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Abstract 

 

Understanding of the nature and detailed composition of ethnic groups remains key 

to a vast swathe of social science and human natural science. Yet ethnic origin is not 

easy to define, much less measure, and ascribing ethnic origins is one of the most 

contested and unstable research concepts of the last decade - not only in the social 

sciences, but also in human biology and medicine. As a result, much research 

remains hamstrung by the quality and availability of ethnicity classifications, 

constraining the meaningful subdivision of populations. 

 

This PhD thesis develops an alternative ontology of ethnicity, using personal names 

to ascribe population ethnicity, at very fine geographical levels, and using a very 

detailed typology of ethnic groups optimised for the UK population. The outcome is 

an improved methodology for classifying population registers, as well as small areas, 

into cultural, ethnic and linguistic groups (CEL). This in turn makes possible the 

creation of much more detailed, frequently updatable representations of the ethnic 

kaleidoscope of UK cities, and can be further applied to other countries. 

 

The thesis includes a review of the literature on ethnicity measurement and name 

analysis, and their applications in ethnic inequalities and geographical research. It 

presents the development of the new name to ethnicity classification methodology 

using both a heuristic and an automated and integrated approach. It is based on the 

UK Electoral Register as well as several health registers in London. Furthermore, a 

validation of the proposed name-based classification using different datasets is 

offered, as well as examples of applications in profiling neighbourhoods by ethnicity, 
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in particular the measurement of residential segregation in London. The main study 

area is London, UK. 
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Chapter 1. Introduction 

‘National identity requires a collective work of amnesia’  

 (Renan, 1990 [1882]: 11) 

 

‘It takes at least two somethings to create a difference (...) Clearly each alone 

is – for the mind and perception–  a non-entity, a non-being (...) a sound from 

one hand clapping’  

 (Bateson, 1979: 78) 

 

1.1. Ethnicity, Collective Identities and Multicultural Cities 

The study of ethnicity in multicultural societies and cities is probably the most 

problematic phenomenon that social scientists face today. Ethnicity relates to a 

person’s inner sense of collective identity, and – as the second quote above suggests 

– its definition requires contact between differently perceived groups to create a 

difference. Such contact has exponentially increased in the last decades as 

populations, cities and neighbourhoods are becoming increasingly multi-culturally 

diverse and globally connected (Castles and Miller, 2003). If –  as stated in the first 

quote above from 19th century philosopher Renan – ‘national identity requires a 

collective work of amnesia’(1990 [1882]: 11), it could be argued that in today’s 

context of globalisation and erosion of 19th century nation-state identities, ethnic 

identity requires a collective work of ‘remembrance and nostalgia’. 

 

One of the multiple definitions of ethnicity states that ‘[a]n ethnic group is a 

collectivity within a larger population having real or putative common ancestry, 
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memories of a shared past, and a cultural focus upon one or more symbolic elements 

which define the groups’ identity, such as kinship, religion, language, shared 

territory, nationality or physical appearance’ (Bulmer, 1996: 35). However, the 

definition of ethnicity is controversial because ethnic identification is subjective, 

multi-faceted and changing in nature and because there is not a clear consensus on 

what constitutes an ‘ethnic group’ (Coleman and Salt, 1996; Office for National 

Statistics, 2003). Moreover, ethnicity classifications have become a key factor of 

political power in the growing arena of identity politics (Skerry, 2000). The power 

struggle between competing collective identities for institutional recognition through 

official ethnicity classifications is especially manifested at local level, where such 

recognition brings solutions for locally perceived problems, monetary resources, 

political representation, and benefits associated with positive discrimination 

initiatives (Kertzer and Arel, 2002). 

 

However, the main purpose for which ethnicity started to be officially classified and 

measured in a number of developed countries in the last decades bore little 

correspondence with this identity politics struggle. It directly emanated from the 

need to monitor progress in equality legislation, introduced to prevent racial 

discrimination and reduce ethnic inequalities after the 1960s (Peach, 2000), in 

particular the American Civil Rights Movement (1954-1968) and the UK Race 

Relations Act (HM Government, 1976). Such legislation and the population 

classifications derived from them were only concerned with people seen of ‘darker 

skin colour’, following non-European post-war migration to America and Europe and 

the deeply rooted black discrimination in the US (Coleman and Salt, 1996). Today 

the much broader and cultural term of ethnicity is preferred to the biologically rooted 
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concept of ‘race’, to define and classify collective identities in increasingly 

multicultural populations. 

