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A Broader Perspective SECTION





PLANNING SUPPORT SYSTEMS EMERGED IN THE LATE 1980S AS THE GENERIC 
term for that loose assemblage of computer-based tools that urban and regional 
planners had garnered around them. Computers have been applied to human 
affairs ever since their inception in the mid-twentieth century, and by 1960 
planners were experimenting with large-scale systems for data and simulation. 
These led immediately to municipal information systems and land use transpor-
tation models that formed the core of the planner’s toolbox until the advent of 
geographic information systems (GIS). By the 1990s, a sufficiently varied set of 
tools informed most of the stages of the technical planning process. It thus made 
sense to consider these collectively as planning support systems (PSS) that could 
be developed in more integrated fashion and adapted to many different contexts 
in which planning required such support. 

Until the idea of PSS emerged, the conventional wisdom held that scien-
tific or rational planning could and should be underpinned by comprehensive 
computer models that linked how the system in question actually functioned to 
how it might function under certain design requirements. In this sense, the plan-
ning process itself was articulated as a system both within and without the wider 
urban and regional system, which was the object of design. This bold and per-
haps naïve conception emanating from the systems approach (West Churchman 
1968) gradually weakened its grip on planning methodologies. It became ever 
clearer that such tight structures could not be mapped onto planning problems 
that were always too diverse, ill-defined, and ambiguous to admit of highly struc-
tured decision making supported by well-defined computer technologies. 

This conception may have met the requirements for “putting a man on the 
moon,” but it fell far short of solving problems such as “getting us to the airport,” 
in Mel Webber’s hallowed words (1979). Once computers became universally 
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available through the PC, then such tight structures were blown apart as many 
diverse computer-based tools reflecting a variety of applications became avail-
able. Geographic information systems were in the vanguard and by 1990 this 
proliferation could no longer be imagined as integrative. Planning support systems 
came to be used as the collective term for this variety. 

Britton Harris (1989a) actually coined the term.1 Harris, in fact, had been 
the doyen of the land use transportation modeling field since it began in the 
late 1950s, being the leading commentator and advocate for how such science 
might be applied and developed. In a landmark paper in 1989 entitled “Beyond 
Geographic Information Systems: Computers and the Planning Professional,” 
he argued that just as management required routine support, planning required 
strategic support, hence his use of the term planning support systems in contrast 
to decision support systems. In the early days, up until networked computer sys-
tems really took off, most PSS were focused on nonroutine, strategic planning 
although the line between the strategic and the routine was inevitably blurred 
(Batty 1995). 

What has changed this context radically is, first, the proliferation of individ-
ual software devoted to countless tasks that are relevant to any kind of problem 
solving and, second, the dissemination of this software and data across the Inter-
net from dumb Web pages that simply provide information to esoteric software 
collaboratories. This blurring of the field is one of the key themes of this chapter. 
It traces how the idea of planning support is changing as both the problems to 
which PSS are applied and the technologies enabling us to generate such sup-
port change, both simultaneously and in parallel.

This broadening context is based on three related transitions. First, urban 
planning has become highly pluralistic based on increasing uncertainty and 
ambiguity in society at large about well-defined courses of social action. In short, 
planning problems are no longer regarded as soluble in the classical scientific 
sense. In Rittel and Webber’s (1973) graphic terminology, they are “wicked.” 
The notion that there are optimal products in the form of ideal cities to be 
designed has given way to the possibility that there might only be optimal pro-
cesses to be used in negotiating futures that are in some general sense acceptable. 
In fact, this perspective was widely accepted when planning support systems 
were first articulated, but since then it has deepened as our collective view of 
the future has fragmented. 

Second, in the last 50 years the process of planning has moved quickly from 
rigid professionalism to collective negotiation while its methods have been 
used increasingly to communicate and disseminate a multitude of ideas to many 
constituencies with a central interest in the future. In this sense, planning sup-
port systems are increasingly used to inform. The focus is thus on adapting more 
esoteric tools and their products to audiences and interest groups that do not 
ordinarily have the professional expertise to interpret them.

Third, new technologies for disseminating information, now largely digital 
in one form or another, have rapidly developed in the last 20 years through the 



Internet and related systems, and this has led to the common media of commu-
nication becoming predominantly visual. Not all these transitions are necessarily 
ideal, but they form the starting point for this review and the speculations we will 
develop.

We first outline the development of new computer technologies and their 
importance for PSS, largely since the advent of the Internet and its visual media 
in the form of the browser. We pay particular attention to ways in which comput-
ers have merged with communications and the way desktop tools are migrating 
to the Internet. This sets the scene for a rudimentary classification of PSS tools, 
notwithstanding the great diversity of such tools and the fact that planners and 
professionals stand at the threshold of developing their own tools for specific situa-
tions. This is largely due to the massive growth of generic systems such as GIS and 
the very high-level processes that are now available for bypassing expert program-
ming. This classification results in what we call the planner’s toolbox, which, in 
this view, contains a series of generic and specialist tools that can be merged with 
one another and adapted to a wide variety of contexts. 

To illustrate these ideas, we chose three exemplars: (1) a land use trans-
portation model that is being developed as part of an integrated assessment of 
climate-change scenarios in Greater London over the next 100 years; (2) an 
example of how digital geometric modeling of Greater London, in the form of 
a virtual city model that has been created, can be used to display and communi-
cate routine measurements of air pollution to interested parties; and (3) the way 
geodemographic spatial data are being focused on routine applications through 
linking them to online tools such as Google Maps and online environments or 
virtual worlds such as Second Life®.

The first example is nonroutine, strategic, and makes use of traditional 
mathematical models in the first instance as desktop applications. The second 
and third are much more routine, based on communicating essential content 
in a user-friendly form across the Web and making use of digital iconic, rather 
than symbolic, modeling, although both styles are beginning to merge in some 
applications (Batty 2007). These applications are intrinsically visual and impress 
the main message of this chapter that communication through visualization 
is rapidly becoming one of the main foci in PSS as the computer revolution 
moves ever more swiftly to graphic and related media in contrast to its origins 
in numerical data processing. This echoes the implicit sentiments of Brail in his 
earlier emphasis on planning support systems as techniques that “couple analytic 
tools and computer simulation models with visual displays” (Brail and Klos-
terman 2001, ix).

 

Several fundamental themes characterize the evolution of digital computation, 
but one of the most deep-seated is the development of hardware that is able to 
process ever-increasing amounts of data. In a sense this might seem an almost 
trivial characteristic since the entire digital world appears to stem from this. But 



communication systems, too, have evolved to transmit ever-greater amounts of 
data ever more quickly on all earthbound scales, and the convergence of com-
puters and communications is now driving the development of computation in 
all-pervasive ways, of which PSS is just one of many. Miniaturization of com-
puter circuitry through increasingly powerful microprocessors is the key to all of 
this and there seems to be no end in sight. 

For forty years or more Moore’s Law, which holds that computer process-
ing power—speed and memory—doubles every two to three years, has held sway, 
while Gilder’s Law suggests that this increase is even faster for bandwidth, with 
capacity growing at least three times faster than computer power (Gilder 1989). 
Putting together this growth in the number of computers and increasing band-
width, Metcalfe’s Law suggests that the growth in digital connectivity between 
identifiable units of social action—people, firms, governments, and so on—grows 
at least as the square of the number of users, which is even faster still.2 

By 1990, when PSS were first articulated, part of this technological revo-
lution had taken place in that comparatively massive memories on distributed 
machines—PCs on the desktop and workstations for more specialized use—were 
being utilized for computer models of cities and urban information systems. 
Some of Lee’s (1973) critique of the earlier 1960s experience with computer 
models, where the ability to actually complete such simulation and information 
retrieval at a scale where such tools were useful, was thus cast in doubt. More-
over, the move to graphics, which was occasioned by such increased memory, 
was well under way with the development of GIS, although the move to graphi-
cal user interfaces following the lead set by Apple and the workstation leaders 
such as Sun was only just beginning. Visualization was thus significant, but the 
use of computers for sharing information, for enabling the use of common tools 
through communication across the Internet, and for disseminating the graphical 
and numerical outputs from PSS were in their infancy. These later technologies 
are now forcing the field and this review will be developed from this perspective.

