0.0158

2.0329
-0.1769

White collar
(M>=2)

2.7273
0.1845
0.0026

189.7340
-0.0069

0.9704
-0.0819

Blue collar 
(w =3)

16025
0.3126
0.0019

259.7956
-0.0025

0.8357
-0.0463

A similar set of parameters has been estimated for each zone of the 
origin zone model given in (10.52). These parameters vary around the 
values presented in Table 10.7 for the 64 zone model and the distribution 
of these values appears to be normal. These distributions are presented in 
Figure 10.8 for each parameter and each income group. An explicit set of 
parameter values is shown in Table 10.8 for origin zone 1 - Central 
Reading, and a comparison with Table 10.7 reveals a strong similarity in 
the magnitude of these values. The actual performance of these models has 
not yet been discussed, and as one of the purposes of this probability model 
is to predict locations by means of interaction, it is necessary to compare 
the trips predicted by the model with the trips observed.
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Fig. 10.8. Distribution of parameter values for the origin zone model.

TABLE 10.8. Parameter estimates for origin zone 1 - 
Central Reading

Professional 
and managerial

Variance in prices
Parameter A"
Variance in expenditures
Parameter A£
Co- variance
Parameter A 3
Correlation p

(w = 1)

2.7392
0.2106
0.0017

333.4630
-0.0251

6.1237
-0.3653

White collar
(w = 2)

2.6424
0.2014
0.0020

263.6402
-0.0179

3.5886
-0.2462

Blue collar
(w= 3)

1.5227
0.3319
0.0011

429.4071
-0.0044

2.4875
-0.1041
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In Table 10.9, various performance statistics measuring the corre 
spondence between observed and predicted trips in each income group 
are presented for both the 64 zone model and the origin zone model for 
origin zone 1. In the case of the 64 zone model, the performance is rela 
tively poor, whereas when the origin constraint is introduced, as in the 
case of the origin zone model, the performance is dramatically improved. 
This is expected for the origin zone model utilises much more information 
about existing locational patterns in the system than the 64 zone model. 
The performance of the origin zone model is made more explicit in 
Figure 10.9 where the flows from zone 1 are mapped, and in Figure 10.10 
where these same flows are graphed against travel cost. At this stage, such 
models are ready for forecasting if they are judged to perform well enough. 
It is useful, however, to examine the way in which these models could fit 
into a wider framework of activity allocation such as the one which is 
described in the concluding section to this chapter.

TABLE 10.9. Performance of the 64 zone and origin 
zone probability models

64 zone model Origin zone modelj

Professional Professional
and White Blue and White Blue

managerial collar collar managerial collar collar

Correlation coefficient
r for trips 

Coefficient of determina
tion c 2 for trips 

Slope b of regression

0.2136

0.0456

0.0430

0.2251

0.0506

0.0458

0.2557

0.0653

0.0592

0.7971

0.6353

0.5724

0.8649

0.7480

0.7241

0.8055

0.6489

0.5938

Intercept a of regression 3.7711 10.2806 6.8708 26.1241 72.430642.3899 

line} ____________________________________
t The statistics produced for the origin zone model are for origin zone 1.
% The slope b and intercept a are from the regression of predicted on observed trips

Tjf =

A necessary comment on the efficacy of this model must be made here 
for it is clear that many variations in the model design could be made. In 
some senses, this reflects the power of the approach. For example, the 
probability distributions may not approximate the bivariate normal, and 
if this is so, then clearly other probability models based on perhaps the
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Fig. 10.9. Observed and predicted flows from origin zone 1 - 
Central Reading.
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bivariate gamma may be more suitable. In the particular examples 
discussed here, some such change in the probability function is probably 
required although in adopting such changes, it is important to base new 
functions on theoretical as well as empirical criteria.

An activity allocation framework for residential models
There are several ways in which the models outlined above can be extended, 
and as a conclusion, some of the most promising extensions will be briefly 
mentioned. An ambitious theoretical, possibly intractable but nevertheless 
important development might consist of a derivation of the budget term 
models directly from utility theory. Such a derivation might depend upon 
establishing some explicit relationship between utility-maximising and

4000n
•o
i

3500-
E
CN'o

3000-

s-

Observed white collar trips 

"~—•——• Predicted white collar trips

_,-- Observed blue collar trips 

Predicted blue collar trips

Observed prof.-manag. trips 

Predicted prof.-manag. trips

0 2 4 6. 8 10 12 14 16 18 20 22 

Minutes of travel time from zone 1: Abbey ward: Central Reading

Fig. 10.10. Graphical distribution of flows from origin zone 1 - 
Central Reading.
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entropy-maximising, although in view of recent advances in this area, it is 
possible that the approach of Golob and Beckmann (1971) could now be 
used to derive a similar model. It is a fairly straightforward matter to 
include location explicitly in the utility function but this has not been 
pursued here as such functions tend, at the present time, to be arbitrarily 
conceived. A second extension involving a much more straightforward 
application, might be an attempt to model the distribution of house prices 
which would then be input to the budget term models. The feasibility of 
this type of modelling would largely depend upon the quality of house 
price data which in this application leaves much to be desired.

Perhaps the most exciting development would be to embed these types 
of model in a more comprehensive approach to modelling the urban 
system. By including, for example, the retail sector, several economic 
relationships concerning the distribution of expenditures other than 
journey to work costs and house prices, might be modelled. Such a model 
might be based on the following set of equations in which the probabilities 
of location and interaction are now expressed as absolute frequencies. The 
budget constraint might take the following form for each income group w 
with a population P in any group.

:,.,, (10.54)
i j k i j k ' j I j I

where Sir is the expenditure on other goods by persons living at j and 
purchasing goods at /. Note that cjt is the transport cost incurred by 
purchasing the composite good and w is a trip generation rate. Dividing 
(10.54) by P would yield the budget equation for the average individual 
with income w. Furthermore, the average amount spent on the composite 
good vz is clearly vz = ££ V?- (10.55)

j i
The variation in house prices around the mean ^ called x* is the same as 
that given in a previous section but the variation in expenditure on housing 
is redefined as ^ = w _ c*_ W _ S ^|C>|//V . (10.56)

i
Equation (10.56) is the first basic equation in the comprehensive activity 
allocation model.

The proposed framework essentially relates together residential with 
retail location. The residential model could be based on the probability 
model in (10.48) which might take the following form

T>* = p "-"^i "ivj/ -avyj ~a\"f \sjju (10.57)
-ij ^i ̂ i ̂ i r ~\ tiif L-\ o ~v ui/- in\o "v ui/. 1f\ / _ ?*i\i * V * /

i i k
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The retail location model could be based on the well-known shopping 
model first made operational by Lakshmanan and Hansen (1965) and 
would predict the flow of expenditure S;7 from the residential location j to 
the shopping centre /.

(10.58)-„ "^ «S/7exp(-^,)'
i

FI is the attraction of the shopping centre at / and T and 6 are now para 
meters to be estimated by calibration. Equations (10.57) and (10.58) are 
interdependent through the location of population, the cost of the journey 
to work and also the cost of the journey to shop. Clearly, some iterative 
solution procedure involving (10.56)-(10.58) could be devised to ensure 
consistency between input and output values. Moreover, a further 
dependence between (10.57) and (10.58) could be set up if the model 
involved some economic base relationship such as that used in the 
Pittsburgh model (Lowry, 1964). 

Working population resident in zone j is easily predicted from (10.57)

P. = 2S2Tf, (10.59)
i k

and expenditures St in each shopping centre /can be predicted from (10.58)

5, = I,Sfl . (10.60)

The elements of a workable urban model are contained in (10.54)-(10.60) 
and these provide a sound basis on which to extend the activity allocation 
models described in Chapter 3 et seq. As a further speculation, it is hoped 
that eventually this kind of comprehensive model will be able to handle the 
composite good in a more satisfying way by accounting for varying prices 
between shopping centres and varying demands for such goods in different 
residential locations.

In the quest to link urban economic theory more closely to numerical 
urban models, the approach of this chapter appears promising. Even more 
important is the possibility that such models may be able to handle or at 
least provide insights into the thorny problems of resource allocation, 
taxation and subsidy in housing markets. Data availability inevitably 
imposes a limit on what is feasible in an operational sense, yet it is often 
surprising what can be achieved using the most meagre data sources. 
A major purpose of urban modelling must ultimately involve forecasting 
in the context of planning and it is to be hoped that the approach presented 
here might represent some small step towards this goal. An alternative and
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equally important extension of activity allocation models based on making 
such models, dynamic in the temporal sense, provides the focus for the 
final two chapters in this book. Although disaggregation is not formally 
discussed in a dynamic context, it would be possible to build disaggregated 
dynamic models, data and other resources permitting, and although such 
connections between this and the next chapters are not explicitly made, 
readers might care to speculate on such developments.



11. Urban dynamics

Chorley and Kennedy (1971), in their recent book Physical Geography: 
A Systems Approach, make a comment extremely pertinent to the modelling 
of urban systems. These authors, in discussing the structure and behaviour 
of systems in general, state that a major feature of system behaviour is the 
relaxation time or the time taken for the system to respond to external 
stimuli and to return to a steady state or equilibrium condition. Chorley and 
Kennedy continue by stating that the areas in which there is greatest 
conflict in methodology concern systems whose relaxation times are 
difficult, if not impossible, to observe and they quote the case of urban 
systems. This difficulty in observing relaxation times or 'lags' in urban 
systems has meant that model-builders have concentrated their resources 
on modelling the structure rather than behaviour of such systems and 
consequently few models exist which attempt to simulate the dynamics of 
change in urban systems. From a systems viewpoint, such bias reflects an 
incomplete and only partial approach to modelling, for the basic pro 
positions of systems theory imply that system structure cannot be inter 
preted without knowledge of system behaviour and vice versa. Indeed, 
most statements of general systems are framed in terms of system structure 
and behaviour (Klir and Valach, 1965).

The models introduced so far in this book have avoided explicit con 
sideration of system behaviour and are usually described by a class of 
analytical method which economists call comparative statics. Such models 
attempt to represent the static structure of urban systems at one cross- 
section in time without recourse to any explanation of the changes in 
structure over time which constitute system behaviour. Yet to model urban 
structure in a static way always involves some implicit measure of the 
system behaviour for different behaviours lead to different structures.

Perhaps the most important concept involved in any dynamic approach 
revolves around the idea that urban structure is an inevitable reflection of 
several complex processes of change in the urban system (Batty, 1971). To 
understand structure, it is therefore essential to explore the processes, past 
and present, which have generated that structure. One of the central 
problems of the static equilibrium approach to modelling echoes this

292
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argument over process and structure; of critical importance to static models 
are variables which attempt to measure locational attraction, and the 
difficulties of finding suitable indices of attraction reflecting the locational 
history of the system are paramount. Furthermore, there are severe 
difficulties of building-in constraints on location into static models, and 
also in interpreting the real meaning of such constraint procedures. 
Although Harris (1970) has argued that static equilibrium models are 
preferable for generating the consequences of long-term forecasts in a 
planning context, there is an argument for the use of dynamic models in 
shorter-term forecasting where interest is centred around marginal changes 
in the distribution of urban activity. From a research viewpoint, however, 
there is little doubt that a model of urban dynamics adds a new dimension 
to hypothesis formulation and testing, and provides a considerably richer 
tool for exploring the structure of urban systems.

The recent history of urban modelling both in Britain and North 
America reveals that static models are severely limited as practical planning 
aids in a forecasting and design context. Apart from theoretical criticisms, 
very few applications have in fact been made in practice and, consequently, 
there is little experience on which to draw in assessing the difficulties and 
advantages of such applications. This dearth of practical application is due 
to many factors; some argue that the organisational and financial problems 
of implementing models in practice are too severe; some maintain that the 
technical skill is lacking while others argue that the model-builders them 
selves have been somewhat reluctant to push untested models onto an 
unwary profession. Few are willing to admit that the models themselves 
may fundamentally be limited, for the probable truth is that system struc 
ture cannot be modelled separately from system behaviour with any 
degree of success.

In the quest to design relevant and operational urban models, the simple 
models introduced in Chapters 2 and 3 have already been modified by 
variable disaggregation outlined in the previous chapter. In this chapter, 
the rationale for further modification of such models by explicitly building- 
in the time dimension will be considered, and the context will be set for the 
development and application of a large-scale dynamic model presented in 
the next chapter. In some senses, this chapter and the next represent the 
intended focus to which this book has been oriented. These developments 
reach their most complex, and hopefully most realistic, in these chapters, 
although this should not, in any way, suggest finality. Indeed, the argu 
ments of this book only barely scratch the surface of what could and should 
be a much larger endeavour involving many disciplines and many view 
points. In this chapter, the idea of simulation and the peculiarities posed 
by the temporal dimension set the context to a review of several different
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ways in which dynamics have been handled in existing urban models. This 
review attempts to highlight and evaluate certain modelling styles and 
techniques which are to be used in the design of the dynamic model in 
Chapter 12. In particular, linear models, activity allocation models, 
systems dynamics models and macro-economic urban models will be 
described with a view to establishing the ground rules governing dynamic 
model design.