 

The evidence of ethnic inequalities in most multicultural societies has grown strongly 

in the last decades (Mason, 2003; Nazroo, 2003a). One of the aspects in which such 

inequalities are manifest is in its spatial dimension, with debates about ethnic 

residential segregation and the ‘ghettoisation of society’ having acquired special 

prominence in the public debate of recent years (Dorling, 2005b; Phillips, 2005). 

Although a range of diverse and intertwined factors for such ethnic inequalities has 

been identified, research has fallen short of unveiling the true interaction between 

such factors, especially at the local micro-level (Karlsen et al, 2002). As Chapter 2 in 

this thesis will describe, the main problem has been a lack of availability of ethnicity 

data at sufficient quality and level of disaggregation, and an absence of adequate 

methods to interpret the problematic nature of measuring different ontologies of 

ethnicity. Therefore, new methods are required in the analysis of ethnic inequality in 

increasingly diverse populations and neighbourhoods, which are capable of being 

adapted to rapid changes in international migration and ethnic group formation 

processes. Such improved methods will prove key in informing policy to reduce 

ethnic inequalities, produce and maintain accurate population statistics and plan for 

the future complex needs of our societies and cities.  

 

This PhD aims to contribute to such methodological need. It contends that there is a 

strong relationship between the ethnic identities of human groups and their mother 

languages or those of their ancestors, and that an indication of these can be revealed 

by the analysis of personal name origins. This is the cornerstone of the 
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methodological innovation that this PhD aims to contribute: developing a new 

classification of populations and neighbourhoods along the multidimensional aspects 

of collective identity, through the cultural, ethnic and linguistic origins of personal 

names.  

 

From the title of this thesis; ‘An ontology of ethnicity based upon personal names: 

with implications for neighbourhood profiling’, three main concepts arise: ontology 

of ethnicity, personal names, and neighbourhood profiling. These are the three core 

components around which the whole thesis is developed. Names are thus used to 

propose a new ontology and classification of ethnicity, developing an innovative 

methodological tool for investigating population ethnicity at neighbourhood level. 

1.2. Aim and Objectives 

The principal aim of this thesis is to develop a new ontology and classification of 

ethnicity based on personal names origins. This aim will be achieved by the 

following six objectives: 

1) To investigate and review the methods and procedures involved in creating a 

name-based ethnicity classification at the level of the individual person. 

2) To propose a detailed taxonomy of cultural, ethnic and linguistic groups 

(CEL) based on the common characteristics of the names present in Britain. 

3) To develop a classification of all the surnames and forenames present in 

Britain with a frequency of three or more people into cultural, ethnic and 

linguistic groups (CEL classification). 

4) To evaluate the CEL taxonomy and classification at the level of the 

individual person. 
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5) To demonstrate the value of the CEL classification through its application to 

the study of residential segregation in London at different geographical scales 

and ethnic group aggregations. 

6) To provide a detailed description of the methodology in the creation of the 

CEL classification, in order to facilitate its future reproducibility. 

The content of these six objectives will become clearer in each of the individual 

chapters in which they are tackled. However, it can be seen that the main purpose of 

this PhD research is of a methodological nature. Although the contextual and applied 

aspects of ethnic inequalities and residential segregation are present throughout the 

thesis, the distinctive contribution to knowledge of this thesis lies on the novel 

methodology developed to classify the whole population into ethnic groups using 

their names’ origins.  

1.3. Methods and Outputs 

Because of the methodological essence of this PhD thesis, the research methodology 

employed is actually the end in itself, rather than the successful application of 

established methods. Therefore, and following objective (1) above, this thesis first 

investigates and reviews existing methods involved in creating a name-based 

ethnicity classification at the level of the individual person (Chapters 3 and 4). Most 

of the similar studies found in the literature come from the public health and 

population genetics literature, which use simple statistical methods applied to very 

large population datasets at the level of the individual person, following a ‘data 

mining’ approach. 