At present, it is the ability to communicate using these new technologies 
that represents the cutting edge in PSS, rather than any large-scale formal devel-
opments in the tools themselves. Urban modeling has moved away from aggre-
gate, cross-sectional models to more disaggregate, agent-based structures that 
depend on representing more individual-based data (Waddell, Liu, and Wang, 
chapter 6) and on physical representations of the systems of interest using fine 
meshes of cells (Clarke, chapter 3), but these developments are largely driven 
by the existence of fine-scale data and by computation itself rather than by any 
theoretical advances in our understanding of cities. 

In fact, we are living through a time when theories have fragmented and 
there is much less consensus than there was 50 years ago about what represents 
the key ways in which cities evolve and grow. Technique rather than theory 
has come to dominate, and thus developments in computational technologies 
are tending to drive the field. Developments in large-scale models have not 
yet availed themselves of the move to communication and visualization other 



than their embedding within or coupling to GIS for purposes of display. Nor 
have they moved upstream to avail themselves of super and parallel computer 
technologies. The ability to distribute such computation across networks has 
not yet made its mark. Rather, the focus is currently on visualization for much 
more pragmatic purposes such as the move from two to three dimensions in the 
construction of virtual city models, and the dissemination of displays for more 
generic purposes of communication and participation (Batty et al. 2001). The 
development of PP-GIS (public participation geographic information systems), 
particularly in North America, is one manifestation of this move. 

A nice contrast with our current technologies in terms of visualization is 
contained in figures 1.1(a) and 1.1(b). Figure 1.1(a) shows the kind of desktop 
interface available in the early 1990s on a Macintosh computer, where a vari-
ety of well-known tools have been brought together for population forecasting. 
The modules shown on this desktop, which is entitled “The Emergent Desktop 
Environment for a PSS,” can be plugged together in various ways to generate 
visual outputs, and it is suggested there that “it is only a matter of time before 
most software moves to this mode” (Batty 1995). In fact, this has not really hap-
pened, for the field has become much more fragmented and in so far as such 
plug-and-play modules have been designed, they have not been generalized in 
linked software systems. Now, however, there is less consensus that this is the 
main way forward for PSS. Figure 1.1(b) shows one of the earliest interactive 
Web pages from March 1995—traffic-flow data being piped from Web cameras 
in San Diego, California—used as a diagnostic tool for traffic control (Batty 
1997b). The Web was then barely known to planning professionals, but this 
kind of visualization is now writ large and is so routine that it is barely com-
mented upon.3 Little of this was anticipated a generation ago when PSS was first 
defined by Harris.

Various hardware environments for visualization are of some significance for 
PSS, and these revolve around the creation of theaters in which various partici-
pants in PSS can interact. In short, this is part of a wider development in which 
visualization is used to communicate with participants by creating environ-
ments in which the participants can interact through computer tools and among 
themselves. In their extreme form, these are single-user virtual realities in which 
the software pipes the imagery and interactivity directly into the user’s sensory 
receptors, fully immersive VR through headsets and various interactive hand 
devices being the original (and now somewhat dated) examples of such environ-
ments. VR theatres are good examples of how these technologies have reached 
out to embrace computer-computer, user-user, and computer-user interactions 
in a self-contained, purpose-built form. Yet these are still fairly specialized and 
not yet in general use, notwithstanding reductions in real costs (Batty 2008). 
Interactivity and communication are still mainly accomplished by users cluster-
ing around a desktop or workstation, or interacting across the Web, with this 
latter technology now forming the cutting edge of interactivity, participation, 
and communication among diverse remote users.



The visualization and communication technologies that are now beginning 
to influence the development of PSS all revolve around interactivity, mainly 
using the Web but with grid computing rapidly gaining ground, at least concep-
tually.4 The Web is now organized into at least four styles of Web-based services, 
the collective term for this variety: vanilla-style Web pages, which simply pre- 
sent information to users with no interactivity other than simple hyperlinking to 
other pages; Web pages that enable users to download data and software to their 
desktops; Web pages that enable users to run software within their own Web 
page, usually through the form of simple Java-based programs; and Web pages 
that enable users to import their own data and run software remotely, often in 
the style of grid computing. 

More elaborate systems such as collaboratories—online systems remotely 
linked through Web pages that enable users to communicate with one another 
and to run software jointly—are in their infancy. In a sense, these collaborato-
ries are virtual laboratories—virtual worlds, even—that let users communicate 
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in closed environments a little like VR theaters, but remotely with much looser 
limits on the number of users who can interact. Early systems were pioneered as 
part of PP-GIS (see, for example, Kingston, Evans, and Carver 2003) although as 
yet, there are few workable PPS collaboratories, despite some interesting individ-
ual attempts. A comparison of the articles in the two edited collections—Brail 
and Klosterman’s (2001) Planning Support Systems, which is composed of reviews 
of tools largely conceived before the early 1990s, and Geertman and Stillwell’s 
(2003b) Planning Support Systems in Practice, which contains techniques and 
models developed up to a decade later—impress this change. Online systems 
strongly feature in the later collection, although none of them quite reaches the 
level of collaboratories in the sense implied here. Nevertheless, the rudiments of 
such systems are now in place and substantial developments in this area are to 
be expected in the next decade.

As we have suggested, many of the traditional tools that historically domi-
nated computer-aided planning, such as urban or land use transportation models, 
no longer form the core of PSS, although as Timmermans (chapter 2) suggests, 
these are still a substantial part of the field. This lesser emphasis is largely due 
to the extremely specific nature of the problem contexts to which such models 
need to be applied and the highly variable data that are required. Models such 
as UrbanSim, MEPLAN, TRANUS, CUF, and the newer generation of cellu-
lar automata models of land development (see Maguire, Batty, and Goodchild 
2005) are no more widely applied than the Lowry model was in the 1960s and 
1970s. 

This situation is unlikely to change in the short or medium term for GIS 
software, which has developed in modular, generic fashion and is still a long 
way from coupling, incorporating, or embedding such models, despite there now 
being a visual model–building capability within software such as ArcGIS. Only 
when software emerges that enables such models to be constructed on the fly 
will these kinds of tools become more widely used. Even then, it might be that 
the skill base required to build such models will impose intrinsic limits on what 
is possible. In fact, even the addition of visualization capabilities to such mod-
els has been weak, with attempts limited to loose couplings with GIS, and/or 
Web-page outputs, such as in the generalization of the MEPLAN, TRANUS, 
and IRPUD models in the PROPOLIS project (Lautso 2003).

GIS software is more generic, highly descriptive, and much less controver-
sial in terms of its implicit tools of spatial analysis than large-scale urban mod-
eling. The focus in its development has been to generalize such software to be 
capable of any kind of spatial analysis and representation, and this has tended 
to keep the tools descriptive rather than predictive. Insofar as they can be used 
prescriptively, this depends entirely on the way they are used to support the 
design process. In a sense, GIS is “theoryless,” although it depends on the way 
the user fashions software to the data and whether or not the tools of analysis 
(such as buffering, simple accessibility measures, overlay analysis, and so on) are 
relevant. In fact, more specific applications invariably require additional tuning 



of the software. An example is Klosterman’s What if?TM system (2007; chapter 5), 
which utilizes elements of GIS but is essentially a stand-alone application of over-
lay analysis tailored to U.S.-style zoning and land use planning.

Within planning support, GIS applications tend to be both routine and stra-
tegic as well as applicable across a variety of scales. Visualization can be much 
larger scale, although more routine, than urban modeling. For example, CAD 
and 3D iconic models are being generated using GIS as well as other software 
such as AutoCAD®, and although substantial in terms of size, their application 
is becoming more routine. This is the fastest growth area of PSS on the Web, 
where visualization of 2D and 3D map forms are being dramatically accelerated 
in terms of usage with the availability of nonproprietary software systems such as 
Google Earth, Google Maps, and Microsoft®’s Virtual Earth™, among others. 