Simulation as a medium for dynamic modelling
The term simulation was referred to in Chapter 1 and two definitions were 
then presented. In popular terms, all mathematical models which involve 
the use of large-scale computational facilities are referred to as simulation 
models. Simulation, however, has a more precise meaning in this context 
than that implied generally, for the distinction is made here, as before, 
between analytic and simulation methods of modelling. Analytic methods 
of modelling involve the use of mathematical analysis to arrive at explicit 
equations representing the behaviour of the system, whereas simulation 
methods are used to derive the behaviour of the system when the system is 
too complex to be modelled using the more direct analytic approach. 
Elton and Rosenhead (1971) point out the essential characteristic of 
simulation when they say '... one does not arrive at explicit equations 
expressing the behaviour of systems of this general type; rather one 
achieves a number of potential histories of the system, from which the 
effects of possible modification to the system can be predicted'.

Simulation is almost exclusively used to model the behaviour of systems 
and this implies that the time dimension is basic to such procedures. 
Indeed, many authors define simulation as the method of dynamic 
modelling. For example, Naylor (1971) defines simulation as 'a numerical 
technique for conducting experiments with certain types of mathematical 
models which describe the behaviour of a complex system on a digital 
computer over extended periods of time'. In this case, Naylor associates 
simulation with computation as well as system behaviour and the time 
element. A good example of the use of simulation in the social sciences is 
provided by the work of Orcutt et al. (1961); these researchers show that, 
although deductive solutions to their demographic model are theoretically 
possible, the practical difficulties of obtaining solutions in this way are so 
great that simulation is the only feasible method of modelling.

This discussion raises an important point concerning the suitability of 
the system being modelled to simulation. Although most models of urban 
development have some part of their solution reached by simulation, 
the central feature of simulation concerns the repeated application of the
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model's equations in a sequence leading to a solution. It is immediately 
apparent why dynamic models are suited to the technique of simulation 
for the sequential nature of time forms the organising process on which the 
simulation can be based. Indeed, many of the classic simulation models 
such as the industrial dynamics models of Forrester (1961) and the house 
hold sector models of Orcutt et al. (1961) are structured around the tem 
poral dimension. Apart from the fundamental advantages which simulation 
techniques have in dealing with complexity, the concept of simulation is 
deeply embedded in the experimental approach to understanding natural 
and artificial phenomena. In the social sciences, simulation has been 
identified with computer modelling, and the ease with which different 
hypotheses can be tested experimentally using computer simulation is 
obvious. The experimental approach has also been adopted in other 
applications of urban models such as those presented previously but the 
techniques of simulation provide a greater flexibility in the design of such 
experiments.

Perhaps the most important feature of simulation concerns new insights 
into the behaviour of the system under study which can be gained by 
experiment. If the structure of the model is difficult to interpret a priori, 
simulation can lead to useful appraisals of the validity of the model, and 
the process of model design can be much improved using the results of 
simulation. The value of simulation in handling complexity and revealing 
solutions and predictions which are impossible to obtain deductively is the 
main argument adopted by Forrester (1969) who maintains that simulation 
is the only method of modelling capable of revealing that the behaviour 
of social systems may in many instances be counter-intuitive. Another 
important feature of simulation is described by Simon (1969) who argues 
that simulation is essential in the behavioural sciences for generating new 
knowledge about how the system works and how it is likely to work under 
foreseeable conditions. Therefore, with these arguments in mind, the 
simulation approach to urban research is seen as a fundamental method for 
setting and testing hypotheses about the workings of the urban system.

Time in urban modelling
The need to build dynamic urban models has already been anticipated in 
several previous chapters and, in particular, it was suggested that many 
of the problems associated with static models could only be resolved within 
a dynamic context. The basic inconsistency between static models and 
their use in a planning context which is intrinsically dynamic in terms of 
the future would be sufficient in itself to require dynamic modelling. 
Cordey-Hayes (1972), for example, demonstrates the need for such models
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in policy planning by suggesting that most planning is in terms of marginal 
change and that the phasing of policies through time is often as important 
as the policy itself. Moreover, the fact that comparative static models 
attempt to simulate history at one cross-section in time gives rise to a 
host of measurement problems especially those dealing with locational 
attraction which are almost impossible to resolve. Attraction can only be 
measured notionally in any case and if such a measure is not restricted to 
an observable point in time, the problem is completely confounded.

There are, however, good reasons why the comparative static approach 
has been widely applied. The status of theory in urban economic and 
geographic systems with regard to time is almost non-existent. Although 
many have criticised the economists for their disregard, blatant or other 
wise, of space (Isard, 1956), the economists could level the same criticism 
against urban theorists for their disregard of time. Yet there are severe 
problems in trying to develop dynamic theory, two of which are worthy 
of some discussion. Perhaps the major problem concerns the ability to 
observe or monitor the urban system. Unlike the physical sciences in 
which the effect of critical variables on the system of interest can be isolated 
in the laboratory, such a search for cause and effect is practically im 
possible in social systems. Thus, there are many instances when it is 
difficult, if not impossible, to disentangle one cause from another in the 
changing behaviour of such systems. This is a fundamental limitation 
which is referred to here as the observational dilemma. A second problem 
concerns that hoary perennial - data. As has been demonstrated in 
previous chapters, data are often difficult to assemble for one cross-section 
in time, and the collection of time series data is usually a formidable and 
sometimes infeasible undertaking. Furthermore, such data often become 
less consistent and sparser as earlier time periods are needed and, 
frequently, the time periods between points at which data have been 
collected, are too large to be useful for dynamic modelling.

Despite these problems, dynamic modelling is essential if rather 
arbitrary allocation mechanisms of existing urban models are to be made 
more realistic. The limitations to the comparative static approach are 
spelt out nowhere more clearly than in the prologue to a description of the 
Detroit model by Ingram et al. (1972). These authors say that '...in 
existing theories of location it is assumed that either cities are destroyed 
every night and rebuilt the next morning or that households live in house 
trailers that are relocated daily'. The tendency for static models to relocate 
all of the stock in whatever forecast interval they are applied to, highlights 
this limitation. In Chapters 4 and 5, these problems were encountered in 
projecting with activity allocation models and, in the Notts.-Derbys. 
example, only the increment or decrement to the existing stock was
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allocated. This discussion raises the notion of the mover pool or pool of 
activities which are relocating in the city. In fact, these relocators account 
for a very large proportion of all change in cities, often greater than 70 per 
cent, and there is thus a strong argument for treating this component 
explicitly. Several dynamic models attempt to isolate this mover pool from 
the stayers.

A further component of change in the behaviour of urban systems 
involves the so-called distributed lag in which the values of variables from 
previous time periods affect the value of variables in the time period under 
consideration (Paelinck, 1970). In general, an «th order lag in any system 
can be written _ . .

xt+n — J(xt+n~l> xt+n-to ••••> xt)'

where the lag is distributed over the previous n time periods. Such a lag 
might be due to perception delays, for example in the case where the 
locational attraction at time t+n is a function of the change in some 
activity between t + n—I and t + n — 2, and so on. Alternatively, the lag 
could be of a reaction or equilibrium-seeking kind in which activities are 
readjusting to some new state configuration; in certain models, the lag 
might be functional in nature such as that involved in the generation or 
growth in activities caused by other events at earlier points in time, for 
instance those due to the multiplier.

The emphasis in dynamic models on the concept of the lagged variable 
raises the question of the equilibrium or disequilibrium inherent in such 
models. Dynamic models obviously have a greater capability in simulating 
the disequilibrium which is a feature of the real world but Harris (1970) 
provides a warning in this regard which he suggests might be a guiding 
principle for dynamic model design. Harris argues that as urban systems 
are usually tending to move to equilibrium,'... for well constructed models 
a set of equilibrium solutions will be available for most inputs of policies 
and environmental conditions'. This principle suggests that although 
disequilibrium may be the usual condition of a dynamic model, such a 
model should always be tending to equilibrium and, in the absence of 
further stimuli, should reach this state. In this and the next chapter, 
Harris's Principle as this argument has been called, will be used both to 
evaluate existing dynamic models and to help in the design of the model 
which is described in Chapter 12.

As a conclusion to this section, it is necessary to introduce briefly the 
problems concerned with defining the length of time interval appropriate 
to any dynamic model. This problem is analogous to the zoning or spatial 
interval problem discussed in Chapter 8, and thus, the work of Broadbent 
(1969 a, 19696) is of interest here. Using an argument similar to Broad- 
bent's, it is essential to define a time interval which is small enough to
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detect the time-varying phenomena of interest. If the time interval is too 
large, then the dynamic model will become trivial and thus decomposable 
into a series of comparative static models, one for each time period. At this 
point, it is convenient to start a review of existing dynamic models in terms 
of the ideas described above; the simplest of dynamic models based on 
linear forms will be presented first.

Dynamic linear models
As linear models have not been dealt with in this book, it might appear 
somewhat curious to include them in a dynamic context. Yet certain useful 
insights can be generated from a brief review for in these examples, the 
dynamic component is clearly visible. The first model, although there are 
many similar to it, is due to Czamanski (1965) who has applied a simple 
time-oriented economic base model to the Baltimore region. This model is 
a four-equation second-order model which can be stated as

= al + b 1 E(t-l), (11.1)

(11.2)

, (11.3) 

and E(t+l) = Et>(t+l) + E\t+l) + S(t+l). (11.4)

The notation is as in previous chapters but to refresh the reader's memory, 
P is population, S is service employment, Eb is now derived basic employ 
ment, X is exogenous basic employment and E1 is locationally-oriented 
basic employment which includes X. al5 a2, a3 and b % , b 2 , b3 are parameters 
to be estimated; the time notation is self evident. The various lags included 
in (11.1)-(11.4) are quite realistic although Czamanski (1965) has not 
fitted these equations using any of the simultaneous forms of regression 
analysis appropriate to such a system. Nevertheless, the model provides a 
simple approach to generating urban activities although there is no spatial 
dimension.

In contrast, the EMPIRIC model is based on a system of first-order 
linear difference equations which refer to different zones / and different 
activities/ This model was designed by Hill (1965) for the Boston Regional 
Planning Project and has since been revised through several versions 
(Irwin and Brand, 1965). In contrast to Czamanski's model, the EMPIRIC 
model is spatially based; furthermore, the solution method adopted by 
EMPIRIC recognises the simultaneous nature of urban interrelationships, 
and formal solution methods, such as those based on two-stage least 
squares, have been used. The time interval adopted is ten years, and
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consequently the emphasis upon dynamics is implicit rather than explicit 
in the model. This model can be stated as follows from the description by 
Hill et al. (1965). First, a difference operator AYik(t) which measures the 
change on activity Yik in zone i between t and t+ 1, is defined by

t) = Yik(t+\)-Yik(t). 

The model has the following form for each activity j and zone i
K m

(11.5)

In (11.5), Yik refers to the endogenous (located) variables produced by the 
equation system whereas Xu refers to exogenous (locator) variables. The 
constants aik and bu are parameters to be estimated by the regression, 
M is the total number of exogenous variables, K is the total number of 
endogenous variables and / is the total number of zones. Thus there are 
IK equations in the system. The constants gk, h l and ql are scalars which 
change the variables into regional shares. These are defined from

(11.6)

(11.7)
i

and qt = (11.8)

The EMPIRIC model has been widely applied in North America and 
a useful application exists in Britain by Masser et al. (1971). Foot (1973) 
has also produced an important comparative study of the EMPIRIC and 
activity allocation models which demonstrates their relative advantages 
and limitations. A continuous non-linear equivalent called the POLI- 
METRIC model was also designed alongside the EMPIRIC; readers can 
get further details in the paper by Irwin and Brand (1965).

One central problem with these linear models revolves around their 
rather inductive bias in that the emphasis upon explanation is completely 
statistical and lacks little of the causal focus of the activity allocation 
models. Although certain lags are built into the system, their explanation 
is also largely statistical and, as the dynamic process which these models
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are attempting to simulate is implicit, there are few guiding principles in 
the choice of time interval. Furthermore, these models do not attempt to 
identify the mover pool and their equilibrium properties are unspecified. 
In short, these models, although acknowledging the importance of time, 
do little else; it is in the activity allocation models that a more explicit 
approach has been adopted and first the TOMM model due to Crecine 
(1964) will be described.

The Time-Oriented Metropolitan Model (TOMM)
The Time-Oriented Metropolitan Model (TOMM) is of interest for two 
reasons; first, the earliest version of this model was based upon the 
original Pittsburgh model (Lowry, 1964) and second, in the spirit en 
gendered in this book, it attempted to turn a simple static model into 
a more complex dynamic model by specific consideration of system 
behaviour. This model was developed by Crecine (1964) for the Pittsburgh 
Community Renewal Program, and the first version attempted to model 
changes in the stock of activity over five-year time intervals using the same 
mechanisms as in Lowry's model; an important distinction was made in 
the model between new locators and relocators. The TOMM model has 
been improved in several ways since the first attempt, and at least three 
major versions of the model, including the first, now exist. The second 
version - TOMM II - was developed for the METRO gaming project at 
the University of Michigan and fitted to data from the town of Lansing 
(Crecine, 1967). In this second version, a more realistic formulation of the 
measure of locational attraction, incorporating site rent, amenity and 
transport cost, was provided although the simulation procedure is still 
similar to that used in Lowry's model (Crecine, 1968). TOMM III is the 
model at present under development at Michigan (Crecine, 1969) and it 
appears that research is centred on questions of dynamics and mover 
behaviour in the model. A time interval of two years is now being used in 
the model.