 

Based on these findings, the thesis then describes the steps taken in the actual 

development of the names classification developed in this research, termed the 
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cultural, ethnic and linguistic (CEL) classification (Chapters 4, 5 and 6). These steps 

can be summarised as the following general methodological processes:  

1- Develop a taxonomy of cultural, ethnic and linguistic groups 

2- Collect and prepare several different names datasets with differing 

content and coverage 

3- Select a suite of name classification techniques 

4- Develop an exploratory names classification based on heuristic rules 

5- Develop the CEL names classification following an automated and 

integrated approach based on forename-surname clustering 

6- Validate the CEL names classification 

 

The main output of this research is a new classification of names into cultural, ethnic 

and linguistic groups (CEL). Such classification is comprised of two tables, a 

surname-to-CEL table including 225,576 surnames, and a forename-to-CEL table 

including 98,624 forenames, each alongside their most likely CEL and a measure of 

the degree of association between the name and the CEL. The intention is to make 

these tables available on request to bona-fide academic researchers for further 

evaluation and enhancement. Other outputs from this research have been three 

publications in peer reviewed journals, one working paper, and twelve paper 

presentations at national and international conferences. For the details of these 

outputs see Appendices 1 and 7. 
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1.4. Thesis Structure 

The thesis is organised in nine chapters. Each of the seven core chapters addresses 

one or two of the six objectives specified in Section 1.2. Table 1.1 describes the 

objectives that are addressed by each chapter. 

 

Chapter Objective 

.1- Introduction  

.2- Concepts and measurements of ethnicity 1 

.3- Names and ethnicity 1 

.4- Taxonomy, materials and methods 1, 2 

.5- Heuristic approaches to creating a name classification 1, 3 

.6- An automated and integrated approach to name classification 3, 6 

.7- Validating the CEL name classification 4, 6 

.8- Applications: residential segregation and ethnic inequalities 4, 5 

.9- Summary and conclusion 6 
 

Table 1.1: Thesis structure and correspondence between chapters and objectives 
 

Chapter 2 – ‘Concepts and Measurements of Ethnicity’ – sets out the general context 

of the different intersections between the ontology of ethnicity and its measurement, 

and debates of ethnic inequalities and residential segregation. The first part justifies 

the study of the classification of populations and neighbourhoods according to 

ethnicity, primarily in the context of British ethnic inequalities. The second part 

addresses the ontological issues behind the concepts of ethnicity and their 

measurement, and investigates how they affect the analysis of ethnicity. As a whole, 

the chapter justifies the need for new alternative methods to study and measure 

ethnicity, setting the ground for the developments of the rest of the thesis. 
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Chapter 3 – Names and Ethnicity – reviews in depth the multidisciplinary literature 

of name-based ethnicity classifications with a view to summarising the different 

approaches that have been independently developed, to identifying the research gaps, 

and to setting out a research agenda for potential contributions using the improved 

methods that will be described and developed in the rest of the thesis. 

 

Chapter 4 – Taxonomy, Materials and Methods – introduces the three integrated 

components of the first phase in the development of a new name-based ethnicity 

classification: taxonomy, materials and methods. It formalises a new taxonomic 

classification of names based upon cultural, ethnic and linguistic (CEL) groups. It 

then discusses the potential universal name register data sources and presents the 

materials finally selected for use in this research. Finally, it describes the 

methodologies that are subsequently used to put the three components together; 

methods to classify the universal list of names into the CEL taxonomy. 

 

Chapter 5 – Heuristic Approaches to Creating a Name Classification – describes the 

initial heuristic approach, which laboriously classified different groups of names into 

CELs following the techniques described in Chapter 4, in the order in which they 

were first investigated. These techniques were specified through different rules and 

applied to different stages in a dynamic and iterative process. Because of the 

cumulative yet fundamentally exploratory nature of this approach, it is described as 

‘heuristic’. 

 

Chapter 6 – An Automated and Integrated Approach to Name Classification – 

describes how an enhanced methodology was developed in what constitutes an 
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automated approach to classification of names into CELs. It builds upon the analysis 

of the limitations and achievements recognised in the heuristic approach, and sets out 

the requirement to develop a transparent and reproducible method. This automated 

approach has the objective of providing a simple and systematic method that can be 

easily explained and understood, and allows third parties to understand the explicit 

procedures that were used to develop the classification. 

 

Chapter 7 – Validating the CEL Name Classification – explains the validation 

process performed in order to demonstrate the usefulness of this CEL classification 

for applications to classify a population into cultural, ethnic and linguistic groups, 

and to measure its classificatory effectiveness. The validation is carried out against 

some populations for whom ethnicity is already known through an independent 

source (i.e. not based on names). More than one way to validate the effectiveness of 

the CEL classification is provided; a classification of individuals through a hospital 

admission register, and a classification of neighbourhoods, using 2001 UK Census 

ethnicity at several geographical scales. 