It is worth noting that in contrast to early developments of PSS, the domi-
nant applications are much more routine. They are fashioned from the availabil-
ity of simple desktop tools and vanilla-style Web pages based on creative uses 
of spreadsheets and related databases and graphics systems ranging from paint 
packages to simple 2D and 3D CAD and GIS, among a plethora of newer appli-
cations that involve merging simple tools. Many of these tools are facilitated by 
the ability to publish such applications on the Web, thus making them available 
to a wider group of users. However, these developments are so fragmented and 
diverse that it is difficult to classify them into coherent themes. 

Substantial developments in PSS could arise in the next decade. Embed-
ding one style of model into another is already a major force in the field, and it 
is likely that we might see symbolic modeling being embedded in iconic—that 
is, mathematical urban models being coupled to or embedded in 2D and 3D 
GIS within virtual reality–style environments (Batty 2007). Although there are 
already examples of this, their routine application remains a long way off. It is 
more likely that new layers of software will be built up to the point where non-
expert but professional users can fashion many new tools from component parts. 
This is the way computing has evolved over the last 50 years since its inception 
and there is no end in sight. However, this model of building successive layers 
of software comes at a cost: Each additional layer constrains what is possible 
within that layer. The fact that good urban models cannot be easily built using 
the tools of GIS, for example, is a limit that is not likely to be resolved due to 
the theory-laden content of such urban models and its conflict with modular, 
generic software. 

Before we attempt to classify PSS, it is worth noting this last feature of 
computer technology, the relentless march to develop layer upon layer of func-
tionality in the effort to bring computation to the widest possible constituency. 
The model of technological development suggests that as computers increase 
in memory and speed and drop in cost—due to the laws proposed by Moore, 
Metcalfe, and Gilder—the way users interact with them becomes ever more 
friendly. The easiest way to achieve this is to add new layers of more general-
ized software on top of the less generalized. A classic example is the Windows 



operating system, which was built on top of DOS. In the long term, however, 
this transition occurs almost continuously. It is seen currently in programming 
in the object-oriented paradigm and in the introduction of ever more general 
scripting languages. The same is true of networking with more user-friendly 
applications of Web services and related communications applications. It is not 
hard now to foresee a time when users will literally pull windows and their appli-
cations around a screen with their fingers, which not so long ago was the stuff of 
science fiction.

What all this means for the development of our field is that we should not 
expect it to stand still. In 1989, when Harris developed his vision of PSS, the 
field was still dominated by large-scale applications such as land use transporta-
tion models and GIS, with only spreadsheet applications providing any form of 
generic media for different kinds of applications. Since then, almost all aspects 
of planning in its various types, from urban design to regional policy, have been 
subject to IT support and with the fragmentation of the field, various layers of 
software have been exploited and built to reflect this diversity. This makes the 
problem of classification somewhat confusing, or rather much less focused than 
the rather clear structures we assumed for PSS a generation ago. The tools pre-
sented below illustrate all these issues as well as ways in which such problems are 
being resolved in the wider context of visualization and communication.

The traditional classification of PSS is based on the various tasks that define the 
technical planning process (Batty 1995). Insofar as planning can be seen as a 
technical process, it begins with problem identification, moves to analysis, then 
to the generation of alternative plans with their subsequent evaluation, and 
finally to the choice of the best plan to implement. This can be a cyclical or 
iterative process, as was the model that emerged from the concern for rational 
decision in the 1960s (Boyce, Day, and McDonald 1970), but in essence it is 
based on the long-standing tradition of “survey before plan” associated with the 
pioneering work of Patrick Geddes at the turn of the last century. This process 
is driven by survey, motivated by goal setting, tested against objectives, with the 
“best plan” managed through implementation. Once a plan is produced, then 
the process begins again through implementation but at a lower or different level 
with various processes of this kind nested within and without one another. One 
statement of this rational decision or problem-solving process on which PSS is 
based is given in Batty (1995).

This technical process has always been an ideal type that when applied in 
practice is massively modified. Moreover, there is much less consensus about 
its role currently than ever before as the perceived consensus about planning 
in general, from the top down, has fragmented. Nevertheless the series of tasks 
defining the sequence of stages in the process is as good a vehicle as any on 
which to think about planning support using IT. We assume the process can be 
arranged in the following sequence:



Here distinct theories, models, and techniques can be applied at each of these 
stages. Specialist tools have been developed for each of these stages. Problem-
structuring techniques and goal formulation based on brainstorming technologies 
are quite well developed and are now widely supported by IT although not much 
applied in urban planning. Analysis techniques largely revolve around GIS in the 
spatial analysis domain and many packages of increasing sophistication are being 
used. In fact, this set of tools is increasingly generic in that they are not only 
used for analysis and of course for database application (survey) but also for man-
agement at all stages of the process. Plan generation is still largely governed by 
land use transportation models, the predictive capacity and what-if capabilities 
of which have been widely developed during the last 30 to 40 years. Evaluation 
methods tend to rely on these models as well as more qualitative assessments of 
risk and benefit-cost and are informed by the whole range of multicriteria and 
optimization models. Implementation involves a series of management tech-
niques developed under the more routine rubric of decision support.

In the 1960s, very early in the development of land use transportation mod-
els, it was assumed that the entire planning process might be encapsulated into a 
general systems model with command and control capabilities akin to managing 
a complex machine. Models that could describe, predict, and prescribe (design) 
were seen as tools to be aspired to, although this phase was short lived and the 
complexity and ambiguity of city systems and their planning were quickly real-
ized. In fact, it was probably the inadequacy of the tools that was most clearly 
sensed, as reflected in Lee’s (1973) trenchant critique, rather than any insight 
into the nature of cities that had not been part of our consciousness already. 

Nevertheless, just as the process of planning has broadened and fragmented, 
so has our vision of what might constitute the planner’s toolbox. GIS was 
added to land use and transportation in the 1980s. Since then the development 
of much more generic tools such as spreadsheets at a lower level and of wider 
applicability has begun to inform all stages of the process. The rather narrow 
technocratic process above can be extended into a much wider domain of public 
engagement, however. Running alongside or perhaps woven into this fabric is 
public participation of all kinds, which has provided ways in which the process 
has reached out to its wider context. Such participation has been fashioned par-
ticularly around PP-GIS (Craig, Harris, and Weiner 2002), but increasingly a 
whole variety of visualization tools making use of more bottom-up technologies 
as well as 3D virtual city models have come into play. Much of this was antici-
pated by the mid-1990s as reflected in Brail and Klosterman (2001).

The next set of ideas by which to classify PSS is considerably more generic 
in the sense of tasks, and these revolve around issues of how the city system is 



represented and manipulated. In short we can identify the key activities in prob-
lem solving and use these to organize PSS. Survey is based on observation and 
measurement while analysis is based on the representation and organization of 
these data. Modeling and simulation are key activities in description and predic-
tion while optimization is the activity of generating and evaluating some best 
plan. Management is reflected in implementation while negotiation occurs at all 
stages and scales of the process. 

The activities of observing, measuring, analyzing, modeling, simulating, 
predicting, prescribing or designing, optimizing, evaluating, managing, and 
negotiating, among others, can all be supported by software, and software has 
and is being developed around them. To show the variety of such classification 
at this point, however, it is worth noting that distinct packages have been devel-
oped that reflect different combinations of these activities to different degrees. 
These packages can be roughly classified as GIS; land use transportation mod-
els (LUTM); multicriteria analysis (MCA); plan-generation techniques such as 
What if?TM, CAD, and 3D GIS; and public participation/multimedia community- 
visioning methods (Shiffer 2001). This is by no means an exhaustive list, and 
lower-level, generic software can also be identified that can be adapted to all 
such tasks in the form of spreadsheets, animation, and visualization packages. At 
the higher level, several of the standard packages can be added, integrated, or 
coupled together. For example, CommunityViz® is one such application that has 
reached the point of wider application, building on agent-based models, GIS, 
and 3D visualization.5 

These packages can all be scored against the activities noted above. For exam-
ple, GIS is focused on measuring and analyzing but can be adapted to prediction to 
an extent. Various routines are available for simulating and modeling and for opti-
mizing, but in general the focus is more on representation, data, and some limited 
2D visualization. Already we see that such tools have a more generic quality than 
might be assumed at first sight, and an exhaustive list of software products and 
the tasks they involve could be compiled. Most software has an ambiguous role 
in PSS in that it can be applied at various stages of the planning process and for 
various planning tasks. The same is true of planning problems at different scales. 
This is largely because when software is devised, it is usually in relation to a nar-
rower problem; when it is refined, if it stands the test of time, it is extended in its 
applicability. Other software, as developed or adapted to some specific stage of the 
planning process, is often extended into other parts of the process and the entire 
sequence of tasks is related to this in some way. For example, it is not unusual to 
find LUTM and GIS being combined to form the heart of the plan-generation and 
evaluation process with its dissemination often now realized through some Web-
based interface. PROPOLIS is such an example (Lautso 2003).