The model can be best presented using the equation system given in 
(3.9)-(3.27) which refers to the original Lowry model. In this presentation, 
the iteration postscripts m, n will be suppressed as will be the explicit zonal 
notation referring to the zonal sets Z1; Z2, Z3 and Z4. A full system of 
equations will not be given here but the reader wishing to programme 
this dynamic model from these equations should have no difficulty if 
continual reference is made to Chapter 3. The first point to note is that 
the order in which the activities are handled in TOMM I is the reverse of 
the Lowry model. In this model, services are allocated before population 
and thus the appropriate equation system of Chapter 3 is reordered in a
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revised sequence: (3.17)-(3.26), then (3.9)-(3.16), followed by (3.27). All 
variables are now postscripted according to particular points in time 
t,t+l. Furthermore, the population is disaggregated into different house 
hold types given by P l and the service sector into different service employ 
ments Sk. The inverse activity rates a' and population-serving ratios ftk 
are also disaggregated to match population and service employments.

Total land in the system at time t + 1 is made up from the following 
components

L/r+1) = iy(f +!)+£?(*+ !)+£,;(/+ 1)+LJK/ + 1). (11.9)

However, land used for services £!•(/ + 1) and households L§(t+l) are 
further divided into land which is prejudged to be stable in any given time 
period and land which can change use. Stable land is derived from total 
land available in (11.9) by

Lf(?+l) = a/f+l)L$(/+l), (11.10)
(11.11)

where the asterisk denotes stable land and afi+l) and i/f + 1) are the 
proportions of such land at time t+\. Equations (11.10) and (11.11) 
articulate the mover pool assumption and in fact, the whole model is 
constrained in terms of land use rather than activity location. Also the 
total stock is reallocated at each time period by the model but the stable 
land uses act as a crude constraint on what is able and unable to move. 
First, services are generated from the economic base equation

Sk(t+l) = ftkJ^P\t) = ^Sa'S^fa-a'S/ff*)-1 . (11.12)

Equation (11.12) is analogous to (3.17). Then services are allocated to 
service centres using a potential model similar to that in (3.18)

. (1U3)
i } I i

At this point, it is necessary to determine whether or not the minimum size 
constraint has been met in terms of the allocated services, and thus the 
procedure in (3.19)-(3.22) is operated. Land required for services is now 
calculated from ^^ = Se*5*(r+1)j (1U4)

k

and then the change in land over the time interval is found,



302 URBAN MODELLING

At this point, the mover pool constraint in terms of stable land use is 
brought to bear by choosing a final value of ALJ(r) which meets the stable 
land constraint. Then, ALf(f) is the maximum of

ALKO = max{Se*[5fa+l)-5?(0],L;*(r+l)-Se*Sf(/)}, (11.16)
k k

and total land for services and employment at t+ 1 are calculated as follows

I$(/+1)=LJ(0 + A£5(0, (11.17) 
Et(t+l) = £?(/+l) + SSftf+l). (11.18)

At this point, the model moves into the population sector and population 
is first calculated from the appropriate economic base equation

P(/ + l) = S« lS£j(f+l). (11.19)
I i

This population in (11.19) is now allocated to residential areas using a 
potential function similar to that in (3.11). Then

S £,«/'(<•«) <1UO)
i i

It is now necessary to test to see if the density constraint on population has 
been violated. However, because the stable residential land constraint sets 
a lower limit on the amount of land required in any zone j, the constraint 
now becomes both a minimum and maximum size limit. If

then the constraint procedure in (3.12)-(3.16) is operated until population 
falls within the permissible range. The change in population is calculated

01-22) 

and population in each household-type / is computed from a function

(1 1-23)

Equation (1 1.23) is normalised so that it sums to (1 1.22) and then popula 
tion in / at time /+ 1 is calculated as

(H.24) 
The model sketched out in (1 1.9)-(1 1.24) can be operated within the wider
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framework of the original Pittsburgh model in which consistency between 
input and output variables is achieved. If this is required, then the outputs 
of (11.24) and (11.18) are fed into (11.13) and (11.20) respectively, and the 
whole equation system is iterated until some convergence limit is met.

Although this model is organised around the concept of a mover pool, 
the mechanism designed to ensure this operation is curious to say the 
least. Apart from the rather inelegant way of achieving some stability or 
inertia in the existing configuration of land uses, there is no consistency 
between mobile activities and their relationship through the economic 
base. New locators and relocators are not separated out, thus the equi 
librium properties of the model are difficult to trace. Yet lags are built 
into the locational attraction indices through the potential function and, 
although not specified in the above equation system, also through the 
deterrence functions. As a first attempt, the model was a useful exercise 
although several obvious ways of improving it are now apparent, and the 
reader could easily undertake such extensions if required.

A quasi-dynamic activity allocation model
A quasi-dynamic version of the activity allocation model was presented for 
projection purposes in Chapter 4 and, in this section, this model will be 
explored a little further. The original equation system for the static model 
is given in (3.28)-(3.59) and in this presentation, like the last, the iteration 
postscripts and zonal set notation will be suppressed. The model is 
operated from the basic employment sector and complete consistency 
between various activities is secured in this way. In terms of employment, a 
distinction is made between new locators ̂ Et(t) and relocators ir^t + \)Et(t), 
where n^t+l) is the mover pool ratio for zone /at t+l. Then, for the 
residential location model, gross changes in trips can be calculated from

0 = A t(t+\) Bj(t + 1) [^Ei(t) + ni(t+ 1) ^(OJ/K^-, cti). (1 1.25)

All terms are as defined previously, A {(t+ 1) and Bt(t + 1) are the appro 
priate normalising factors and A* represents a difference operator specifying 
gross change. Changes due to relocators defined by *A are computed from

= A t(t) Bfl) *#+ 1) EMWDj, cti). (1 1.26) 
Then the new trip distribution at t+ 1 can be calculated as follows

0. (i 1.2?)
Note here that f\Dit c{i) is a lagged function from the previous time 
interval. If the changes in trips due to relocation are required, then (11.26) 
needs to be calculated for time / + 1 as well and a comparison made
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between t and t + 1; this gives the internal migration in terms of changes in 
the trip distribution. The change in population can now be found from

AP At) = a(t + 1) £ A * Ti At) - 2 * A Tf At) \. (11.28)
Li i \

The rest of the equation system in (3.28)-(3.59) can be traced through in 
an analogous manner and such extensions are so straightforward that there 
is little point in pursuing them here.

This model represents a fairly clear application of the mover pool 
principle; lags in terms of changing attraction and deterrence link the time 
periods to one another and the process of change depends upon both new 
location and relocation which influence one another between time periods. 
The ability of the model to compute interval migration provides essential 
data describing the effect of the mover pool. However, Harris's Principle, 
in which the equilibrium properties of the model depend upon the idea 
that the system 'runs down' in the absence of further stimuli, is not 
embodied in any of the models described so far. In fact, there are two kinds 
of equilibrium which need to be defined. First, there is the steady state 
equilibrium which occurs when the system simply reproduces itself from 
time period to time period. This relative equilibrium is contrasted with a 
more absolute equilibrium which occurs when the system is cut off from 
external stimuli. This does not imply that the system stops but that the 
effect of previous external stimuli gradually disappears in the equilibrium. 
A good example of the first kind of equilibrium is presented in the next 
section which deals with Systems Dynamics; this is in contrast to the 
equilibrium built into the model of the next chapter which is of the second 
kind.

The Systems Dynamics models
With the recent interest in problems of world population and resources, 
a set of techniques devised by Forrester (1961) for simulating industrial 
processes in firms, called collectively Systems Dynamics, has been em 
ployed in the modelling of hypothetical urban systems and world systems 
(Forrester, 1969, 1971). The application to urban systems is of prime 
interest here but the technique is of fairly wide applicability in the sense 
that all kinds of natural and artificial systems have recently been simulated 
using these concepts. The technique of Systems Dynamics has its founda 
tions in ideas from control engineering; the concept of system structure 
and behaviour is conceived in terms of levels of stocks which are pro 
gressively altered through time by rates of change which are affected by 
various positive and negative feedbacks within the system of interest. This
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type of system description is not new for it forms the basis of that branch 
of mathematics dealing with the study of change through difference - 
differential equations. Forrester emphasises the idea of feedback which is 
essential to change in any case but he goes further in asserting that the 
behaviour of social systems is counter-intuitive in that their workings are 
not obvious, and that their appearance is positively misleading. The 
counter-intuitive argument is separate from the Systems Dynamics 
technique although Forrester maintains that Systems Dynamics is an 
appropriate, if not the only method for understanding such complex system 
behaviour.

Many of these models are based on the notion that a system is funda 
mentally constrained by some fixed limit on resources which affect the 
growth of the system through time. Typically, such a system grows 
explosively or exponentially at first and then as its resource limit is neared, 
the growth is damped and an equilibrium condition is eventually reached, 
usually with some oscillation around the steady state. The growth of 
population which in certain circumstances follows a logistic curve, is based 
on this kind of argument, as is the diffusion of ideas or information in a 
relatively isolated social system. In Forrester's hypothetical urban system,

200 250

Time (years)

Forrester's Urban Dynamics model

—.—. Sinusoidal function:

Paelinck's urban econometric model

Fig. 11.1. Typical dynamic behaviour in fixed resource systems.
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the growth of activities such as industry and its labour force and housing 
is halted as the land available for new activities runs out. This kind of 
behaviour is also characteristic of physical systems such as servo- 
mechanisms which hover around some equilibrium value or steady state, 
and there are well known sinusoidal equations describing such behaviour. 
Figure 11.1 presents this type of system behaviour in terms of various 
profiles characterising the Systems Dynamics models and other related 
representations; their similarity in terms of their implied causal structures 
is obvious from this diagram.

Forrester's model of the urban system is organised around three sectors: 
housing, industry and the labour force. Each of these sectors is disaggre 
gated in turn into three subsectors. In terms of the labour force, there are 
the managerial, labour and underemployed groups who reside in premium, 
worker and underemployed housing in one-one correspondence. However, 
varying proportions of the labour force work in the new enterprise, mature 
business, and declining industry subsectors. Through time, industry and 
housing age from new business and premium housing through to the 
poorer quality stock. Also there are rates of migration between the sub- 
sectors in the labour market, and the movements into and out of the total 
system in terms of labour represent the key link between the system and its

500.0
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• Labour

; Underemployed

Underemployeohousing

• Labour housing

Professional-managerial housing

T Y Professional-managerial
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Fig. 11.2. Growth profiles from Forrester's Urban Dynamics model.
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environment. The system grows exponentially at first but as the land limit 
is reached, new enterprises fail to be built and the system stagnates to an 
uneasy equilibrium characterised by large proportions of obsolete industry 
and housing and high unemployment. This situation is built into the 
structure of the model through its critical reliance on the wealth sectors - 
managers, premium housing and new enterprises, and it is not surprising 
that all policies for improving the system, which are not framed in terms 
of these wealth sectors, are deemed, by Forrester, to be failures. The 
growth paths of critical activities in the model simulated over a 250-year 
time period are presented in Figure 11.2.

Criticisms of this model have matched in scale the enormous popularity 
which the approach has gained through the popular press and the Systems 
Dynamics public relations machine. These criticisms are worth briefly 
sketching here and they are of two main kinds. First, technical criticisms 
mainly concern the complete disregard shown by Forrester for incor 
porating well-demonstrated and accepted urban theory into the model. 
Thus, the failure to deal with the spatial or geographic sector has outraged 
urban geographers, economists and planners. Furthermore, the hypo 
thetical nature of the model which is based on literally hundreds of 
unproven and usually untestable hypotheses goes against the grain of work 
in this field which has been painstakingly slow in validating theoretical 
relationships. The 250-year time span for the simulation is also arbitrary 
and the idea that the model simulates a ' typical' twilight or inner area of 
a 'typical' North American city is completely notional. The model could 
never be calibrated in the traditional way for it ignores the observational 
dilemma mentioned earlier. Finally, if the model were made more realistic, 
it would have to be drastically pruned and would probably approach an 
activity allocation model in this event.

The second major criticism of the model really revolves around Forrester's 
philosophy which, to say the least, implies a right-wing view that help only 
comes to those who help themselves. This somewhat outspoken criticism 
of present urban policies which attempt to provide housing and jobs for 
the poor and underprivileged demonstrates his faith in the private enter 
prise system as a cure for all ills. The model also reflects this view in the 
way it is constructed, the results that it produces, and the way these results 
are interpreted by Forrester.