 

Chapter 8 – Applications: Residential Segregation and Ethnic Inequalities – 

illustrates the potential applications of the CEL name classification to issues 

surrounding neighbourhood profiling and residential segregation debates. Given its 

high relevance to current debates in contemporary society, the CEL classification is 

applied to the study of ethnic residential segregation in London. Other potential 

applications are briefly described constituting a small gallery of applications, in order 

to illustrate the very wide potential applicability of the CEL classification. 
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Finally, the thesis closes with a concluding chapter (9) wrapping up the evidence 

gathered through the PhD and pointing out to promising avenues for future research 

in this area. 
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Chapter 2. Concepts and Measurements of Ethnicity 

In the last decade and a half, there has been an explosion of interest in issues of 

ethnicity, nationalism, race and religion, around a renewed preoccupation with the 

question of defining and asserting collective identities. This trend has contradicted 

the prediction made in 1920s by Max Weber (1980 [1921]) who stated that 

‘primordial phenomena’ such as ethnicity and nationalism would decline in 

importance and eventually vanish as a result of modernisation, industrialisation and 

individualism. On the contrary, the change of Millennium has brought opposition 

between an ever-expanding globalisation and an upsurge in identity, an antagonism 

that is key to understanding the way that our world and our lives are being shaped 

(Castells, 1997). Collective identities are formed and expressed as a resistance 

movement to cultural homogenisation (Castells, 1997) in a struggle for political 

power in multicultural societies (Kertzer and Arel, 2002). This is set in a context of a 

diminishing role of the nation-state, with political power being devolved to the 

regions and cities as well as taken away by international institutions and a new global 

order. Combined with these trends, long-established 19th century national identities 

are being eroded in an era of migration, characterised by the increased intensity and 

complexity of its flows (Castles and Miller, 2003). 

 

In such circumstances, governments and social scientists have struggled to keep track 

of the reality of a rapidly changing population that is constantly re-defining its 

collective identities (Skerry, 2000). Although highly contested, the practice of 

classifying the population into discrete groups according to race, ethnicity or religion 

has made a strong re-appearance in many countries’ recent national censuses 
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(Howard and Hopkins, 2005; Kertzer and Arel, 2002; Nobles, 2000). Such questions 

in the censuses not only quantify the size and geographical extent of collectively pre-

perceived racial, ethnic and religious groups, but more interestingly help to reinforce 

the self-identity of those groups or accelerate the emergence of new identities 

(Christopher, 2002) by solidifying transient labels (Howard and Hopkins, 2005). 

 

Because of the subjective nature of collective identities, the categorization process 

(the problematic definition of ethnic groups’ boundaries and labels) has been a 

significant issue in social science  (Peach, 1999b). Following an impassionate debate 

around the essentialism of ethnicity labels (Modood, 2005), there seems to be a 

consensus, at least in the demographic and public health literature, that the 

classification of the population into ethnic groups has proved useful to fight 

discrimination and entrenched health and social inequalities (Bhopal, 2004; Mitchell 

et al, 2000). There is a vast literature that demonstrates the persistence of stark 

inequalities between ethnic groups, especially in terms of health outcomes, access to 

housing and labour markets, educational outcomes and socioeconomic status (Frazier 

et al, 2003; Mason, 2003). As long as such inequalities between population 

subgroups persist, no matter how these are defined or perceived, the use of ethnic 

group definitions and labels will be useful to denounce them and fight against their 

causes. However, many of the current ethnicity classification practices have proved 

very inappropriate to uncover the true nature of specific factors of inequalities. 

 

This chapter sets out the general context of these processes and the different 

intersections between the ontology of ethnicity and its measurements, and debates of 

ethnic inequalities and residential segregation. The first section, titled ‘The 
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Geography of Ethnic Inequalities’, describes the evidence in ethnic inequalities and 

population classification by ethnicity and geographical areas and summarises the 

current research shortcomings. The second section, ‘Neighbourhood Profiling and 

the Segregation Debate’, reviews in depth issues of ethnic minorities’ uneven 

residential distributions as identified using different measurement metrics, and 

through synthesis of past debates identifies the main research gaps. Having justified 

the study of ethnic inequalities and the classification of populations and 

neighbourhoods according to ethnicity, the third section, ‘Defining Ethnicity and 

Race’, directly addresses the ontological issues behind the concepts of ethnicity and 

its multidimensional characteristics, taking a broad perspective drawn from the 

anthropological, sociological, geographical and health literatures. The fourth and 

final section, ‘Measuring Ethnicity’, complements the ground laid down in the 

previous section with an extensive review of the different ways in which ethnicity is 

measured in different contexts, identifies the key issues of measurement and 

investigates how they affect the analysis of ethnicity. Finally, a conclusion weaves 

together the main points and the research challenges established throughout the 

chapter, providing a firm justification for the further study of name origin analysis in 

the following chapter. 