Some software is designed for extremely generic tasks, but even this varies 
across scales. For example, consider the idea of spreadsheets as PSS tools. Klos-
terman, Brail, and Bossard’s Spreadsheet Models for Urban and Regional Analysis 
(1993) shows a wide variety of analytical and predictive applications (e.g., 



models implemented in spreadsheets that were initially devices solely used for 
storing, visualizing, and searching data). Currently, at the other end of the 
spectrum, several packages are emerging for new classes of the cellular automata 
model that can be applied to urban development, and for agent-based models, 
which specify the system in terms of fine-scale disaggregates. These are really 
toolboxes in their own right that enable users to develop any such model with 
the generic properties of the particular application. For example, in the case of 
an agent-based model, the package is often adaptable to represent a very wide 
range of problems of which spatial ones might only be a subset.

Several other ways exist to classify tools for PSS. The scale of the problem is 
significant. It is likely that urban design problems, for example, especially those 
that involve movement in small spaces, require very different types of software 
from those used to support regional planning. The best-developed agent-based 
models are in the area of crowd dynamics, making them useful for assessing 
movement and patronage in small spaces like shopping centers. This type of 
model, even its more aggregate-agent equivalents, would not find much use at 
higher spatial scales. Another feature is context. Often a planning task is ongo-
ing, and as it evolves so does software in the outside world; this changes the basis 
of support. Sometimes the task is not composed of a series of stages as envisaged, 
but is based on entry at, say, the implementation stage, where some plan has 
already been cast and requires modification during its implementation. Some-
times the entire plan may be generated by stakeholder involvement through 
various forms of participatory design. Again, the possibilities are endless and in 
one sense this makes the quest to classify PSS an unending and controversial one.

Before illustrating what we consider to be the future based on current devel-
opments, we will list the main kinds of software packages and applications that 
characterize the state of the art. It would be useful to provide an unequivocal 
classification of PSS into which every piece of software and every application 
would slot but this is not possible because software tools can be fashioned quite 
differently by different professionals in different contexts. In a sense, this is what 
the tools that we have alluded to so far are designed to do. We can, however, 
produce a rudimentary classification into tools and their software focuses on 
spatial problems (or not) and can be seen as being specialist for a particular spa-
tial focus (or not). This sets up a two-way classification which we can array as 
Specialist/Generic against Spatial/Nonspatial. We can consider Nonspatial to 
be Aspatial because many tools are not specifically designed to deal with spa-
tial problems per se, but can be fashioned to do so. This simple classification is 
shown in table 1.1 with typical examples of the genus contained in each box. 

LUTM is highly specialist software that has hardly reached the stage where 
it can be purchased and adapted to specific situations by users or professionals 
who are not involved in its development. The traditional applications such as 
TRANUS, DRAM/EMPAL, etc., have begun to move in this direction but 
fall far short of being generic in any way. More recent applications of land use 
transportation models such as TRANSIMS and UrbanSim do offer software as 



free or shareware but the learning curve is still extremely steep (Waddell, Liu, 
and Wang, chapter 6). It is not our purpose to review these models here but to 
get some sense of the field and how it has persisted; it is worth noting Wegener’s 
(2005) review. It is important to note that such applications are so intense and 
large scale that entire planning processes are often built around them. Attempts 
to link them to GIS through loose coupling are weak, and visualization tech-
nologies are only just beginning to be exploited. Transport models, as distinct 
from LUTMs, have more or less followed this trend, too.

As part of this tradition, new styles of model such as cellular automata tend 
to be less applicable to policy and more speculative than LUTM. The software 
is better developed largely because such automata models that simulate urban 
development are more visual and simpler in structure, but also less operational 
(Clarke, chapter 3). For example, they contain hardly any transport activity, and 
where they have been widely developed as in the RIKS (Research Institute for 
Knowledge Systems) applications in the Netherlands (see Timmermans, chapter 
2), they are invariably coupled with other models. Agent-based models (ABM) 
are too new to classify although TRANSIMS and UrbanSim are highly opera-
tional. Most others tend to be slightly more generic and are often pedagogic 
applications rather than fully fledged models that support policy making (see 
Maguire, Batty, and Goodchild 2005). In these kinds of Specialist/Spatial mod-
els, various attempts have been made to open them up to supporting tools in the 
other boxes of table 1.1. Nothing can truly stand alone, but progress is slow.

In contrast, if we examine GIS, which is clearly a much more generic set of 
tools than LUTM, various stages of the planning process can be supported using 
individual tools from the GIS toolbox. GIS is primarily about spatial informa-
tion—storing and then displaying it—but many rudimentary and some more 
advanced functions have been added to the toolbox over the years. In particular, 
treating maps as layers and then combining them is a central operation in gener-
ating physical plans through overlay analysis, and it has been very well developed 
within GIS. It is one of the functions that has been present from the beginning. 
New functions such as spatial statistics of various kinds as well as routing proce-
dures for transport analysis and now the extension of maps in 2D to 3D are all fea-
tures of the current software. But GIS largely falls short of being applicable at the 
plan-generating and evaluating stages of the process in that models within GIS 

A Classification of PSS



are at best descriptive rather than predictive. Linking to other models (LUTM, 
ABM, and so on) tends to be the way in which this software is extended. 

The GIS toolbox has opened up dramatically in the last five years with the 
appearance of free mapping and visualization software on the Web. Web-based 
GIS has slowly developed with map-server technology, but it is Google that has 
led the way through its Google Maps and now in the third dimension, Google 
Earth, which are being very widely applied for visualization at many stages of 
the planning process. The third exemplar below builds on these technologies. 
In fact, Google Earth is beginning to supplant the use of CAD and 3D GIS soft-
ware for visualizing urban development in 3D as virtual cities. CAD and 3D GIS 
are usually tailored to specific applications, despite the software being generic. 
Each application is quite different, which has meant that each author tends to 
adapt the generic software to the application. Again, the learning curve is steep, 
as in LUTM, in contrast to GIS, which is becoming ever more user friendly. 

Integrated systems that combine the first column of table 1.1—specialist and 
generic spatial software—are increasingly used to underpin PSS. For example, 
CommunityViz and INDEX (Allen, chapter 7) fall into this category, and now 
the list of such applications is quite large. These systems are being fast extended 
to all stages of the planning process, particularly through visualization, which 
enables dissemination of results from modeling, prediction, and design. PP-GIS, 
for example, is built around standard GIS with Web-based applications begin-
ning to predominate, while the whole area of community visioning through 
the use of multimedia in desktop and Web-based environments is burgeoning. 
Attempts are now being made to develop software-based conceptualizations of 
the entire planning process (Hopkins, Kaza, and Pallathucheril 2005a).

The second column of table 1.1, where software exists both in specialist and 
generic forms but is focused on problems that are not explicitly spatial, makes 
it clear that many forms of planning support use these. For example, expert sys-
tems informing plan-making activities and participation at different stages of 
the process have been quite widely developed while spreadsheets, mathematical 
and statistical, as well as database packages are now used routinely to support 
various parts of the process. This is where our classification begins to fall away 
as being less useful. What is very clear, however, is that every bit of software in 
the domains covered by this table can be adapted and coupled, often embed-
ded within every other bit and that this wide array of possible tools makes every 
application distinct. This was not the case when PSS was first articulated but it 
is now a dominant feature of the field. 