Nevertheless, a large amount of work emanating from the physical 
rather than social sciences has been stimulated by the Forrester model 
(Chen, 1972), although much of the work has been in terms of sensitivity- 
testing. Certain researchers (Kadanoff, 1972; Graham, 1972) have 
attempted to make the model spatial but this does not seem to have met 
with much success for the original model appears to be too constraining an
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influence. An interesting, fruitful and amusing piece of work has been 
undertaken by Stonebraker (1972) who has simplified the model drastically 
by reducing the total number of model equations by two-thirds. The 
results of running the model in this fashion are much the same as Forrester's 
and this has led Smith and Sage (1973) to propose the use of hierarchical 
system theory as a tool for simplifying the model.

With regard to application of these models to real situations, only two 
appear to exist at present. An attempt to affply the model to Harris County, 
Texas (Porter and Henley, 1972) reveals little if any additional interest but 
perhaps the most exciting application is to the Venice subregion by Costa 
and Piasentin (1971). Costa and Piasentin divide Venice into three zones - 
Centro Urbano, Estuario and Terraferma - and their model simulates the 
growth in population, employment and housing from 1951 in one-year 
periods to the present day. Particular emphasis is placed upon migration 
between the three zones but the appropriateness of this application 
comes from the fact that the Venice subregion is highly constrained in 
spatial terms and thus quite unsuitable for activity allocation models. The 
predictions of the Venice model calibrated between 1951 and 1971 are good 
and this work promises to give unique insights into urban modelling 
through Systems Dynamics.

The Systems Dynamics philosophy has been used in other applications, in 
particular in the Susquehana River Basin Project by Hamilton et al. (1969) 
and in an economic model of Kent County, Michigan, by Swanson and 
Waldmann (1970). These applications are much more sensitive to related 
work in other fields than is the Urban Dynamics model, and could be 
regarded as only conceptually related to Forrester's approach. The 
approach is clearly of some importance if only for the fact that it has 
generated so much interest but, as Burdekin and Marshall (1973) remark in 
their useful review of this work, '... the model has been the subject of 
considerable comment but little practical use'. There is little doubt that 
any potential this approach has will be quickly realised in the near future.

Urban models based on economic dynamics
There is a class of urban models which has recently been stimulated by the 
work of economists such as Paelinck (1970), based on the specification of 
urban dynamics in terms of difference equations relating macro-economic 
phenomena. Economic base type models such as the one due to Czamanski 
(1965) outlined earlier can.be treated in this way. In particular, emphasis 
has been placed on analysing the equilibrium properties of such models in 
analytic terms if possible, although simulation has also been used. To 
introduce this approach a simple model following ideas introduced by 
Paelinck (1970, 1972) will be presented.
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The model is of the economic base type and can be stated succinctly in 
the following five equations where the notation is as defined in a previous

section -" • " = fllp(0+fla £(0, (11.29)

(11.30)

(11.31)E\t+\) = Cl

and
(11.32) 

E(t+\) = S(t+l) + E\t+l) + E*(t+l). (11.33)

Constants could be added to (11.29)-(11.32) if necessary in the estimation 
procedures. This system of equations can be represented in matrix terms 
explicitly as

\P

t+i

0

0
0

0
0

0
0
0 (11.34)

Equation (11.34) can be summarised as
(11.35)

where p is an n x 1 column vector of activities and Q is an n x n matrix of 
coefficients. Then by recursion, activities at time t+r can be expressed in
terms of time t by . . _. , . ,,, „,,P(/ + T) = Qrp(0- (11.36)

The theory of difference equations, as, for example, elaborated by Goldberg 
(1958), can be used to analyse the equilibrium properties of simple equation 
systems such as that given in (11.36). Paelinck (1970, 1972) effectively 
pursues this analysis for simple cases but for complicated systems, simula 
tion is required.

In some respects, there is a direct correspondence between the linear, 
dynamic, Systems Dynamics, and economic dynamics equation systems 
presented here, for all these systems can be set up in similar terms. The 
real differences lie in notations concerning analysis, simulation and calibra 
tion-estimation. For example, Blokland, Hendriks and Paelinck (1972) 
have devised an economic dynamic model for simulating the effects of 
decline in an urban system. At present, the model is being calibrated to 
data for the Hague and a mixture of analytic evaluation, sensitivity testing 
through simulation, and estimation by trial and error iteration is being 
employed in model construction. One of the features of models whose 
spatial component is implicit rather than explicit, concerns their develop 
ment in depth for in such models, there tend to be many more hypotheses
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to validate than in their spatial counterparts. Thus, although these models 
tend to be richer in detail, they are frequently more difficult to calibrate 
to any real situation.

These economic dynamic models seem extremely promising for several 
reasons. First, their hypotheses are usually grounded in fairly unambiguous 
economic theory which is familiar and acceptable. Second, emphasis on 
trying to determine whether or not such models converge to or diverge 
away from some equilibrium might lead to interesting insights into the 
behaviour patterns of urban systems. And third, estimation of the para 
meters of such models is a fairly well developed area in econometrics and 
thus, these models are probably easier to apply to real situations than the 
Systems Dynamics models. Developments in this field are likely to provide 
one of the most important areas of urban modelling in the next decade.

A comparison of dynamic urban models
There are many similarities between the models presented in this chapter 
although their different presentations and terminologies tend to highlight 
their differences. Perhaps the most critical difference lies in the way in 
which the spatial dimension is handled; it appears that spatial models 
substitute the richness of hypothesis-building characteristic of non-spatial 
models for the extensiveness of space. It becomes meaningless to compare 
spatial and non-spatial models through a count of equations for space 
adds a new dimension to models, which magnifies the number of equations 
by at least the square of the number of zones. Spatial models are essential 
for most urban situations where interaction and spatial organisation is the 
overt expression of underlying urban processes. Yet, there are as many 
non-spatial as spatial dynamic models, and in general, the concept of time 
has been handled more cogently by neglecting the influence of space. This 
then presents the challenge: to build a model which is both explicitly 
spatial and explicitly dynamic in terms of such criteria as Harris's Principle 
and notions governing relocator behaviour in the city.

It is not difficult, at one level, to extend static models by incorporating 
a dynamic sector. But it is difficult to produce dynamic models whose 
hypotheses are testable and whose organisation in the time dimension is 
focused around a relevant concept. In the models reviewed here whose key 
features are summarised in Table 11.1, hypotheses concerning dynamics 
are implicit rather than explicit. Ideas based on lags in perception and 
concepts of ageing and obsolescence do form useful organising principles, 
but these are not spelt out in the models in any detail, and if progress is to 
be made in this area, then a more explicit consideration of these factors is 
required.
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In the next chapter, a model of the urban system which attempts to meet 
some of these concepts will be outlined and applied to the Reading sub- 
region. The model is much more a simulation model in the technical sense 
denned earlier than any of the models outlined in previous chapters, and 
thus its hypotheses are more difficult to test in a formal fashion. Nowhere 
in this book is the critical problem of' why modelling' more exposed than 
in this next chapter for here, the notion of calibration to a reality is under 
question. The idea that models are simply 'aids to imagination and under 
standing ' is an important rationale for this work but this in no way resolves 
the inevitable dilemma between modelling as prediction and modelling 
as explanation.



12. Dynamic simulation of an 
urban system

The various models of urban dynamics outlined in the previous chapter 
provide the context for the design and construction of a spatial dynamic 
model which is applied here to the Reading subregion. The model attempts 
to integrate both spatial and temporal behaviour of various locators and 
in particular, the concept of the mover pool, referred to previously, is 
widely exploited. Furthermore, the model is always in disequilibrium 
although an equilibrium can be reached in the absence of further stimuli 
through the model's input, thus satisfying Harris's Principle. In this 
chapter, the observational dilemma concerning the impossibility of 
monitoring change at its most elemental level, is faced directly. Even the 
most simple and crude of hypotheses to be built into the model are 
difficult to validate against data, thus demonstrating one of the major 
barriers to ambitious urban modelling.

The design for the macro-dynamic model to be outlined here is the 
result of many compromises. Although the model may appear a little 
rough around the edges and over-complex in some parts, the preliminary 
design appears to provide a promising approach to simulation in urban 
systems. In essence, the model is quite simple for it builds upon the ideas 
of spatial interaction described by Wilson (1970a) and upon an inter 
pretation of the dynamic multiplier in macro-economic theory (Alien, 
1967). Before the model is outlined, it is important to clarify the position 
of the model in the context of other research. To this end, Paelinck (1970) 
has suggested that modelling research can be organised under three 
headings; first, research based upon empirical analysis; second, research 
based upon mathematical analysis; and third, research based upon 
simulation. It is this third approach - the approach to modelling through 
simulation - which forms the method described in this chapter.

A model of urban dynamics
The design principles for a model of spatial and temporal interactions need 
further clarification. In previous attempts at macro-static modelling and 
in particular in the activity allocation model, the interactions or flows of

313
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activity between different areas have been central to the way in which 
different patterns of location develop. Activities have been modelled as 
summations of spatial interactions or flows (Cordey-Hayes and Wilson, 
1971). It is also obvious that at any point in time, the distribution of 
activity represents the summation of changes in activity in previous time 
periods. Such a concept of temporal interaction is well developed in macro- 
economic theory where the stock of activity at any instant is a function of 
previous stocks. In particular, the concept of the distributed lag has been 
developed to deal with the effects which different levels of activity have in 
time. Distributed lags are also a central feature of Forrester's model where 
the difference equations describing change are to a high order.

Just as spatial interaction declines as distance or spatial cost increases 
from a point, the effect of activity on other activities declines as time 
increases from a particular instant. In dealing with changes in activity, 
dynamic modelling has considerably more potential for incorporating 
aspects of population growth and migration, which have been hitherto 
ignored in urban development models. Furthermore, an important com 
ponent of change is due to the relocation of existing activities. This internal 
migration is dealt with in the TOMM and Forrester models but only net 
change is dealt with by the EMPIRIC model. It appears to be important 
to model the behaviour of relocators referred to as the mover pool.

In the model at any point in time, a configuration of activities called 
stocks can be derived by summing interactions over time and space. In 
economic parlance, the activities generated in any period of time are called 
flows, but to distinguish such flows from spatial interaction, they are 
referred to here as changes. The repercussions of activity in time are 
generated using a dynamic interpretation of the multiplier effect. As in 
many other urban models, the prime input to the model which starts the 
process is basic employment; in the dynamic case, the repercussions from 
basic employment are generated through time. The spatial interactions 
derived in the model are oriented around the location of activities. 
Activities are divided into three major types: residential population, 
services, and basic employment. Services are subdivided into consumer 
and producer-oriented groups and basic employment is broken down into 
employment dependent on existing employment, and unique locators 
whose location cannot be forecast by the model.

The unique locators provide the external stimuli to the model for 
although the total level of basic employment is exogenous, the other 
category of basic employment is distributed spatially using a linear model. 
Both population and service employment are allocated using production 
and attraction-constrained gravity models of the type derived by Wilson 
(1970 a). These models attempt to simulate, albeit very coarsely, an
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Service \ / Residential 
centres / N \ population

Total endogenous
basic
employment

Fig. 12.1. The structure of activities and land uses in the simulation model.

equilibrium between demand and supply of activities although in the case 
of the residential location model, a further submodel has been designed 
to deal with the supply of residential land and floorspace. Figure 12.1 
illustrates a schematic form for the model and the main relationships 
between the sectors. Both new locators and relocators, in terms of different 
activities, are allocated using these models. Although basic employment is 
exogenous to the model, other inputs include the transport system, various 
density limits on activity location, and the set of model parameters. The 
model begins with a complete configuration of existing activities and 
spatial interactions.

The way in which dynamics are modelled is different in this model from 
others and two dynamic effects can be recognised. First, there is the 
influence of previous stocks and changes in activity on the future distribu 
tion of activities in terms of locational attraction; this is an effect which all 
of the models described in the last chapter incorporate. Second, there are 
the repercussions from previous changes in activity which are still working
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through the system: this is an effect which is not explicitly embodied in the 
models described in the last chapter. To describe the detailed methods 
by which these processes are simulated, each part of the model will be 
first described separately, and then these parts will be assembled into the 
system of equations used in the model.

Modelling the distribution of activities in time
The approach to dynamics adopted in this model is through the concept 
of the multiplier and the economic base hypothesis. This concept has 
formed a basis for several models of urban development, in particular the 
activity allocation model, and has already been succinctly stated in four 
equations in Chapter 2. Without suggesting any dynamic interpretation, 
these four equations are rewritten as follows

P = a.E, a > 1, (12.1)

S, = AP, 0 < A < 1, (12.2)

52 = /?2£, 0 < y?2 < 1, (12.3)

E = Eb + Si + S* (12.4)

The notation is as defined previously but is restated for convenience. P is 
total population and E is total employment, St are consumer-oriented 
services and S2 are producer-oriented services, £b is basic employment, 
a is an inverse activity rate, ^ is a population-serving ratio and /?2 an 
employment-serving ratio. The multiplier connecting total population to 
basic employment is derived as follows. First, it is necessary to express E in 
terms of & E-Wl+^E=E\ (12.5)

Note that 0 < (a/^ + Aa) < 1. Then by setting

/* = <*/?!+#!>

and y = I-/*,

equation (12.5) can be rewritten as

Then it is obvious that the equation linking population to basic employ 
ment is ,.,b

/> = <*-, (12.7)
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and 1/7 is the multiplier which features so strongly in macro-economic 
theory.