 

2.1. The Geography of Ethnic Inequalities 

‘[Recent ethnic disturbances] might be said to fit into a long-established pattern in 

the development of policies to address ethnic disadvantage in Britain, that is, the 

tendency, after a period of public hand wringing and spate of policy initiatives, for 

the issue of ethnic inequity to disappear from the agenda for a period, before 
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dramatically being forced back on – not infrequently by events on the streets’. 

(Mason, 2003, 1)  

2.1.1. Ethnic inequalities 

There is a vast literature that denounces the persistence and growth of social 

inequalities in the developed world (Dorling and Rees, 2003). Of particular relevance 

to this PhD, studies of the geographical aspects of such inequalities have 

demonstrated over and over again that there is a direct relation between where 

different social groups live and their overall chances in life, their level of income and 

outcomes in terms of health, education and material deprivation. 

 

In the last twenty years or so, the way these ‘social groups’ have been defined has 

evolved to embrace a variety of social dimensions and not just the classic 

classification along socio-economic or social class criteria.  Social inequalities have 

thus been analysed along lines of difference and identity, concerned with even 

starker inequalities according to gender, age, and ethnicity, a classic demographic 

triad (Mateos and Webber, 2006), in addition to other aspects such as disability and 

sexual orientation. Of relevance to this PhD is thus the literature that in this respect 

tackles the geography of ethnic inequalities in the developed world, especially in 

Britain. A detailed reflection on the concept of ethnicity is offered in Section 2.3. 

 

Ethnic inequalities may be defined as the differential outcomes and processes of 

social disadvantage experienced between ethnic groups in a society where they co-

exist. Differential outcomes by ethnic group have been repeatedly demonstrated 

along the following dimensions of quality of life: health (mortality and morbidity: 

Bhopal, 1997; Nazroo, 1997), education attainment and participation (Johnston et al, 



 
Chapter 2 - Concepts and Measurements of Ethnicity 32 

2004; Parsons et al, 2004), housing (Boal, 2000), employment (Carter et al, 1999; 

Karn, 1997), material deprivation and social mobility (Loury et al, 2005). 

Furthermore, sustained differential access to and experience of public services, such 

as in healthcare, schooling, policing, social housing, transportation, social services, 

recreational activities, access to amenities, etc have been identified as being highly 

related to discrimination processes, whether passive or active, both at the individual 

and institutional levels. These differentials clearly show that members of some ethnic 

minority groups have a shorter life expectancy, are more likely to report bad health, 

have higher unemployment rates, lower wages, lower level of political participation, 

lower access to higher education, and live in more deprived areas than the national 

average. Special care needs to be put into not stigmatising ethnic minorities with all 

these conditions of disadvantage, as if they all experience these inequalities, or in the 

same way, or as if the mere fact of ‘their difference’ implied the cause of their 

condition of disadvantage. Past research has unfortunately assigned ethnic minorities 

with an accumulation of conditions that ‘deviated from the norm’ (i.e. the white 

majority), reinforcing an ‘us and them’ view of ethnicity based on assimilationist 

assumptions, that has consistently informed social policy in Britain (Mason, 2000). 

 

Unfortunately, the literature has not been very successful in identifying and isolating 

each of the individual causes that lie behind the inequalities found. More often, racial 

discrimination, socio-economic, geographic, environmental, demographic, cultural, 

lifestyle, migration, historic, and genetic factors are closely intertwined in producing 

and reproducing the patterns of disadvantage by ethnicity that have been commonly 

observed in our cities and societies (Mason, 2003). Disentangling the separate causes 

and confounding factors of inequalities is only possible by measuring ethnicity in all 
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datasets where those same health, educational, employment or other socio-economic 

outcomes are recorded. This has only just started to happen in the last ten years, but 

as this PhD will discuss there is insufficient data and methods to analyse ethnic 

inequalities in the way that is required. As a starting point we will review how this 

has been attempted in explaining ethnic inequalities in health.  

2.1.2. Ethnic inequalities in health 

In no other area are ethnic inequalities more strikingly manifested than in health, 

where they have been extensively studied and denounced for at least over three 

decades in Britain. This area will be briefly summarised here as an example of the 

relevance of the disadvantages described in the previous subsection, and the 

problems in ascribing causality to observed outcomes. 