Exemplars
We now develop three exemplars that illustrate many, but by no means all, of 
the features and characteristics of PSS identified above. 

LONG-TERM FORECASTING AT THE STRATEGIC LEVEL: VISUALIZING LAND USE 
AND TRANSPORTATION We are designing a land use transportation model for 



Greater London as part of an integrated assessment of the impact of climate 
change on the location of population. This process couples a series of models 
that move down scale from predictions taken from global climate models to 
their impact on small-scale environments where pollution and flooding are the 
main concerns. The LUTM we are building is coupled to a global environmen-
tal input-output model at the regional scale and, at the site scale, to a detailed 
population-allocation mechanism that, in turn, is informed by various flooding 
and emissions models. The sequence of models is being developed by a consor-
tium charged with looking at long-term scenarios to 2050 and 2100 for cities of 
which Greater London and the Thames Gateway comprise the current applica-
tion. The models are strung together in the fashion illustrated in figure 1.2, and 
currently there are no feedback loops to enable adaptation to the various model 
predictions from the local to the global scale. Although this limits the usefulness 
of these models, the whole process is embedded in a more discursive structure in 
which various stakeholders and experts use the information from these models 
to make informed guesses and judgments about the future.

The LUTM sits between the input-output model, which has already been 
developed by Cambridge Econometrics, and the population site model, which 
essentially distributes the population outputs at census tract scale from the 
LUTM to a finer 100 meter by 100 meter grid used to assess the impact of flood-
ing (see Dawson et al. 2007). What is of concern is the kind of support that 
this suite of models and the LUTM in particular provide for other professionals 
and stakeholders involved in the process of informed guessing about the future. 
Many of the other model builders in this process know little or nothing about 
LUTM and thus it is essential as a first step to communicate this as easily as 
possible. Moreover the model is quite large—currently 633 zones—and, thus, to 
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absorb the outputs, we require good visualization so that users can appreciate at 
a glance what the model is generating. Moreover, setting up scenarios, which are 
extremely elaborate, needs to be accomplished easily and effectively. Last but 
not least, the data requirements of the model are large and it is essential to have 
good and fast ways of checking data.

All this suggests rapid visualization, which most LUTM currently do not 
have. Moreover, many of the models are almost legacy systems, being based 
on long out of date code and built in a time when communication was one of 
the least important problems. But with modern software, it is now possible to 
develop clear visualization and also to run these kinds of models interactively. 
This is what we have been developing and we currently have a prototype resi-
dential location that the user can calibrate on the fly, applied to 633 zones and 
four modes of transport—bus, subway, heavy rail, and road—for which trip dis-
tributions between all origins and destinations are predicted. This is a classic 
spatial interaction model and, in time, we propose to add new submodels of the 
same structure to deal with other relationships in the urban system. Currently we 
are dealing only with the journey to work, or rather trips between work (employ-
ment) and home (population in residential areas). 

Loading the LUTM Toolbar Control, Reading in, and 
Checking the Data



In figure 1.3, we show the data entry (from external files), but also the 
screen through which the user can first interrogate the data on the fly. The main 
toolbar moves from data input, to data exploration, to calibration, then explora-
tion of the calibration results, through to the interactive setting of scenarios, and 
finally to predictions and their exploration. All of this can be done extremely 
rapidly. The program does not use any external graphics routines in GIS and 
is entirely self-contained in that users can simply load the executable file from 
which various options can be chosen at calibration and prediction. Figure 1.4 
shows how the model can be interrogated spatially, with six screens showing the 
employment and population distributions as well as a single trip pattern from 
one origin to all residential destinations. These can be kept on screen at all 
times in different windows. More or less the same structure of spatial data explo-
ration can be done after the model is calibrated and also after predictions have 
been developed. Figure 1.5 depicts a typical scenario being constructed where we 
have doubled the size of the employment at Heathrow Airport, a major hub in 
the London region, and also added in a cross rail link from the airport to central 
London (the CBD). We see some typical predictions in figure 1.6, which shows 
the impact of this change in population in residential areas across London, 
which is greater in the west around the airport as we might expect.

Exploring the Employment, Population, and Trip Data Spatially



This gives an idea of what is now possible with LUTM. If those involved 
embraced current technologies, this kind of visualization should become routine, 
with the models being more widely used, appreciated, and better adapted to real 
situations. We have not speculated here on how we might embed this model and 
its running within the Web, giving access to a much wider range of users, but it 
is easy enough to set up the model for distribution to others in this mode. 

Creating a Scenario Interactively Using Sliders

Predicting the Effects of the Scenario Using the Same Techniques 
for Exploring the Data



IMMEDIATE FORECASTING AT THE LOCAL LEVEL: VISUALIZING THE IMPACT 
OF AIR POLLUTION USING A VIRTUAL CITY MODEL Our second case study 
involves an application using the 3D iconic model—Virtual London—that we 
have built for the metropolis. This model is quite different in structure from the 
LUTM. It is not mathematical in the symbolic sense; it is iconic, but neverthe-
less digital, and constructed from building blocks, land parcels, and street data 
supplemented in the third dimension by light detection and ranging (LiDAR) 
data. The model was constructed for general visualization and public participa-
tion in Greater London and was funded by a metropolitan agency, the Greater 
London Authority (GLA), primarily for visualizing the impact of high build-
ings, which is the traditional use of such models. As it stands, the model now 
covers Greater London, in which there are 3.6 million building blocks. It was 
originally built for central London with some buildings rendered in detail but 
then extended to the metro area, which is largely configured in terms of building 
blocks. It was built in ArcGIS, improved in 3ds® Max, and now is available for 
local municipalities/boroughs in Google Earth. For data copyright reasons, it is 
not available as a public Web site, which is a source of great frustration in terms 
of its use for public participation.

Visualizations of the 3D form are shown in figure 1.7 for the original model 
in ArcGIS and also for the new model in Google Earth. The model requires 
some very powerful hardware to run in ArcGIS but it runs well in Google Earth 
with detail in the background always suppressed and only loaded as the user flies 
in. A great deal of multimedia has been ported to the model in order to link 
it to online panoramas. The products from the model tend to be movies that 
can be placed online rather than interactive products within which users can 
navigate. This also minimizes data copyright issues. We have developed several 
uses in terms of public participation, but a particularly innovative one links with 
the model to visualize air pollution. The network of air pollution sensors across 
London provides hourly feeds of data that are mapped and visualized using the 
surface routines in ArcGIS. We can then overlay these onto the model as shown 
in figure 1.8. This illustrates the nitrogen dioxide surface for central London 
where it is clear that this pollutant is strongly correlated with the road system 
and with key traffic intersections. We can do this for a vast array of pollutants, 
but to illustrate its potential, we have tagged the data to the static 3D images 
from the model, coloring the buildings in this manner. This is presented in a 
Flash-based interface that is available at the London Air Quality Network,6 a 
Web site where air pollution data are visualized in somewhat cruder terms, but 
on a daily basis.

In figure 1.9 the coloring shows the intensity of air pollutants in an area 
of central London into which the user can zoom. The slider allows the user to 
see predictions of air quality over the next 10 years, for pollution will drop dra-
matically here due to new controls, congestion charging, and so on. At various 
points in the scene, the user can display the pollutants in 3D, where these scenes 
are taken from the Virtual London model. In fact, the air pollution surfaces are 
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taken from a symbolic model of the hydrodynamics of traffic and pollution, all 
visualized in a Web-based interface where users can get to grips with the sig-
nificance of these flows and their location. It is not beyond our wit to consider 
an online updating of this entire media linked to the sensor network just as we 
presented for San Diego 12 years ago, as shown in figure 1.1(b). This makes the 
point quite forcibly that such systems have enormous importance in serving and 
supporting the planning function in real time. This, too, we expect will be a 
major development in the next decade.