Equations (12.1)~(12.7) provide a static approach to urban activity 
analysis, and it is interesting to note ways in which this kind of analysis 
can be made dynamic. The classical method of macro-economic theory is 
largely concerned with tracing the growth paths of variables linked together 
by multipliers. For example, classical analysis could proceed by formu 
lating (12.5) as a first-order difference equation (Alien, 1967)

E(t)-pE(t-l) = £b. (12.8)

Note that the bracketed indices / and t—l denote time as before. The 
solution to (12.8) in terms of an initial level of employment £(0) is found 
by recursion

(12.9)

As demonstrated in the last chapter, Paelinck (1970) has pursued this type 
of analysis in some depth, examining the equilibrium properties of a series 
of dynamic models. A similar analysis with a more empirical bias also 
described above has been made by Czamanski (1965). Equations (12.1)- 
(12.4) form the basis of his model which is strictly speaking an econometric 
model of Baltimore incorporating a second-order lag in (12.1) and a first- 
order lag in (12.2). Like Paelinck, Czamanski uses classical economic 
analysis to derive solutions to the model.

A different interpretation of the multiplier is suggested in this model and 
this can be regarded as a more disaggregated approach than that implied 
above. It is well known that under most conditions the multiplier can be 
expanded in the following way (Artle, 1961)

1 i- = -——= l+/*+/i2 + ...+/<". (12.10)
7 1 — fi

Given an increment of employment AEb(/), where the difference operator 
A defines AEb(0 = Eb(t+ l)-Eb(r), the total population P generated from
this increment is

P = aA£b(0(l+ /«+/t2 +...+/*"). (12.11)

Economic analysis tends to treat the multiplier itself as a rate of change 
because often activity is multiplied up to its true level quite quickly. In 
other words, the repercussions associated with the multiplier quickly work 
themselves through the economy. From (12.11), however, each increment 
of activity generated from AEb(f) is associated with a term in the series, 
and each term could be associated with a particular time period. This of
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course depends upon the length of the time period, but the hypothesis 
adopted here states that the repercussions traced by (12.11) are sufficiently 
large and take sufficiently long in urban systems to form a suitable basis 
for dynamic modelling.

Assuming a constant parameter /t and that each increment of activity is 
generated in successive time periods, any particular increment of popula 
tion AP(?) is derived from an equation of the following form

(12.12)
Equation (12.12) shows that the lag is distributed over n + 1 time periods, 
and this equation has similarities to the geometric distributed lag equation 
denned by Alien (1967). Each increment of activity generated by (12.11) 
need not be associated with a particular time period for it is possible to 
combine two or more terms of (12.11) into a particular time period. The 
time period has to be sufficiently short to detect the geometric series of 
(12.1 1) in a discrete fashion, and furthermore, it is likely that, after a given 
number of time periods, the multiplier effects will become insignificant. 
These considerations have led to the adoption of a one-year time interval 
within which two successive increments of activity are generated. It is 
also assumed that after ten time periods, the multiplier effects are small 
enough to ignore; in other words, in (12.11), n is never greater than 20. 
Table 12.1 shows the amounts of employment and population generated 
using this scheme.

From Table 12.1, the distributed lag equations for employment and 
population can be written as follows

(12.13) 
fl),« 2m]. (12.14)

Equations (12.13) and (12.14) summarise the way in which activities are 
generated in time, although in the simulation model, employment and 
population are not formally generated in this manner for each time period 
is modelled separately. In more familiar terms, this process implies that the 
repercussions from changes in the location of basic employment in terms 
of services and the associated population would occur over time as well as 
over space. But at any one period of time, the amount of basic employment 
itself would be changing; therefore in a time period, change would be 
composed of a spectrum of changes originating from present and past 
time periods, as illustrated in Figure 12.2. If, however, the total of basic 
industry were to stabilise, then changes in the quantity of activity would 
gradually die away until an equilibrium were reached, thus satisfying



Dynamic simulation 319

"C"
^^

[^

s
O

"fe^

1oii
u
K

.^

1

1
g;

3

H
u

CO

H

z
nCQ

g•—

J3
3
D.

<£

I'a
c
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Harris's Principle. In the above equations the ratios are shown as constants 
which do not vary through time. Although it is probable that such ratios 
vary, it would be difficult to detect such variation from data. Therefore, 
in the case of /i, it is assumed that

1 n /* •=— -r S ft.

Although this averaging implies a strong assumption, it is possible to 
vary fi in the simulation model over longer periods of time incorporating 
about 5 time periods.

100%

50%-

Cumulative proportion of 
activity generated from the 
initial impact at time = 0

Proportion of activity generated 
in each time period

01234567 9 10 11

100%
Spectrum of change as a proportion of total change

50%-

34 56789 10

Fig. 12.2. Spectrum of changes in activity generated by the economic base mechanism.
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Modelling the distribution of activities in space
The simulation model has been designed initially for application at the 
subregional scale, and is operated mainly through the location of activities 
rather than land uses. Figure 12.1 shows that three submodels exist to 
allocate activity to zones of the spatial system ; basic employment endo 
genous to the simulation, population, and service employment are the 
three categories of activity which are modelled in spatial terms, and these 
activities can be treated in turn.

The basic employment location model attempts to predict the location 
of the growth in basic employment which depends upon previous levels of 
activity in the system. Declines in such employment are not simulated 
using this model which is appropriate only to a growth situation. Successful 
models of this sector have been built elsewhere using linear equation 
systems (Putnam, 1970) and it was decided to model this activity in a 
similar way. The model was built outside the main framework of the 
simulation by Cheshire (1970) and was fitted using stepwise regression 
analysis. The change in endogenous basic employment Ay^/), where 
Ayf(0 = Yi(t+[)- Yf(t), is allocated as follows. Note that the /, j sub 
scripts refer to zones as denned in all previous chapters. The model can be
stated as

(12.15)

where Zik(t) is the stock of activity k in zone i at t, and AZa(/- 1) is the 
change in activity / in / between t and t—\.ak,b l and g are parameters of 
the equation. At each time period, the total change in endogenous basic 
employment is input to the model and (12.15) is normalised before this 
activity is allocated.

The residential location model is perhaps the most complex of all the 
spatial submodels for a crude attempt has been made to model both the 
demand and supply of residential space. The model is based on some 
theoretical work by Schneider (1967) who argues that the attraction of an 
area to residential locators must be some function of both the land available 
and the existing residential floorspace. Schneider has proceeded to devise 
a model for the allocation of floorspace and he has further extended his 
research by fitting the model to data from Chicago (Schneider, 1969). 
A variant of Schneider's model has been adopted here as a simple model 
of the supply of floorspace which is in turn an input to the residential 
location model. The actual form of this model is similar to the potential 
model used by Lowry (1964) to allocate population. At each time period,
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total floorspace AF(?) which is exogenous to the model is allocated to zones 
as follows (12 16)

ft- 1)]/W- DL (12-17)

Note that in the following discussion, a difference operator of the type A* 
shows that a change in a time period is not the net change between t and 
t+ 1. In the above equations, A*F;(f) is the expected rather than the actual 
change in the supply of floorspace in i, Fft+l) is the expected supply of 
floorspace in j at t+l, Lt(t~\) is the amount of land available for 
residential development in i at the end of the previous time period t—l, 
and f^Cj ft- 1)] is some function of travel cost between / and j at t—l. 
Starting with Fft) as a first approximation to Fj(t+ 1), (12.16)-(12.18) are 
iterated until convergence, with the new level of expected floorspace at 
time t + 1 being computed at each iteration from

Fft+l) = Fft) + &*F ft). < 12 ' 19)

There are several problems connected with the development of this model 
and among those requiring further research are questions of overlap 
between the 'supply' of residential space predicted by this model and the 
'demand' for such space which is simulated by the residential location 
model described below. Although floorspace and land in this supply model 
are measured in the same units, there are also problems of combining such 
variables as in (12.17) which need further investigation.

Floorspace from (12.19) and available land form the critical variables 
measuring the locational attraction of every zone j for residential purposes 
between t and t+l. Residential attraction Dft) is calculated as follows

Dft) = ^[<rFft + !) + (! -<r) Lft- 1)], 0 «r < 1, (12.20)

(=0, if,,, 
; |= 1, otherwise. v '

Note here that a-, and Cj have been redefined from their previous notation. 
cr is a parameter controlling the relative influence of land and floorspace 
on residential attraction, ^;. is a term which controls the overall level of 
residential attraction, Pft) is population in j at t, and Cft) is the popula 
tion limit in zone j at t.

The residential location model is based on a production-constrained 
gravity model of the type outlined in Chapters 2 and 10. The model
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allocates a change in employment &Ef(t) located in / to place of residence 
m j A7},(0 = A {(t) A£,(/) Z>XO/W - 1)], (12.22)

AJi;.(0 is the change in work trips between i andy, and/*[cfy(f — 1)] is some 
function of travel cost between i and 7 at t—l. This model satisfies the 
constraint (/) = ^^ (12 24)

i

and the change in population AP;.(0 iny can be found by summing (12.22) 
over i and scaling the result by a, the inverse activity rate

0 = a/)//) S^(0 A£,(0/W- I)]- (12.25)
t i

The land available for residential purposes at the end of the time period 
can be calculated by converting &Pj(t) to land area using a population 
density ratio *, ^+ ,} = ^^.^ (12.26)

The third submodel allocates the demand for service employment in j 
to service centres in /, and is formulated as an attraction-constrained 
gravity model. Service centre attraction in i is assumed to be a function of 
the previous demands for service employment in /, and at present, this 
attraction Vt(t) has the following form.

Vt(t) = P&Si(t-l)+p^Si(t-2) + ...+p»&Si(t-n), 0 < p< 1.
(12.27)

p is a ratio controlling the effect of previous changes in activity on attraction. 
The change in demand for services in i by the population living at j called 
ASy-(f) is computed from the following equations

'~ 1)], (12.28)

/3[c«(/— 1)] is some function of travel cost between i and j at f — 1. The 
model presented in (12.28) and (12.29) is subject to the constraint

SA50(0 = AiAP/0- (12.30)

The total change in service employment at i is calculated by summing 
(12.28) over j and adding the services generated from the change in
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employment at / ^ = SA5i(,)+/W(/). (1131)
i

As this completes the description of the spatial submodels, it is now 
necessary to outline the factors which affect the relocation of activity in the 
system. The previous equations are valid for the generation and location of 
new activities in the system but some slight modifications are needed to 
model the relocation of existing activities.

Modelling the relocation of existing activities
In the model, only existing population and service employments are allowed 
to relocate in each time period. This is consistent with the structure of the 
model in which basic employment is largely exogenous to the simulation. 
Yet the structure of the model poses many problems with regard to a first 
approach to the problem. As with the modelling of external changes in 
activity, the mechanism for relocating the existing population and asso 
ciated services must be operated from the basic employment on which 
these relocators initially depend. In other words, it is necessary to identify 
basic employment associated with population and services and to relocate 
these activities from this point.

A further complicating feature of the model, but one which makes the 
simulation much easier to execute, concerns the relocation of activities in 
time. As with external changes in activities', the relocation of activity is 
lagged according to the multiplier effects. Reverting to a previous notation 
of postscripting variables to indicate time, the relocation of service employ 
ment between t+l and t, called ASm(0 and population called A/""(?) is 
as follows

ASm(?)= n(l+/i) [E*(t)/i + Et>(t-l)fi3 +...+Et>(t-n)/i*n +l], (12.32)

n)/j,Zn]. (12.33)

TT is referred to as the mover pool ratio and 0 < n < 1. This ratio indicates 
the proportion of the existing stock in previous time periods which is 
gradually working its way through the mover pool. Although n is likely 
to vary in time, it is assumed here that TT is an average over the simulation 
period.