 

Ethnic inequalities in health form part of the wider research field of health 

inequalities that has a long history and established methods, mainly in the 

epidemiological and public health literatures. Accounts of ethnic inequalities in 

health caused by socioeconomic disadvantage in Britain can be traced back in time to 

1845 when Engels ascribed the poor health and high mortality rate of Irish migrants 

living in England to their poor social circumstances (Engels, 1987). The British 

public health literature has intensively analysed differential health outcomes by 

ethnic group, initially only for immigrants (Marmot et al, 1984; Wild and McKeigue, 

1997), and in the last twenty years for different ethnic minority groups (Nazroo, 

1997; NHS Health and Social Care Information Centre, 2005; Szczepura, 2005). In 

the US the literature has focused primarily on health inequalities between the Black 

population and the White majority (Gutgesell et al, 1981; Smith et al, 1998), with 

growing attention to other ethnic groups, such as Asian groups, Hispanics, and Arabs 
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(Chiapella and Feldman, 1995; Lauderdale and Kestenbaum, 2002; Lipson et al, 

1987; Polednak, 1993). 

 

Ethnic inequalities in health have become an increasing focus of research attention in 

Britain since the early 1970s, partly reflecting a growing public policy concern with 

the health of, and quality of healthcare provided for ethnic minority groups (Nazroo, 

2003a). Research in this field was initially concerned with the health of immigrants 

and their children (Marmot et al, 1984; Oppé, 1967). However, it has experienced a 

continuous growth as ethnic groups have emerged, providing a wide range of 

evidence on the differential levels of morbidity and mortality between ethnic groups, 

specifically between the so-called ethnic minorities and the ‘ethnic majority’ 

(Aspinall and Jacobson, 2004; Bhopal, 2007). Figure 2.1 shows the odds ratio of 

people that have reported bad or fair health in the Health Survey for England by 

ethnic group, compared with the White British majority. It is striking to notice that 

the odds of people from groups such as the Caribbean, Indian, Bangladeshi or 

Pakistani ethnic groups that report bad or fair health is 2 to 3.2 times higher than that 

of the White British majority. 

 

However, when considering unequal health outcomes it is surprising how common it 

still is to observe the stigmatisation of ethnic minorities. For example, in a report for 

a UK programme called ‘Tackling Health Inequalities: A Programme for Action’ 

(Department of Health, 2003), ethnic minorities were lumped together into a 

‘vulnerable population group’ that includes people ‘… living in remote and rural 

communities, as well as teenage parents, vulnerable older people, black and minority 

ethnic groups, looked after children and care leavers, homeless people, asylum 
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seekers and prisoners’(Department of Health, 2003, 10). This striking definition is 

very symptomatic of the fact that the very specific stereotypes that Bhopal (1997) 

denounced as the racist concept of a ‘package of specific ethnic diseases’, have not 

yet gone away even in government reports. Moreover, this definition supports the 

claim of Nazroo (2003b) that there is a common implicit and mistaken assumption 

that ethnic minorities are uniformly disadvantaged, leading researchers in the US to 

use ‘race’ as a surrogate for poverty in many analyses. 
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Figure 2.1: Health Survey for England reported ‘Fair or Bad Health’ by ethnic group 
Age and gender adjusted odds ratio and 95% confidence interval compared with White British 
Source: Health Survey for England 1999, reported in Nazroo (2003a) 
 

As these examples from the study of ethnic inequalities in health show, there is a 

clear need to subdivide populations by ethnic group, and to access such 

disaggregated data from a wide range of social studies and government datasets in 

order to compare results, isolate the causes for such inequalities for each ethnic 

group, and disentangle the facts from the stereotypes. This demand for better data 

sources has been partially addressed since the UK 1991 Census of Population, yet, 
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sixteen years on, ethnicity is still not collected in most government datasets today, 

with evidence collection lagging far behind policy in this area. As will be explained 

in Section 2.4., research on ethnic inequalities has been hampered by a lack of data 

sources on ethnic groups and common methodologies in their collection and 

treatment (Aspinall, 2000; Whitehead, 1992). 