DESCRIBING AND EXPLORING SPATIAL DATA: TOOLS TO ENHANCE THE UNDER-
STANDING OF URBAN PROBLEMS Our third exemplar is quite different. In 1990 
this would not have been thought of as a planning support activity at all because 
the notion of understanding urban structure and urban problems was largely 
in the personal domain with no online tools available to add value to data by 
seeking diverse interpretations through participation. In fact, our current, fast-
expanding ability to share data on the Web is leading to new kinds of explor-
atory analysis that many actors and stakeholders involved in solving planning 

Predictions from Air Pollution Models Fitted to Current 
Data Visualized in 2D and 3D Virtual City Environments as a 
Web-based Service



problems can engage in together. The “wisdom of crowds” is one of the emerging 
drivers in terms of developing good science and thus any activity that involves 
sharing data and then adding value by bringing data together from unusual and 
hitherto unknown and inaccessible sources supports the process of understand-
ing in ways that have not been available until recently. Many of these possibili-
ties are essential in beginning to use software such as Google Maps and Google 
Earth as these need to be tuned to represent data in ways that inform technical 
processes. 

We are actively engaged in building a Web-based service and resources that 
enable a user with some spatial data in a standard format to use the free software 
that is available from Google to display the data. A user with a file in some stan-
dard GIS format can easily convert this to ESRI’s proprietary but widely used 
shapefile format and then use our software GMap Creator to generate a Google 
map from the data file in a one-stop operation. This software is freely download-
able from our Web site,7 and once the user uses it to convert a file to the Google 
format it creates a Google map (which is always in a Web page) that can be 
published on the user’s own site. The facility we have developed enables the user 
to overlay different layers of data and to manipulate them, and it is easy to add 
more functionality to the interface that is created. Once the map has been cre-
ated, however, we ask the user to share the URL for the map. If he or she does, 
we add this to our archive of URLs, which are available for any user on the Web 
service we are building. This is called MapTube. Essentially MapTube is just a 
collection of pointers to remote URLs that, when accessed, lets the user grab any 
map at any of these locations, overlay them, and manipulate them in other ways 
involving their presentation. In so doing, they add value to the resultant data 
(as long as the application is meaningful). We show the interface to MapTube in 
figure 1.10.

In the context of planning support, experts and stakeholders could share 
their data this way and could take data from remote sources and all have access 
to it through the Web service. Essentially, storing pointers (URLs) rather than 
the map data avoids copyright issues, however unwitting. The server will not 
fall over either as maps are added, for those maps remain on the site where they 
are currently published. In fact, the data that GMap Creator produces are map 
tiles from vector data. These can be quite large, which is purely due to the API 
(application program interface) that Google uses for its maps, and thus we have 
various stand-alone extensions of this that are Web services in their own right. 
London Profiler is a server that assembles geodemographic data for London and 
makes it available to users, enabling them to perform their own overlays. The 
focus is on spatial variations in health, ethnicity, deprivation, and so on, and 
this tool enables visual correlations of spatial data to be rapidly assessed in much 
the same way that any mapping technology lets the user grasp the map pattern 
quickly and easily, which we show in figure 1.11. We are currently extending the 
GMap Creator to be able to create 3D pictures that can be displayed in Google 
Earth; in time the 2D MapTube server will also be extended to 3D.
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We are also exploring different kinds of environments for the display of 
spatial data. We noted the Virtual London project above, but increasingly we 
are interested in remote environments—virtual worlds that enable us to display 
and manipulate content across the Web where users interact with such media 
as avatars. Several years ago we placed our Virtual London model into such a 
world (using Adobe Atmosphere), but currently we are exploring ways in which 
we can port the kinds of geodemographic data contained in MapTube to such 
worlds. In fact, when the user allows his or her data to be accessed from Map-
Tube, we automatically load that data into the Second Life virtual world so that 
we can manipulate the media in many different ways, which is akin to placing 
the data in a virtual exhibition space through which users can interact. 

Figure 1.12 shows a picture of Virtual London in such a virtual space, ca. 
2001, by the side of the imagery that we now have available in Second Life. Our 
space in Second Life is part of Nature magazine’s Second Nature island, which 
they use to display scientific outputs. The emergence of such domains, which can 
also be sustained using real-time feeds, provides new ways of generating informed 

The London Profiler: A Web Browser Enabling Users to Examine 
Different Patterns of Spatial Inequality



support for planning processes. Finally, it is entirely possible that these kinds of 
digital environments might also sustain more conventional software with models 
running within them while users as avatars sit, watch, and manipulate such tools 
in real time (Batty 2007).

Spatial Data in Virtual World: 2D Merges with 3D



What portents might the key findings of this review have for the future? The first 
is that, as software proliferates and is generated at higher and higher levels, it is 
increasingly possible to support the same kinds of tasks in planning with very 
different combinations of software. Moreover, there now appear to be examples 
where every kind of software has been linked to every other as witnessed in the 
way LUTM and GIS are coupled; how these are linked to 3D and other forms of 
visualization; how they are supported by routine database, statistical, and math-
ematical software; and how these support systems are widely disseminated and 
made accessible on the Web.

Second, visualization is all important. This is particularly the case as the 
complexity of the models and their data increases and as more and more stake-
holders come to be involved in the planning process. Visualization as well as 
much traditional software is drifting into Web-based contexts and the notion of 
data, software, and expertise being available at different places and PSS being 
systems that enable such remote access is likely to become the dominant para-
digm. The notion of a user literally picking software off the Web using visual 
interfaces, as is shown in movies of the near future such as Minority Report, is 
well on the way to becoming a reality as evidenced in the current generation of 
operating systems.

Third, as planning has fragmented, so have the tools and software necessary 
to support it. The domain is now quite eclectic and it is hard to predict whether 
the apparent uniqueness in applications and the relative turbulence in possibili-
ties will subside. Only then will a more uniform paradigm for PSS emerge. The 
difficulty of finding a coherent framework within which to place PSS dominates 
the current scene. Much will depend on how physical and land use planning 
itself matures and evolves and whether or not we move back to a less decentral-
ized, more top-down, perhaps more structured style of planning than the current 
fragmented and diverse pattern.

Richard Milton developed all the software for GMap Creator and MapTube. Maurizio Gibin put 

together the London Profiler. Dr. Andy Hudson-Smith leads the team in CASA concerned with 

Virtual London, virtual worlds, and the Google Map server software effort. Steve Evans developed 

the Air Pollution Visualization. All these colleagues deserve my thanks for their efforts. The ESRC 

e-Social Science NCeSS program (http://www.ncess.ac.uk/) supported the Web-based work, and the 

British Oxygen Foundation funded the air pollution work.

  1. Harris apparently said that the term was first used by a member of the audience at the 1987 

URISA conference in discussion of one of his papers, although he once recalled that someone 

from the Delaware Valley Regional Planning Commission used the term at the 1988 URISA 

conference. Its precise origin now lies in the mists of time unless the person from Harris’s audi-

ence can still be identified, or can still come forward.



  2. The rules of thumb were coined by Gordon Moore at Intel in 1965; Robert Metcalfe, coinventor 

of Ethernet, at Xerox Parc in 1973; and George Gilder in his book Microcosm in 1989.

  3. The paper referred to by Batty (1997b) was presented first in 1995 at CUPUM ’95 in Melbourne, 

Australia, as an example of how planning could be supported by Web-based technologies. All the 

hotlinks in that paper are now dead although the paper is still on the Web (e.g., at http://www 

.acturban.org/biennial/doc_planners/computable_city.htm). An example of what was then pos-

sible is archived at The WayBack Machine, with some links intact. To view this go to http://web 

.archive.org/web/19980124005925/www.geog.buffalo.edu/Geo666/batty/melbourne.html.

  4. The “grid” is a euphemism for a new wave of computation that is available in the same sense 

as the electricity grid delivers electricity, simply by plugging into the Internet and generating 

whatever software and data resources are required. In essence, the grid is conceptually a system 

for delivering computational resources—data, software, expertise, etc.—from diverse and remote 

locations to a user who simply has a device, usually a PC, that controls the way the Internet 

delivers these resources to the desktop. Usually the grid takes data and software from two or 

more remote locations and delivers the results of the computation, which possibly takes place 

somewhere else in the ether, to another remote location, usually the desktop, but possibly to a 

handheld device connected wirelessly to the Internet.