The most complex feature of the mover pool arises from a need to 
simplify the simulation. When the simulation is begun at t = 0 the ratios 
a, /?! and /?2 are likely to he very different in the initial configuration of 
activities from the ratios used in the simulation period. It is extremely 
difficult, if not impossible, to take account of these differences, for at each 
time period, new activity generated using the new ratios is being added to
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the existing configuration, thus changing the actual ratios. Furthermore, 
new activities generated in previous time periods are also eligible for 
relocation in later time periods. These factors mean that for each activity, 
the ratio n must be modulated at each time period to ensure that the right 
amount of activity is reallocated. Taking the example of population, at 
each time period a new ratio n(t) is computed from

P(0)(l/a-A2/«-Ai)+ S A£»(?) 
n(t)=n ————————— jj ——— ̂  ———— . (12.34)

Note that the summation of A£'b(?) is from t = 0 to t = N, where ./Vis the 
previous time period. As the calculation of ir(t) is complex, it is necessary 
to explain the terms in (12.34) in more detail. The term.P(0) (I/a— /#2/a — Ai) 
converts total population in the system at the beginning of the simulation 
(/ = 0) into a hypothetical amount of basic employment which is consistent 
with the ratios a, /?j and /?2 - This basic employment is likely to be different 
from actual basic employment A.Eb(0) because the ratios a, /?x and /?2 are 
averages pertaining to changes in activity over the simulation period, not 
to the structure of activities at the start of the simulation. At each time t, 
total basic employment consistent with these ratios is divided by actual 
basic employment, and this proportion is used to weight the mover pool 
ratio ir(t). This mechanism is purely a device to enable movers in the 
system to be reallocated according to the same ratios used to allocate 
changes in activity, and has been introduced solely to minimise computer 
time. In applying the weighted mover pool ratio n(t), (12.33) now becomes

n)fi2n]. (12.35)

The rather unrealistic nature of the relocation procedure is seen quite 
clearly when space is considered. The ratio ir(t) is constant in each time 
period and for the whole system; therefore the numbers of trips which are 
affected by relocation are a constant proportion n(t) of each ij pair. This 
seems highly unrealistic for it is likely that n(t) varies spatially. As yet no 
efficient way of incorporating a spatial mover pool ratio has been found ; 
if a feasible method exists, it may be possible to make ir(t) endogenous to 
the model. At present, changes in travel costs and measures of locational 
attraction are the key determinants of relocation. A fairly elaborate 
accounting procedure which is dealt with in more detail later, is used to 
ensure that no double counting of activities -occurs; relocation is essentially 
internal migration which is largely independent of the absolute growth of
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the system and in each time period the following equation is always 
satisfied

i i
At this stage, the major components of the simulation model have been 

described and the task now is to assemble these components into the basic 
model. The equation system is outlined below in two parts: the equations 
concerned with generating and allocating activity in each time period are 
first discussed, and then the relationships used in accounting for net 
changes and total stocks of activity are outlined.

The equation system I: generation and allocation
At the start of the simulation, an initial configuration of activities and trips 
in the system is required. Although activities must be available, trip distri 
butions are often difficult to obtain and therefore an option is built into 
the program to generate such distributions using production-attraction 
constrained gravity models. When t = 0, the distribution of work trips is 
generated as follows

T{j(t) = A t(t) Bfl) E{(t) P/O/'MOl (12-36) 

1 r7^, 02-37)

A distribution for Sti(t) is obtained using a similar model with ^P^t) 
replacing Et(t) and Sj(t) replacing P}(t) in (12.36)-(12.38). The parameters 
of the function /4[ci3-(01 are approximated using formulae and numerical 
procedures derived by Hyman (1969) which were discussed in Chapter 6. 

The constant ratios - the inverse activity, population-serving and 
employment-serving ratios - are calculated at this stage for the simulation 
period. Then

(12.40) 

02.41)
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The summations in (12.39)-(12.41) are from t = 0 to / = n, where n is the 
end of the simulation period. At this point, the model begins to simulate 
changes in activity in each time period. The network of travel costs or 
distances is updated using a shortest routes program, and the equation 
modulating the mover pool ratio TT is worked out

(12-42)
t

Then endogenous basic employment A Y(t) is allocated to zones of the 
system using the basic employment location model

<,(f- \)+g
(12.43)

The measures of locational attraction for this time period are now calcu 
lated; first, the Schneider model which allocates the total change in floor- 
space AF(<) to zones is run. Accessibilities Xt(t) are derived

- 1)], (12.44)

. (12.46)
As Ft(t) = f[Ft(t)], (12.44)-(12.46) are reiterated until convergence. At the 
present time, Schneider's original model is being investigated in a separate 
program. With certain starting values and parameters, Schneider's 
model does not converge and therefore the variant described in (12.44)- 
(12.46) was adopted until further work has been done on the structure of 
Schneider's model. Next, residential attraction in each zone j is computed

Off) = ifcrFft +!) + (!- «r) Lfi-l)], (12.47) 
and then, the measures of service centre attraction are calculated from

V&) = 2 p'AS^r-r). (12.48)

The total basic employment to be allocated including the basic employ 
ment associated with relocation is found from

t) £?(/), (12.49) 
where A//^(?) is now the change in exogenous basic employment. The
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model now moves into an inner loop which is concerned with allocating 
and generating two increments of employment and population. This inner 
loop is referred to by an index m. The first increment of employment 
includes the change in service employment from the previous time period 
t to t— 1 which has not yet worked its way through the system

A *£,(>, m) = A*£j(f) + A*S,(f- 1). (12.50)
Employment is first allocated to areas of residence and scaled to popula 
tion; then service employment demanded is derived and allocated to 
service centres using the following equations

i 
A*P,(', m) = a£ A* Tti(t, m), (12.52)

(12.53)

**St(t, m) = £ A*5fX/, in)+/?a A*£,(f, m). (12.54)
;

If m is less than the required number of iterations then
A *£X', m + 1) = A*S,(f, m), (12.55) 

and k*E{(t,m + l) is substituted for A*^(r, m) in (12.51). Equations{
(12.51)-(12.54) are reiterated until the condition is met: in the simulation 
here, two iterations are required. The process of generation and allocation 
is now complete for this time period and the model moves into the 
accounting framework.

The equation system II: accounting
First, the gross changes in activities and trips are easily calculated from the 
earlier equations: these changes are listed below

(12.56)

(12.57)

-!), (12.58)
(12.59)

(12.60)
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Equations (12.56)-(12.60) are gross changes in that they include activity 
which is relocating in the system. To avoid double counting, this activity 
must be subtracted. Furthermore, to obtain the net changes, the complex 
modulations of the mover pool ratio through time must be taken into 
account. The proportions of activity relocating at different periods from 
any point in time are easily calculated as in Table 12.2 and these propor 
tions are also given below

0(1) = I-/.",
6(2) =

6(3) =

6(n) =

TABLE 12.2. Proportions of population and service employment 
allocated at each time period

Time period Population and service employment* 

1st period

2nd period „ ._: = /t2(l -f<?) = fi*6(l) = 0(2)

3rd period V. \ ( = /t4d-/*2) = P?0(Z) =0(3) (I-/*)"1

nth period v-

* It can easily be shown that the proportions for service employment are the same as 
those for population.

These proportions are relevant to the relocation of population but must be 
modulated for service employment, work trips and service trips in the 
following way. The subscripts R, Tand S denote service employment, work 
trips and service trips respectively

„„<„ .
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(12.63)

The main calculations for deriving net changes are given below; total stocks 
of actjvity at time t + 1 need not be shown explicitly for their calculation is 
obvious. Note that N = 10

Pi(t+l)-Pi(t) = &*Pi(t)-n % 0(z)P/z), (12.64)
2=1

St(t+ l)-St(t) = A*S«(0-* S 0*00 S<(*), (12.65)
2=1

Tti(t+ 1)- r,XO = A*7^(0-" S 0r(z) r,,(z), (12.66)
2 = 1

5w(r+ 1)- V) = A'S-,/0-* £ ^z) Si;<z), (12.67)
s=l

^ + 1)-^(0 = ^+1)-^(0+A^.(0 + A7,(0. (12.68)

Total quantities of activity in the system can be calculated by summing 
over / or j or both. There are also several other outputs from the model at 
each time period such as zonal activity rates, trip lengths and residential 
densities. Before the model goes on to simulating changes in the following 
time period, the land available for future residential development is calcu- 
lated from ^(?+ 1} = L .(t} _ s .[P .(t + l} _P .(t}l (12-69)

A new measure of actual floorspace in residential uses is also derived from

(12-70)

A test is made to assess whether the constraints on population in each zone 
have been violated. The 0;- term is set as follows for the next time period

|=o, if px/+i)>cx/+i),
Y} \= I, otherwise. v '

If t < n, t is increased to t+ 1 and the simulation begins again at (12.42). 
Equations (12.42)-(12.71) are reiterated until all time periods in the simula 
tion period have been modelled. A flow diagram of the main operations in 
the model is presented in Figure 12.3.
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Restrictive assumptions of the simulation
Although the equation system describes the various feedback loops which 
operate in the model within and between time periods, a more direct 
presentation of these linkages is provided in Figure 12.4. At any point in 
time, the model is in disequilibrium in the sense that previous changes in 
the level of activity are generating further changes. These repercussions 
due to multiplier effects are assumed small enough to ignore ten time 
periods after the initial stimulus, and this means that in any time period, 
changes originally generated in the nine previous time periods are part of 
the total change in activity. Furthermore, when the simulation is termi 
nated, there are still repercussions to work themselves out; there is also 
the problem of starting the simulation, for to preserve consistency the 
model should begin in disequilibrium. This could easily be achieved by 
adding the potential activity not yet generated at the end of the simulation, 
to the starting position. As yet this problem has not been dealt with, 
although in absolute terms, its effect on the system is quite small.

Temporal 
dimension

Fig. 12.4. Linkages between model variables in and between time periods.
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The subdivision of the simulation period and the spatial system into 
discrete units is an important factor in detecting variance. As demonstrated 
in previous chapters, it was argued that spatial systems should be zoned to 
maximise the ratio of inter-zonal to intra-zonal interaction. A similar rule is 
necessary for fixing the length of the time period; the ratio of activity 
generated in the first time period to repercussions from that activity 
generated in later time periods, should be minimised. As the length of the 
time period increases, more of the multiplier effects from a change in 
activity are generated within that time period, and thus a time interval of 
one year is considered most appropriate here.

Although the activity parameters, a, /?j and /?2 are taken as constant 
over the simulation period, it is possible to vary these parameters over 
periods of time longer than two years. Because of the nature of the multi 
plier, it is difficult to vary the parameters in each time period for this would 
change the form of the economic base relationship. This problem is 
largely one of estimating the parameters from data, and of accounting for 
different values of the parameters in the simulation. In future research, it 
may be possible to assume a trend in these parameters over the simulation 
period, thus implicitly recognising that the parameters vary. With regard 
to the mover pool ratio, this parameter can be varied over time, but it is 
much more difficult to vary the parameter spatially. This ratio should be 
partly endogenous to the simulation in that changes in the age-sex- 
household structure of the population are important determinants of 
internal migration. In future work, these relationships will be explored in 
more detail.

It is also necessary to comment on the recursive structure of the simula 
tion model, and to assess its validity. In designing such a model, what 
appear to be simultaneous relationships in reality must be approximated 
by a sequence of relationships; this embodies certain assumptions as to 
the order of operations in the sequence. For example, the relationship 
between the supply and demand for floorspace is approximated in the 
following way. The expected supply of floorspace is derived using Schneider's 
model, and this becomes an input to the measure of locational attraction 
used in the demand model locating population. Population is then con 
verted into actual floorspace which is likely to be different from expected 
floorspace. No iteration is used to establish consistency between the 
expected and actual supply of floorspace. This sequence of operations 
could easily be ordered so that the expected and actual demand for, rather 
than supply of, floorspace were computed. Such decisions with regard to 
ordering abound in the model, and it is assumed that the time period is 
short enough to make little difference to the order of operations.
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Application and preliminary calibration
The simulation model is being run with data from the Reading area in 
Central Berkshire. This subregion has been divided into 18 zones and the 
simulation is from 1951-66 in one-year time periods; Table 12.3 presents

TABLE 12.3. Major characteristics of the Reading subregion

Total number of zones 18
Total land area in square miles 95.8250
Average land area per zone in square miles 5.3236
Total population

(i) 1951 191948 
(ii) 1966 262279

Average population per zone
(i) 1951 10664 
(ii) 1966 19577

Population density in persons per square mile
(i) 1951 2003 
(ii) 1966 2737

Basic employment
(i) 1951 26723 
(ii) 1966 40691

Total employment
(i) 1951 76712 
(ii) 1966 109405

Ratio of basic to total employment
(i) 1951 0.3483 
(ii) 1966 0.3779

Ratio of inter-zonal to intra-zonal work trips
(i) 1951 0.6039 
(ii) 1966 0.9586

the pertinent characteristics of this subregion. There is an immediate 
problem in collecting data for this model; although good cross-sections of 
activity and work trips exist for 1951, 1961 and 1966 from the Census of 
Population, very little data exist in yearly periods between these dates. 
Data on total employment by SIC are available for each year from the 
Employment Exchange Areas, and this provides the only time-series to 
guide the simulation. Consequently, many of the model's hypotheses 
cannot be validated in any strict sense. It is also clear that the model cannot 
be calibrated in the usual way, for gaps exist in the set of data which have 
been filled by assumption, or by outputs from other models.

The zoning of the subregion and the route network in 1966 are shown in
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Urban areas

1
2
3
4
5
6
7
8
9

Reading
Woodley
Shinfield
Burghfield
Theale
Kidmore End
Shiplake
St. Nicholas Hurst
Finchampstead

10
11
12
13
14
15
16
17
18

Wokingham
Arborfield
Mortimer
Pangbourne
Goring
Woodcote
Peppard
Henley
Wargrave

0 1 10 miles

Fig. 12.5. Zoning of the Reading subregion.