 

Finally, although geographers have also been highly concerned with the spatial 

aspects of such health inequalities in the population (Boyle et al, 2004; Gatrell et al, 

2000), they have typically not engaged with the study of ethnic inequalities in health, 

with the exception of studying migrant populations’ health (Boyle, 2004). For 

example, in the landmark four volume series ‘Ethnicity in the 1991 Census’, written 

mostly by geographers after the ethnicity question was introduced in 1991 (Coleman 

and Salt, 1996; Karn, 1997; Peach, 1996b; Ratcliffe, 1996),  there is not a single 

chapter devoted to ethnic inequalities in health, while there are several dedicated to 

employment and the labour market, education, housing, segregation and 

demographic aspects of ethnic groups. This is unfortunate, because geographers and 

health researchers have much to gain from mutual collaboration in the study of ethnic 

inequalities, since both collectives would benefit from methods developed 

independently in each field. This PhD intends to make a small contribution to this 

gap, adopting an interdisciplinary approach to expand a methodology to subdivide 

populations by ethnic group initially developed in the public health domain, applying 

it to geographical problems, and promoting new cross-collaborations in this field. 

2.1.3. Subdividing populations by ethnicity and geography 

Ethnic inequalities in the population vary starkly between and within ethnic groups, 

not only between ethnic minority groups and the ethnic majority, but also between 
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and within the ethnic minorities (it could also be argued that they vary within the 

ethnic majority as well, but this falls outside the scope of this PhD). As pointed out 

in the previous subsections, such variation is very difficult to explain, because of the 

complex interaction of many confounding factors at the level of the individual, 

neighbourhood, and ethnic group. One approach to disentangle the sometimes 

confounding influences of these levels is to isolate them across geographic space. 

 

The standard research approach to studying geographical inequalities begins with the 

subdivision of the population into societal groups according to specified criteria, and 

then into geographical areas to analyse regional or local variation within each group. 

Following this approach, in the study of ethnic inequalities the population needs to 

be subdivided into ethnic groups and geographical areas, in order to measure certain 

outcomes and to compare them with the overall population or with the ethnic 

majority. In this way it is possible to highlight any differentials that merit further 

investigation and explanation. 

 

The role of geography in the explanation of social inequalities cannot be 

underestimated  (Curtis and Jones, 1998; Dorling, 2005a), and this also applies to 

ethnic inequalities (Peach, 2000). Geographical analysis of ethnic inequalities can 

provide very important clues to understanding ethnic group differentials and 

observed patterns of within group heterogeneity. Furthermore, geography can be then 

used to explain the patterns found, through enhanced knowledge about those same 

areas and their related populations (Harris et al, 2005). This is especially relevant at 

the neighbourhood level, where most processes of ethnic inequalities and difference 

take place. 
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The subdivision of populations by ethnic group and geography does not only provide 

public policy makers with the evidence required to reduce ethnic inequalities at local 

level. It also gives them the means to better understand their populations and 

neighbourhoods, their characteristics and processes of change, in order to plan and 

deliver public services anticipating future needs at local level.  

 

One area where this is key in the future planning of public services for the whole of 

the population, is population forecasting by ethnic group (Haskey, 2002), since there 

are significant variations in the demographic characteristics (Coleman and Salt, 

1996) and geographical distributions of ethnic groups (Ratcliffe, 1996). The classic 

stepping stones of population studies; fertility, mortality and migration, have very 

different behaviours when broken down by ethnic group, and more importantly, they 

experience very rapid changes (Owen, 1996). This arises because of distinct patterns 

of population age and gender structure, migration stocks and flows, family formation 

and household composition, and so forth (Coleman, 2006).  

 

Amongst these demographic variables, international migration is the one most 

difficult to measure, and even more so to predict (Rees and Butt, 2004). Although 

migration statistics in Europe have significantly improved in the last ten years (Salt, 

2006), the situation is far from ideal, and as Rees and Boden (2006) put it; ‘There is 

an increasing desire for more comprehensive and more consistent information on 

new migrants at an international, national, regional and local level. International 

migration is now the dominant driver of population change in the UK and is set to 

remain so for at least the next 25 years.’ (Rees and Boden, 2006: 1). Political 
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representation and local funding all depend on accurate population statistics. The 

scale of the problem in this area of official statistics is such that a group of Local 

Authorities have brought legal action against the Office for National Statistics (ONS) 

since it recently introduced a change in the way international migration is imputed to 

local areas, as a consequence of which their income is set to be substantially reduced 

(The Economist, 2007a).