  5. See Janes and Kwartler (chapter 8), and http://www.communityviz.com/. The agent-based model, 

Policy Simulator, is no longer supported in current versions of CommunityViz, but is detailed in 

Kwartler and Bernard (2001).

  6. See http://www.londonair.org.uk/.

  7. See http://www.casa.ucl.ac.uk/software/googlemapcreator.asp.
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Ševčíková, H., A. Raftery, and P. Waddell. 2007. Assessing uncertainty in urban simulations using 

Bayesian melding. Transportation Research, Part B: Methodology 41(6): 652–659.
Shen, Z., M. Kawakami, and P. Chen. 2006. A heuristic method for land-use plan generation in plan-

ning support systems. In Progress in design and decision support systems, J. Van Leeuwen and H. J. P. 
Timmermans, eds., 169–184. Eindhoven: Eindhoven University of Technology.

Shi, X., and A. G. O. Yeh. 1999. The integration of case-based systems and GIS in development 
control. Environment and Planning B: Planning and Design 26(3): 345–364.

Shiffer, M. J. 1995. Geographic integration in the city planning context: Beyond the multimedia pro-
totype. In Cognitive aspects of human-computer interaction for geographic information systems, T. L. 
Nyerges, D. M. Mark, R. Laurini, and M. J. Egenhofer, eds., 295–310. New York: Kluwer.

———. 2001. Spatial multimedia for planning support. In Planning support systems: Integrating geo-
graphic information systems, models, and visualization tools, R. K. Brail and R. E. Klosterman, eds., 
361–385. Redlands, CA: ESRI Press.

Shipley, R., and R. Newkirk. 1998. Visioning: Did anyone see it coming? Journal of Planning Literature 
12: 407–416.

Siddiqui, M. Z., J. W. Everett, and B. E. Vieux. 1996. Landfill siting using geographic information 
systems: A demonstration. Journal of Urban Planning and Development 122: 515–523.

Sietchiping, R. 2004. Geographic information systems and cellular automata-based model of informal 
settlement growth. PhD diss., School of Anthropology, Geography and Environmental Studies, 
University of Melbourne.

Silva, E. A. 2004. The DNA of our Regions: Artificial intelligence in regional planning. Futures 
36(10): 1077–1094.

———. 2006. Expert knowledge in land use planning: The role of information in workshops, sce-
nario building, simulation modelling and decision making. SSRN Electronic Paper Collection, 
November 18, 2006. http://ssrn.com/abstract=945794.

Silva, E. A., and K. C. Clarke. 2002. Calibration of the SLEUTH urban growth model for Lisbon and 
Porto, Portugal. Computers, Environment and Urban Systems 26: 525–552.



———. 2005. Complexity, emergence and cellular urban models: Lessons learned from applying 
SLEUTH to two Portuguese cities. European Planning Studies 13(1): 93–115.

Skocpol, T., and M. P. Fiorina, eds. 1999. Civic engagement in American democracy. Washington, DC: 
Brookings Institution.

Smith, H. G., F. V. Burstein, R. Sharma, and A. Sowunmi. 2000. Organisational memory information 
systems: A case-based approach to decision. In Decision support systems for sustainable develop-
ment, G. E. Kersten, Z. Mikolajuk, and A. G. O. Yeh, eds., 277–290. Boston: Kluwer.

Snoeck, M., and G. Dedene. 1998. Existence dependency: The key to semantic integrity between 
structural and behavioral aspects of object types. IEEE Transactions on Software Engineering 
24(4): 233–251.

Solecki, W. D., and C. Oliveri. 2004. Downscaling climate change scenarios in an urban land use 
change model. Journal of Environmental Management 72: 105–115.

Stefik, M. 1995. Introduction to knowledge systems. San Francisco, CA: Morgan Kaufmann.
Stein, E. W. 1995. Organisational memory: Review of concepts and recommendations for manage-

ment. International Journal of Information Management 15(1): 17–32.
Stillwell, J., S. Geertman, and S. Openshaw, eds. 1999. Geographical Information and Planning: Euro-

pean Perspectives (Advances in spatial science). Berlin: Springer, 454.
Sun, Z., and B. Deal. 2006. Managing the dynamics of geographic information systems: The case of 

urban land use transformation in St. Louis, MO. In Geoinformatics 2006: The U.S. Geological Sur-
vey scientific investigators report. S. R. Brady, A. K. Sinha, and L. C. Gunderson, eds. Washington, 
DC: U.S. Geological Survey.

Susskind, L., S. McKearnan, and J. Thomas-Larmer, eds. 1999. The consensus building handbook: A 
comprehensive guide to reaching agreement. Thousand Oaks, CA: Sage.

Syphard A. D., K. C. Clarke, and J. Franklin. 2007. Simulating fire frequency and urban growth in 
southern California coastal shrublands, USA. Landscape Ecology 22(3): 431–445.

Taleb, N. N. 2007. The black swan: The impact of highly improbable events. New York: Random House. 
Teisseire, M., P. Poncelet, and R. Cicchetti. 1994. Towards event-driven modeling for database design. 

In Proceedings of 20th International Conference on Very Large Databases, J. B. Bocca, M. Jarke, 
and C. Zaniolo, eds., 285–296. 12–15 September, Santiago de Chile, Chile. San Francisco, CA: 
Morgan Kaufmann.

Theobald, D. 2001. Land-use dynamics beyond the urban fringe. Geographical Review 91: 544–564.
Tietz, M. B., C. Dietzel, and W. Fulton. 2005. Urban development futures in the San Joaquin Valley. 

Report, Public Policy Institute of California. http://www.ppic.org/main/publication.asp?i=341.
Timmermans, H. J. P. 1982. Consumer choice of shopping centre: An information integration 

approach. Regional Studies 16: 171–182.
———. 1997. Decision support systems in urban planning. London: E and FN Spon.
———. 2000. Decision support systems in urban planning. Proceedings of the 5th conference. Eind-

hoven: Eindhoven University of Technology.
———. 2002. Decision support systems in urban planning. Proceedings of the 6th conference. Eind-

hoven: Eindhoven University of Technology.
———. 2003. The saga of integrated land use–transportation modeling: How many more dreams before 

we wake up? Presented at the 10th International Conference on Travel Behavior Research.
———. 2006. The saga of integrated land use and transport modelling: How many more dreams 

before we wake up? In Moving through nets: The physical and social dimensions of travel, K. Axhau-
sen, ed., 219–239. Oxford: Elsevier.

Tobler, W. 1979. Cellular geography. In Philosophy in Geography, S. Gale and G. Olsson, eds., 
379–386. Dordrecht: Reidel.

Torrens, P. M., and D. O’Sullivan. 2001. Cellular automata and urban simulation: Where do we go 
from here? Environment and Planning B: Planning and Design 28: 163–168.



Tri-County Regional Planning Commission. 2001. The Peoria-Pekin Future Landscape Project. Spring-
field, IL: State of Illinois Department of Natural Resources.

U.S. Census Bureau. 2002. 2002 census of governments. Washington, DC.
U.S. Environmental Protection Agency. 2001. Our built and natural environments: A technical 

review of the interactions between land-use, transportation, and environmental quality. EPA 
231–R–01–002. Washington, DC: U.S. Environmental Protection Agency.

Van Leeuwen, J., and H. J. P. Timmermans, eds. 2004. Recent advances in design and decision support 
systems. Eindhoven: Eindhoven University of Technology.

———, eds. 2006a. Innovations in design and decision support systems. Dordrecht: Springer.
———, eds. 2006b. Progress in design and decision support systems. Eindhoven: Eindhoven University 

of Technology.
Van Niel, K., and S. W. Laffan. 2003. Gambling with randomness: The use of pseudo-random number 

generators in GIS. International Journal of Geographical Information Science 17(1): 49–68.
Vancher, A., D. Andrey, P. Giordano, and S. Albeverio. 2005. Continuous valued cellular automata 

and decision processes of agents. Proceedings of CUPUM 2005, London.
Veldhuisen, K., H. J. P. Timmermans, and L. L. Kapoen. 2000a. Ramblas: A regional planning model 

based on the micro-simulation of daily activity travel patterns. Environment and Planning A 32: 
427–443.

