Integration of Agent-Based Simulation and GIS: Applied to Segregation

Andrew Crooks

Outline

Initial Aims
Model detail
Preliminary Outputs
Summary

Initial Model Aims

- Incorporate scenario testing, a tool to think with.
- Complexity Theory (micro interaction to macro policy=> emergent patterns)
- Make the models geographic, as past ABM have been criticised for not being spatial.
- The ability to use actual data and areas for initial starting conditions.
- Develop a simple model that can easily be extended into examining different types of segregation.
 - Segregation is a good example of emergent phenomena.

Examples of Segregation Models

- Agents move if the number of surrounding cells is greater than its preference
- Agents move to their nearest empty cell.

Basic Model

- Built a very generic model structure (spatial)
 - Cells and agents can interact.
 - Applied at different scales (Boroughs, wards, OA or OS Mastermap).
 - Easy to adapt to other situations.
 - Different .shp files can be loaded (via GUI).
 - To see if the same interactions/rules apply in different areas.
- Allows user interaction via GUI e.g. parameter setting and .shp choosing.

Different Scales

SegGIS Basic Model methods

Lat, Lon (51.534, -0.036) - x, y (316,2)

Urban Environments

- The GIS layer. Contains information from the .shp.
- Used to calculate population density, contains the residents.
- Attributes are changeable: social class and landuse depending on the type of residents within.

Lat, Lon (51.496, 0.372) - x, y (637,192)

	Resident Agent social class	Urban agent	Colour
1	Green % highest	Green	Green
2	Red % highest	Red	Red
3	Blue % highest	Blue	Gray
4	White % highest	White	Blue
5	Green & Red % equal	Mixed	Yellow
6	Green & Blue equal	Mixed	Orange
7	R & B W & B R & W G & W	Mixed	White
8	All other combinations	Mixed	L Blue
9	Empty (no residents)	Empty	Black

Residential Agents

- Residential agents
 attributes:
 - Age.
 - Social class (4 types).
 - Happiness (Utility Function).
- Happiness: determined by Neighbourhood size and preferences to different types.

For Blue agents	Blue agent preferences
Blue with Blue	More than 50% Blue
Blue with Red	Less than 20%
Blue with Green	Less than 50%
Blue with White	Less than 50%

Neighbourhoods

 Residents calculate which neighbours are within a specific distance.

undundandaren .	No. of agents
Red Agents	4
Blue Agents	2
Green Agents	2

Neighbourhoods Complications: Geographical Features

Individuals Searching for a Suitable Location

Neighbourhood searching?

- Series of overlapping polygons –acting as neighbourhoods.
- Each contains summary attributes of agents within.
- Agents choose suitable areas and search until satisfied rather than searching around individual agents.

Parameter Settings

Custom Actions

GIS Model Sett	ings 📃 🗆 🔀	
Parameters Custom	Actions Repast Actions	
Simulation speed		
	t this model	
Kill	program	
	A Segregation model information	
	-Model Settings	
	model Settings	
	Recomptore: Custom Antique	11 Hina
	Model Parameters	(PerAgents) based o
		size of the agent (Siz decimal degrees, Alo
	Movement: 500	in one time step (Mov
	0 1000 2000 3000 4000 5000	agents are within a s searches for them in
	PerAgents: 0 10 20 30 40 50 60 70 80 90100	radius the longer the function on and off c
		The default settings ε (it is not advisable to
	Search: 1 1 1 50 0 50 100 150 200	takes up a lot of mem
	SearchOn: 🔽	The default movemen
	SizeOfAgent: 0.0010	small areas but need . (The greater the mo
	Inspect Model	The default search a
	RePast Parameters	altered.
	CellDepth: 5	To alter the paramete 🗸
		2

Model Outputs

- Changes to .shp
- New Agent .shp (time stamped)
- Aggregate data to .txt

Examples: Test Case, Random Placement of Agents

Area at start is of same type.

Area at start is of mixed type.

Examples: OA and Ward

Croydon OA

City of London Wards

Conclusion/ What next?

- Presented a simple model integrating GIS & ABM using certain functions from Repast.
- Model Rules are easily altered and applied to different areas.
 - Patterns emerge based on individual interaction.

• To Do:

- See if the basic rules can be applied to Residential segregation.
- Compare searching mechanisms.
- Carry out a series of batch runs.