Figure 12.5. Changes in the network and data on land use have been pro 
vided by the Local Authorities in the area and at present the model is being 
run using a hypothetical time-series for basic employment. In general 
terms, the mathematical methods developed for fitting and analysing time- 
series are quite unsuitable for such a hybrid model as this. Furthermore, at 
present this model is regarded as an exploratory tool for setting up experi 
ments concerning urban growth processes and for refining and developing 
existing theories of urban structure. The experimental approach is quite 
consistent with the form of the model and the emphasis in the rest of this 
chapter is on testing the sensitivity of the model's parameters and variables 
to change. In this way, the key determinants of urban growth and structure
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as simulated by the model, can be revealed. As a first step in this approach, 
reasonable values for the parameters need to be estimated using some 
short-cut techniques.

The basic employment location model was fitted to data from 1961-6 
using stepwise linear regression analysis (Cheshire, 1970). Although there 
are more accurate and less biased methods for fitting such a linear equation 
to data consistent with a one-year time module (Rogers, 1968), the 
equations presented below are appropriate for experimental purposes

*f(') = £M, 02.72)

-0.01 1 

- 0.0264S<(0 - 0.058 1 Xf(t). (1 2.74)

All variables are significant at the 5 per cent level. d{j(t) and d{j(t— 1) are 
distances between / and j in miles at t and t—l. Equation (12.74) is 
normalised in the simulation and total endogenous basic employment 
A 7(0 is allocated to zones. The coefficient of multiple correlation r 2 is 
0.9899 for (12.74). Despite the apparent goodness of this fit, (12.74) is 
empirically determined, and has no theoretical underpinnings.

The following functions of travel time were assumed for the simulation 
and parameters were approximated using Hyman's linear interpolation- 
extrapolation method outlined in Chapter 6. Then

/W-i)]]
/W- 1)] I = exp [- Xltij(t- 1)], (12.75)

Ac«('-l)J = exp[-A2 fi//-l)J. (12.76)

Travel time tit is used as a proxy for travel cost in the model. Note also 
that the service centre trip distribution model necessary to set up the distri 
bution of service trips in 1951 uses parameter A2. The parameters Aj and A2 
are functions of the associated mean trip lengths and Hyman's method 
generates an approximation from given means. The activity ratios a, /?j and 
/?2 are estimated from data at the start of the simulation, and this presents 
no difficulties. A very approximate value of the mover pool ratio has been 
taken from data on internal migration in Berkshire recorded by the 1966 
Census of Population between 1961 and 1966; the value of this ratio is 
0.020 and has been computed from net, not gross movements.
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A critical assumption has been made with regard to the form of the 
basic employment time-series between 1951 and 1966. The change in basic 
employment in each zone in each year over the simulation has been guided 
by the total change in basic employment in each year, available from the 
Employment Exchange Areas. The model has been run with the above 
assumptions and the results in the following section demonstrate the main

TABLE 12.4. Statistical testing of activities

Stocks 1966 Changes 1951-66

Ratio of means
Ratio of standard
deviations

Ratio of modes
Chi-square x2
Coefficient of
determination r2

Slope of regression
line

Intercept

Service 
employment

0.0061
0.0593

0.0007
0.0003
0.9991

0.9419

203.8970

Population

0.0067
0.1162

0.0265
1.0624
0.9802

0.8753

1737.1682

Service 
employment

0.0232
0.2507

0.0001
1.0004
0.9703

0.7392

253.9523

Population

0.0237
0.4349

-0.4273
9.7501
0.0958

0.1745

3211.7998

NOTES: The ratios are formed by subtracting the predicted from the observed 
statistic and dividing by the observed value. The slope and intercept statistics are based 
on a regression of predicted on observed values of each activity.

TABLE 12.5. Statistical testing of interactions*

Total interaction 1966 Changes in interaction 1951-66

Statistics

Ratio of means
Ratio of standard
deviation

Ratio of modes
Chi-square x2
Coefficient of
determination r2

Slope of regression
line

Intercept

Service trips

0.0061
0.1079

0.0021
1.0034
0.9889

0.8871

20.6652

Work trips

0.0074
0.1448

0.0025
1.0045
0.9871

0.8503

48.5541

Service trips

0.0234
0.3631

-0.0074
5.0134
0.2915

0.3441

33.7124

Work trips

0.0223
0.4016

0.0014
2.0032
0.2187

0.2809

71.3945

* Definitions of statistics are similar to those in Table 12.4.
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features of the simulation. A summary of the model's performance in 
terms of various statistics is useful at this stage, bearing in mind the 
approximate and crude nature of the calibration. In Tables 12.4 and 12.5, 
statistics measuring the fit between the predicted and observed zonal and 
inter-zonal distributions of changes in activity between 1951 and 1966, and 
stocks of activity at 1966 are presented. Although the statistics measuring 
the fit of the stocks are heavily biased towards a good fit, the statistics 
associated with the changes in activity reveal that the performance of the 
model is fair in the light of the major assumptions.

Experiments in urban simulation
At the end of each time period, the model outputs a new configuration of 
the stock and new patterns of interaction; also, changes in the stock and in 
the interaction patterns, computed in the previous time period, are pro 
duced. Therefore, during each simulation run, a large volume of data needs 
to be quickly digested and to facilitate presentation, a crude graph-plotting 
subroutine has been developed. Changes and stocks of activity in each zone 
are plotted through the simulation period, and some of the following 
figures show this facility. With regard to future research, it is hoped that 
other means of graphic presentation such as computer mapping can be 
developed, for at present a large part of the output is being ignored on 
each run due to an inability to digest it all in a short time.

The trajectories of change in the whole subregion are shown in Figure 
12.6. The important point to note from this graph concerns the sensitivity 
of endogenous variables such as population and service employment to 
changes in the exogenous variable - basic employment. Although activities 
on this graph and the following graphs are not to scale, Figure 12.6 shows 
that the endogenous variables respond almost immediately to external 
stimuli; this is to be expected from the nature of the simulation and the 
fact that much of the lag in the generation of activities is of the first order. 
As a large proportion of the change in activity is in the zone of Reading, 
this zone is the major determinant of the time-series in Figure 12.6, and as 
Figure 12.7 shows, Reading has a similar form of time-series to the system 
as a whole. An important characteristic of this zone relates to the change 
in population which is both positive and negative during the simulation 
period. The behaviour of this zone shows features typical of decentralisation 
and suburbanisation in that the ratio of changes in population to changes 
in employment is close to zero throughout the simulation. In Figure 12.8, 
the pattern of work trips generated by persons working in Reading and 
living in other zones of the system is shown for each time period of the 
simulation. It is interesting that the changes in activity in Figure 12.7 are
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also reflected in Figure 12.8: the two peaks in activity in 1953-4 and in 
1961-2 are apparent in a peaking of the work trip distribution at these 
dates. Note also that the change in total stocks is also shown on each of 
these graphs thus demonstrating how quite large changes in stocks are 
smoothed when aggregated to total stocks.
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Two other zones in the subregion - Wokingham and Henley - show 
behaviour similar to that of Reading. In both these cases the change in the 
inverse activity rate is close to zero, which indicates that population 
generated in these zones is being largely located outside these zones. In the 
case of Wokingham, shown in Figure 12.9, the change in basic employment 
is similar to the system as a whole. In Figure 12.10 which shows changes in
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R ft R

; Activity rate ; | | 
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Fig. 12.7. Changes in critical variables in Reading zone 1.
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Henley, marked peaking of the mean service trip length is due to the fact 
that service employment increases in these years.

The experimental approach to urban simulation is clearly illustrated in 
Figures 12.11 and 12.12 which show changes in the zones of Kidmore End 
and Shiplake respectively. These zones both reveal behaviour patterns 
opposite but complementary to zones such as Reading, for the changes in
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the inverse activity rates are high, showing that these areas are growing 
from an incoming population which has its place of work elsewhere. In the 
case of Shiplake in Figure 12.11, changes in activity reveal the essential 
purpose of simulation in providing new insights into the structure of urban 
systems. The peculiar oscillatory behaviour which starts in Shiplake 
towards the end of the simulation can be accounted for as follows. In
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terms of the performance of the model, Shiplake's population is growing 
too rapidly and in 1962-3 reaches the population constraint limit C,(f). 
When this limit is reached, the term 0} is set equal to zero and the resir 
dential attraction in the following time period is also zero. Besides 
allocating new activity, the residential location model reallocates activity 
in the mover pool. In Shiplake, the attraction is zero and persons in the

75

70

15

10

5

5
19

....U....JJ.MMP
^^*

- ———— '———— -'"V

51

a

rs*'-

. ~~-^

19

,---'

/ ./....

^.-i

~ '

56

6 1

Population-serving ratio X 5

I L L L L t

F i f r F F

Population X 4000 ' |

1961

^— (

..... ->•*$€
-IRSS

-BBSS

M -BBSS

L / ^ '

- I. ^

...." r

....: H

1966

1'^ - 1

y

....

.' v i

nr
-.

7. ,'

: ;

v «

-5..... 

1951

-L..--I.——t.——I... 
; ~~;~~; Population-serving ratio X 5

'.'.'.'.'. T~"^T-— '. Mean work trip length '•

1956 1961 1966 

Fig. 12.11. Changes in critical variables in Kidmore End zone 6.



Dynamic simulation 345

mover pool will not relocate in Shiplake although this may be their place 
of residence in the previous time period. Therefore, there is a net out- 
migration from Shiplake, this lowers the population which falls below 
Cj(t), the residential attraction becomes positive and in the next time 
period, population flows back in. 

In the simulation, these oscillations, although in absolute terms not
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large, can continue indefinitely. This may or may not be realistic dynamic 
behaviour, but as such behaviour was not anticipated a priori, this is 
certainly cause for further testing of the realism of this particular mechanism 
in the model. Figure 12.13 which illustrates changes in Woodcote, demon 
strates the way in which lags are distributed in the system. A decline in 
basic employment is reflected in declines in service employment in later
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time periods. This decline in services also has an effect in damping the 
measure of service centre attraction in later time periods. Such effects 
can easily be seen in Figure 12.13 where a major effect on the mean service 
trip length follows two periods after the decline in employment.

Changes in the zone of Rotherfield Peppafd shown in Figure 12.14 
demonstrate the sensitivity of various ratios to changes in employment. As
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an example, when the inverse activity rate declines, the mean work trip 
length increases. Several different hypotheses can be advanced for this 
behaviour, but it seems that a more rigorous analysis of the model's 
structure and further experiments in sensitivity analysis are necessary 
before such relationships can be clarified. Already, in the case of Shiplake, 
the importance of relocator behaviour has been discussed. The experi 
mental approach to relocation can be taken further and in the following 
section, some migration analysis based on the simulation is presented.

An approach to migration analysis
The importance of relocation in the simulation cannot be overstressed. 
As an example, consider those runs of the model in which the mover pool 
ratio is set at 0.02 of the population stock in each time period. Over fifteen 
such periods in a situation of no growth, about one-third of the population 
would turn itself over. In the simulation reported here where the growth in 
population between 1951 and 1966 is about 36 per cent of the population 
in 1951, of the total change in location nearly 50 per cent is due to reloca 
tion. This is a very high percentage, and it is certain that the mover pool 
ratio is the most sensitive parameter in the model. A large proportion of 
relocation, however, remains undetected for most relocation occurs within 
a zone, yet migration across zonal boundaries is quite high in absolute 
terms. In reality, the whole population never completely relocates for the 
propensity to migrate varies widely between different social, economic and 
age groups. The model, however, is too macro to account for this kind of 
detail; if a disaggregation of the population was to be considered in future 
research, it appears in the light of this work that such disaggregation 
would need to be closely related to relocator behaviour rather than travel 
behaviour as has been suggested in the context of spatial interaction models 
(Wilson, 1971ft).

The sensitivity of the mover pool ratio is demonstrated by Figure 12.15, 
where changes in the population of Reading are compared when the ratio 
is equal to 0.0 and 0.02. Changes in the value of this parameter are 
reflected in most of the spatial distributions predicted by the model, and 
in most of the statistical tests which are computed. Net migration into and 
out of each zone for population and service activities can easily be com 
puted by running the model with the mover pool ratio equal to 0.0 and 
subtracting these predictions from the results produced with the positive 
constant: this is to be expected from the theory, for the critical variables 
which alter the rate of internal migration are those which affect location - 
the. measures of locational attraction and travel cost. Such variables are 
not likely to vary very much from time period to time period. In Figure
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Fig. 12.15. Sensitivity of the mover pool ratio w in Reading zone 1.

12.15, the amount of net out-migration of population and services is 
shown for Reading. In the case of population, out-migration is constant 
whereas in the case of services, the level of out-migration gradually increases 
through time. The initial build-up in these rates is due to the fact that the 
simulation is not started in disequilibrium.

Spatial analysis of the pattern of net internal migration shows that in 
this model the mover pool ratio appears to be the critical parameter 
affecting the decentralisation of activity. This is apparent from Figure 
12.15, and Figure 12.16 shows the net flow of population across different 
partitions of the subregion. This type of analysis was originally developed 
in Chapter 4 for projections with activity allocation models, but it is 
obviously relevant to dynamic modelling. The net out-migration from 
Reading, Wokingham and Henley demonstrates that the existing popula 
tion is decentralising due to changes in the relative attraction of zones in the 
system. Areas of greatest net in-migration are typically suburban areas or 
rural areas with enclaves of exurban growth.