———. 2000b. Micro-simulation of activity-travel patterns and traffic flows: Validation tests and an 
investigation of Monte Carlo error. Transportation Research Record 1706: 126–135.

Vonk, G. 2006. Improving planning support: The use of planning support systems for spatial planning. 
Netherlands Geographical Studies 340. Utrecht: KNAG/Utrecht University.

Vonk, G., S. Geertman, and P. Schot. 2005. Bottlenecks blocking widespread usage of planning sup-
port systems. Environment and Planning A 37: 909–924.

———. 2006. Usage of planning support systems. In Innovations in design and decision support systems, 
J.Van Leeuwen and H. J. P. Timmermans, eds., 263–274. Dordrecht: Springer.

———. 2007a. A SWOT analysis of planning support systems. Environment and Planning A 39: 
1699–1714.

———. 2007b. New technologies stuck in old hierarchies: An analysis of diffusion of geo-information 
technologies in Dutch public organizations. Public Administration Review 67: 745–756.

Voorhees, A. M. 1959. Land use and traffic models: A progress report. Journal of the American Institute 
of Planners 25: 55–105.

Voss, A., I. Denisovich, P. Gatalsky, K. Gavouchidis, A. Klotz, S. Roeder, and H. Voss. 2004. Evolu-
tion of a participatory GIS. Computers, Environment and Urban Systems 28: 635–651.

Waddell, P. 2000. A behavioral simulation model for metropolitan policy analysis and planning: 
residential location and housing market components of UrbanSim. Environment and Planning B: 
Planning and Design 27(2): 247–263.

———. 2002. UrbanSim: Modeling urban development for land use, transportation and environmen-
tal planning. Journal of the American Planning Association 68(3): 297–314.

———. 2005. Integrated land-use and transport models: Building an integrated model—some guidance. 
Washington, DC: Transportation Research Board, Workshop 162.

Waddell, P., C. Bhat, N. Eluru, L. Wang, and R. Pendyala. 2007. Modeling the interdependence in 
household residence and workplace choices. Transportation Research Record: Journal of the Trans-
portation Research Board 2003: 84–92.

Waddell, P., A. Borning, M. Noth, N. Freier, M. Becke, and G. Ulfarsson. 2003. UrbanSim: A simula-
tion system for land use and transportation. Networks and Spatial Economics 3: 43–67.

Waddell, P., G. F. Ulfarsson, J. Franklin, and J. Lobb. 2007. Incorporating land use in metropolitan 
transportation planning. Transportation Research, Part A: Policy and Practice 41: 382–410.



Waddell, P., L. Wang, and B. Charlton. 2008. Integration of parcel-level land use model and activ-
ity-based travel model. Transportation Research Board annual meeting 2007 Paper 08-2414. 
TRB 87th annual meeting compendium of papers DVD. Washington, DC: National Academy 
of Sciences.

Wang, Y., W. Choi, and B. Deal. 2005. Long-term impacts of land-use change on non-point source 
pollutant loads for the St. Louis metropolitan area. Journal of Environmental Management 35: 2.

Watson, I. D. 1995. An introduction to case-based reasoning. In Proceedings of the first United Kingdom 
workshop on progress in case-based reasoning, I. D. Watson, ed., 3–16. London: Springer-Verlag.

———. 1997. Applying case-based reasoning: Techniques for enterprise systems. San Francisco, CA: 
Morgan Kaufmann.

Webber, M. M. 1965. The roles of intelligence systems in urban-systems planning. Journal of the Ameri-
can Institute of Planners 31: 289–296.

———. 1969. Planning in an environment of change, Part II: Permissive planning. Town Planning 
Review 39: 277–295.

———. 1979. Personal communication, seminar given at the University of Reading, UK.
Wegener, M. 1982a. A multilevel economic-demographic model for the Dortmund region. Sistemi 

Urbani 3: 371–401.
———. 1982b. Modeling urban decline: a multilevel economic-demographic model of the Dortmund 

region. International Regional Science Review 7: 21–41.
———. 1983. Description of the Dortmund region model. Working Paper 8. Dortmund: Institut für 

Raumplanung.
———. 2005. Urban land-use transportation models. In GIS, spatial analysis, and modeling. D. J. 

Maguire, M. Batty, and M. F. Goodchild, eds., 203–220. Redlands, CA: ESRI Press.
Wegener, M., R. L. Mackett, and D. C. Simmonds. 1991. One city, three models: Comparison of land-

use/transport policy simulation models for Dortmund. Transportation Reviews 11: 107–129.
Wen, C. H. 1998. Development of stop generation and tour formation models for the analysis of 

travel/activity behavior. Ph.D. diss., Northwestern University, Evanston, IL.
Wen, C. H., and F. S. Koppelman. 1999. An integrated system of stop generation and tour formation 

for the analysis of activity and travel patterns. Transportation Research Record 76: 136–144.
Wendt, D. 2002. Using CommunityViz™ for the Tacoma Dome Area Plan. Environmental Systems 

Research Institute User Conference, San Diego, CA, 10 July.
Wenger, E. 1998. Communities of practice. Cambridge, Eng.: Cambridge University Press.
West Churchman, C. 1968. The systems approach. New York: Delacorte Press.
White, R. W., and G. Engelen. 1993a. Cellular automata and fractal urban form: A cellular mod-

eling approach to the evolution of urban land use patterns. Environment and Planning A 25: 
1175–1193.

———. 1993b. Cellular dynamics and GIS: Modelling spatial complexity. Geographical Systems 1: 
237–253.

———. 1997. Cellular automata as the basis of integrated dynamic regional modelling. Environment 
and Planning B 24: 235–246.

White, R., G. Engelen, and I. Uljee. 1997. The use of constrained cellular automata for high-resolu-
tion modelling of urban land use dynamics. Environment and Planning 24: 323–343.

Williams, I. N., and M. H. Echenique. 1978. A regional model for commodity and passenger flows. 
Proceedings of the PTRC summer annual meeting, 121–128. Warwick, Eng.: PTRC.

Worrall, L. 1994. The role of GIS-based spatial analysis in strategic management in local government. 
Computers, Environment and Urban Systems 185: 323–332.

Wu, F., and D. Martin. 2002. Urban expansion simulation of southeast England using population 
surface modeling and cellular automata. Environment and Planning A 34: 1855–1876.

Wu, F., and C. J. Webster. 1998. Simulation of land development through the integration of cellular 
automata and multicriteria evaluation. Environment and Planning B: Planning and Design 25: 
103–126.



Xiang, W-N., and K. C. Clarke. 2003. The use of scenarios in land use planning. Environment and 
Planning B 30: 885–909.

Yaakup, A., Y. A. Bakar, M. N. A. Kadir, and S. Sulaiman. 2004. Computerised development control 
and approval system for City Hall of Kuala Lumpur. Geo-Spatial Information Science 7(1): 39–49.

Yang, X., and C. P. Lo. 2003. Modelling urban growth and landscape change in the Atlanta metropoli-
tan area. International Journal of Geographical Information Science 17: 463–488.

Yeh, A. G. O. 1999. Urban planning and GIS. In Geographical information systems: Principles, tech-
niques, applications, and management, P. A. Longley, M. Goodchild, D. Maguire, and D. Rhind, 
eds., 877–888. 2nd ed. New York: John Wiley.

Yeh, A. G. O., and X. Li. 2001. A constrained CA model for the simulation and planning of sustain-
able urban forms by  using GIS. Environment and Planning B: Planning and Design 28: 733–753.

Yeh, A. G. O., and X. Shi. 1999. Applying case-based reasoning (CBR) to urban planning: A new PSS 
tool. Environment and Planning B: Planning and Design 26(1): 101–116.

———. 2003. The application of case-based reasoning in development control. In Planning support 
systems in practice, S. Geertman and J. Stillwell, eds., 223–248. Berlin: Springer-Verlag.