Future research in urban simulation
The approach to simulation outlined in this chapter represents some first 
steps in modelling the dynamics of urban systems. There are many 
mechanisms in the model which are unrealistic simulators of urban 
activity, and future research should be devoted to classifying and modifying
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the structure of the model in an experimental fashion. In particular, four 
research areas can be denned; these are labelled calibration, dynamics, 
structure and application, and are now discussed in turn.

The calibration described above is approximate in several respects. The 
degree to which such a model can be 'calibrated' in the traditional sense 
is an important area for research, and as yet, there are several sensitivity 
analyses of the model's variables still to be undertaken. Some calibration 
methods based on the theory of search and on numerical-iterative processes 
were described in Chapters 6 and 7 specifically for cross-sectional models 
of spatial interaction, and these methods could easily be adapted to the 
dynamic model. Yet it seems that the model is more useful as an experi 
mental device for its validation would be extremely difficult statistically, 
and thus it is of conceptual rather than practical import. With regard to 
research into the model's dynamics, two major directions for study can be 
delimited. First, the specification of the model using a rigorous system of 
difference equations is worthy of further research, possibly in terms of the 
more theoretical approach such as that used by Paelinck (1970) described 
in the last chapter. Second, the concept of time as a one-dimensional 
continuum needs some exploration. In urban modelling, the temporal 
element is complicated by concepts such as expectation and uncertainty 
as in economics (Shackle, 1958); already, such concepts have been intro 
duced as in the case of the floorspace location model, and it is probable 
that other mechanisms in the model can be made more realistic in this way.

Questions of structure are partly related to dynamics for the temporal 
as well as spatial relationships in the model form what is called structure. 
These relationships need to be explored in much more detail with regard 
to altering the sequential order of certain operations in the model, and 
modifying the balance between endogenous and exogenous variables. 
Finally, applications of the model could be extended in two ways. First, 
the model can be used to make short-term predictions of changes in urban 
activity and, in particular, the model is probably sensitive enough to 
forecast the impact of the new motorway system already planned for the 
Reading subregion. The second type of application is much more inter 
esting for the model can also be used in a historical context; as the simula 
tion is initially fitted to a previous span of time, it is possible to compare 
the present with predictions generated during the history of the simulation. 
This type of retrospective analysis could, for example, be used to compare 
the present with what might have happened if the course of recent spatial 
history had been slightly different.

This summary of future research reads rather like a catalogue but many 
of these areas can be explored in a straightforward manner. The concept 
of time certainly opens up a new dimension which has hitherto been
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largely neglected, and it appears that many of the problems of cross- 
sectional static modelling can only be resolved in a dynamic context. The 
dynamic simulation outlined here appears to offer a promising approach 
to urban research and this should eventually lead to more realistic methods 
of spatial forecasting.



Conclusions

It seems appropriate to conclude this book by attempting to synthesise 
some of the themes which have been developed in these pages and to 
speculate on possible and necessary developments in urban modelling 
which are on the horizon. But first, it is worth while discussing some of 
the major criticisms directed against this type of work for therein lie many 
of the limitations in the theory and practice of urban modelling. One of 
the most widespread criticisms concerns the question of abstraction. Many 
argue that such models are so poor a representation of reality that they 
are often irrelevant to the problem in hand, whilst others argue, in a similar 
fashion, that urban modelling is a worthless task, for reality can never be 
described numerically. Both these views contain an element of truth. Yet 
the purpose of any model is to simplify reality, thus leading to greater 
understanding and to means whereby experiments can be made on the 
model in the quest to explore both the present and the future.

The simplification of reality is a cornerstone in the philosophy of science 
for all the theories and techniques used by urban researchers and planners 
involve a degree of abstraction by simplification. Furthermore, there are 
good and bad models, and models which are only relevant to certain 
situations. The model-builders, whether they be researchers or planners, 
can also contribute to the success of modelling by using models in a 
sensitive fashion and avoiding the temptations of pressing them to their 
limit. In the longer-term endeavour in urban research and planning, it is too 
easy to dismiss such techniques because they are limited in certain directions 
(Eversley, 1973). There is a need for a more liberal perspective on the state 
of the art by all involved in urban modelling, thus fostering the view that 
models are only aids to imagination in a wider process of design, problem- 
solving and decision-making in society at large.

Aids to imagination
Perhaps the real objection to urban modelling involves the clarity and 
apparent precision involved in such work, in contrast to the real world 
which, in the planner's eyes, is ill-defined and difficult to describe in any
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detailed sense. Thus any mathematical representation of reality is suspect 
to those who consider the world too complex to be so described. However, 
pattern and order does exist and is fairly easy to identify at least on a super 
ficial level in urban and regional systems. As to whether or not an individual 
agrees with the description of such patterns statistically is a matter of 
opinion, and ultimately of faith in the fundamental ideas.

There is another view which states that analogies between the physical 
and social sciences are irrelevant because the two areas of knowledge are 
quite different substantively. This again is a matter of judgement and 
experience for it presupposes that the physical sciences are based on ideas 
which are right or wrong, whereas the social sciences are not based on such 
logic. This seems to be a mistaken view of the physical sciences where 
intuition, speculation, verbal description and other methods have as great 
a part to play as they have in the social sciences. Modelling does not 
confine the role of intuition and experience in understanding the present 
and the future, but attempts to establish a framework for research or 
practice in which the analyst involved can develop his intuitive powers. In 
some senses, modelling provides an ideal environment in which research 
or planning can evolve, thus aiding the analyst's imagination and focusing 
his ideas on the problem under consideration.

The most sweeping criticism of modelling is usually directed against the 
notion that models imply some crude technocratic determinism which is 
incapable of accommodating any other idea. Again, this criticism depends 
upon the way in which the model is used. If the model-user sees the world 
solely in strict analytical terms, then those components which cannot be 
rigorously analysed will be omitted, thus confirming the criticism. There 
is however no necessary conflict between modelling on the one hand and 
social justice on the other. Those who think that there is must elaborate 
their argument by example.

Social process and spatial form
One of the basic dilemmas facing social science involves the problem of 
integrating or synthesising obviously related streams of thought which are 
described in different ways. The traditional dichotomy between micro and 
macro has never been satisfactorily resolved in economics or in sociology 
for the various contributions to each have often been developed using 
different languages which are hard to relate. Furthermore, integration 
between the various disciplines is urgently needed so that related ideas can 
be developed together. This dilemma has recently been cast in a spatial 
mould by Harvey (1973), who cogently argues that social processes are 
rarely, if ever, represented by models of spatial form and vice versa. This 
does not imply that researchers are unconcerned about the difficulty of
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synthesis for the fact is that the various languages and styles used to 
develop ideas about social process and spatial form are almost impossible 
to reconcile. Urban modelling demonstrates this dilemma in a direct 
fashion for the models in this book have almost all been concerned with 
spatial form rather than social process.

The difficulty of integrating these two approaches cannot be over 
estimated. What seems to be required is a new type of calculus which 
is able to handle quantitative and qualitative ideas, micro and macro 
concepts, behavioural and statistical approaches and so on. This is an 
enormous task and it is hard to see how it can be attacked using conven 
tional strategies of research. There are however certain limitations in form 
ally representing urban systems. The recent work by Winograd (1972) in 
artificial intelligence suggests that there are basic limits to computer repre 
sentation of human processes due to our ability to draw on experience, 
a source of knowledge which cannot be represented in a computer. How 
ever, if the present impasse is to be resolved, a new approach to urban 
research and planning must evolve.

Data and computation
Throughout this book, the various models introduced have been applied 
using data from available sources. Thus, it is not surprising that there is a 
continuing demand for more and better data. Yet it is surprising what can 
be done with available data and, in certain instances, more data could 
easily confound a modelling project. In many of the North American 
modelling projects in the mid-1960s, the collection of data became an end 
in itself and several models never got off the ground. There are researchers 
who believe that the data problem is an irrelevant distraction. For instance 
Forrester (1969) states 'In the social sciences failure to understand systems 
is often blamed on inadequate data. The barrier to progress in social 
systems is not lack of data....The barrier is deficiency in the existing 
theories of structure.' There is some truth in Forrester's statement, for 
many theories and models would never have been proposed if data were 
a prerequisite. This book has also presented models based on easily 
available data, and at the present time, it seems that more work is needed 
on model structure and design rather than data collection.

Computation has also been a perennial problem in urban modelling. In 
spatial interaction modelling especially, the storage required increases 
exponentially with the number of zones into which the system is divided. 
In most computers, models with greater than 200 zones are impracticable 
unless external storage on tapes is used, but such external storage increases 
the running time sometimes prohibitively. Yet some dramatic changes have 
been made in computer size and speed of processing in recent years. Gibson
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(1972) quotes the time needed to invert a 100 x 100 matrix on a series of 
IBM machines. On the early IBM 360/25, the time required is 23 minutes 
in contrast to 1.2 seconds on the 360/85. This incredible increase in speed 
in little over a decade has important implications for urban modelling, 
and during the next decade, it is likely that models larger than anything 
anticipated now will be made operational. Indeed, there are many com 
puter scientists who are suggesting that the real problems in using com 
puters in the future will not concern speed or capacity but will revolve 
around defining the appropriate problems by asking the right questions.

Existing problems in model design
Design issues concerned with zoning, locational attraction, calibration 
and a host of measurement problems have been discussed in previous 
chapters and perhaps the most intractable of these relates to zoning. As 
yet, only hints of an appropriate theory of zone size have been presented 
(Broadbent, 1970fe) but it is clear that an immense amount of work is 
required in this area before an operational algorithm for constructing an 
optimal zoning system is derived. Furthermore, practical problems of data 
availability affect zone shape and size, and some way of integrating these 
factors into any such theory will be necessary. Another set of design 
problems relates to the form of equation system relevant to the model. 
Simultaneous relationships are difficult to represent in hybrid models such 
as those discussed here, and usually such relationships have to be structured 
sequentially. Any generalisation of these models such as that proposed by 
Wilson (1970 b) is easier to make if the structure of the model is sequential. 
Often, factors such as computer capacity, speed, and availability of data 
determine the actual form of equation system feasible to the problem in 
hand.

Of the problems discussed in this book, the calibration problem has 
yielded best to research. Conventional procedures of non-linear optimisa 
tion and numerical analysis have been employed as a basis for estimation 
as described in Chapters 6-8. Yet this process of calibration cannot be 
seen as a process of validating the model, for validation is a much wider 
issue involving a range of factors outside the ambit of statistical fit. Calibra 
tion is only a process of determining the values of certain variables which 
relate to the particular area under study, or which are simply arbitrary 
factors used in tuning up the model. Validation, on the other hand, 
depends upon whether or. not the structure of the model reflects reality to 
the desired degree. This question is of fundamental significance, for 
attempts to disaggregate models and make them dynamic reflect the search 
for model structures which are less abstract and more relevant to the real 
world. The models of the last three chapters are important in this context.
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Urban research or design science?
Zwick (1962) defines three roles for urban models: the first relates to the 
design of models for research into spatial structure, the second for educa 
tional purposes and the third for spatial forecasting or planning. These 
three roles have all been stressed in one way or another in this book which 
has sought to show how models can be used to understand, to explore and 
to predict the spatial form of urban and regional systems. But there has 
been less emphasis on prediction than on understanding and exploration. 
The fact that to use any model in forecasting, one must design and cali 
brate the model first, means that prediction is inevitably left until last 
which often means that it is ignored. Furthermore, the construction of 
models in an academic environment means that there are no pressures on 
using such models to predict. Yet prediction with such models is of great 
importance and there are some who would argue that the sole justification 
of modelling is in terms of prediction. Thus, there is an urgent need for a 
more explicit use of models in forecasting, and also in the design and 
evaluation stages of the technical plan-making process.

This discussion raises the notion of normative factors in urban modelling. 
At present, there is a gap between the models attempting to explain 
existing urban structure and those attempting to change it in some optimal 
way. Just as there is a need to bridge the gap between micro and macro, 
inductive and deductive modelling, there is a need to synthesise normative 
with descriptive models. It should be possible to build models which 
explain urban phenomena and which can accommodate strategies which 
seek to change the same phenomena in the quest to optimise urban form. 
Rather than building models around the concept of linear programming, 
it should be possible to apply mathematical programming to descriptive 
models. Such a model would take on several roles within the planning 
process - in analysis, in description, in forecasting, in design and in 
evaluation. At present, it appears that this strategy might be the most 
fruitful development with respect to many of the models outlined in this 
book.

Development of the urban models presented here in the directions 
described above is an important goal for future work but there is perhaps 
a more important quest. There is a need for these models to be integrated 
in planning practice, for only then can their true potential be realised. 
Urban modelling is the logical outcome of a systems approach to planning, 
and if such an approach is to evolve and flourish, it will be necessary to 
accept its importance in the practical plan-making process.
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