 

The populations of contemporary societies and cities are becoming increasingly 

multi-culturally diverse and globally connected, and the assumptions that worked 

well in the past in the demographic and geographic literature no longer hold true. The 

evidence of ethnic inequalities in Britain is now strong and encompasses a range of 

diverse and intertwined factors. New methods are thus required in the analysis of 

inequality in increasingly diverse populations and neighbourhoods, at the junction 

between international migration and ethnic group formation processes. Such 

improved methods will prove key in informing policy to reduce ethnic inequalities, 

produce accurate population statistics and plan for the future complex needs of our 

societies and cities. The next section will focus on one of these key aspects of policy, 

analysing residential segregation at the neighbourhood level. 

 

2.2. Neighbourhood Profiling and the Segregation Debate 

‘[T]he professionals (..) too (..) [would have to] move, swapping their comfortable 

suburban homes for inner-city flats, moving into areas they would never normally 

consider living in, sharing streets with people whose skin is a darker shade than 

white.’ (Dorling and Rees, 2003: 1287) 
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2.2.1. The community cohesion debate 

Two major events in 2005 reopened a long-standing debate about the causes and 

consequences of residential segregation of ethnic minorities in European cities: the 

London bombings of July 7th, 2005, perpetrated by home-born terrorists; and the 

urban riots in France’s banlieues in November 2005. Recent precedents of these 

events in the UK were the racialised disturbances in three northern English cities in 

the summer of 2001. These events triggered a heated public debate in which diverse 

issues were all linked to an apparent failure of European society to assimilate 

immigrant communities (Leppard, 2005; The Economist, 2005). A perceived 

manifestation of such failure is the residential segregation of ethnic minorities, 

whether through constraint or choice, to the frustration of ethnic minority integration 

policies, now relabelled into a broader buzzword; ‘community cohesion’.  

 

An independent inquiry chaired by Ted Cantle prepared a report for the Home Office 

after the 2001 riots, that highlighted ethnic segregation and the so-called problem of 

‘parallel lives’ between ethnic groups as the major root cause of the community 

tensions and divisions (Cantle, 2001). After the London bombings in July 2005 the 

head of the Commission for Racial Equality, Trevor Phillips put the problem bluntly 

in these terms: 

‘But the aftermath of 7/7 forces us to assess where we are. And here is where I 

think we are: we are sleepwalking our way to segregation. We are becoming 

strangers to each other, and we are leaving communities to be marooned 

outside the mainstream.’ (Phillips, 2005) 
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Although several geographers have contested Phillips’ and Cantle’s view of 

ghettoisation of society as lacking or contradicting empirical evidence on the 

different dimensions of segregation  (Dorling, 2005b; Simpson, 2006), these 

perceptions have frequently hit the headlines in Britain since then. 

 

The current ghettoisation debate in Britain emanates from a broader shift in policy 

from a phase of celebrating an increasingly multicultural society in the late 1990’s 

and early 2000’s to a post-September 11th 2001/ post-July 7th 2005 that is fearful of 

‘parallel lives’ and favours integration into the ‘mainstream of society’, a term 

difficult to define. These worries are linked to an increasing anxiety about individual 

atomisation and the lack of community cohesion, which is then projected on to those 

who are seen different from ‘the norm’ (Bunting, 2006). Fortuijn et al (1998), in a 

special issue of Urban Studies on ethnic segregation, have summarised public 

perception of ‘ghettoisation’ as an unwanted sequence of events in which ‘increasing 

spatial segregation will lead to increasing separation of different social and ethnic 

classes and population categories; in its turn, that will produce ghetto-like 

developments and will finally result in the disintegration of urban society’ (Fortuijn 

et al, 1998: 367). 

 

As a result of this shift in public perception and government policy in Britain, 

initially directly stemming from Cantle’s (2001) report, a series of policies have been 

implemented to promote ‘community cohesion’, a concept at the core of a re-

launched ‘new localism’ effort (through area-based policies, such as Neighbourhood 

Renewal Areas, Health Action Zones, etc). A ‘cohesive community’ has been 

defined as:  



 
Chapter 2 - Concepts and Measurements of Ethnicity 42 

‘(…one) where there is a common vision and a sense of belonging for all 

communities; where the diversity of people’s different backgrounds and 

circumstances are appreciated and positively valued; where those from 

different backgrounds have similar life opportunities; and where strong and 

positive relationships are being developed between people from different 

backgrounds in the workplace, in schools and within neighbourhoods’ 

(Commission for Racial Equality, 2002: 1).  

 

A Commission for Integration and Cohesion was created in June 2006, within the 

Department for Communities and Local Government, with the aim of establishing 

how ‘local areas can make the most of the benefits delivered by increasing 

diversity...[and] respond to the tensions it can sometimes cause.’ (Department of 

Communities and Local Government, 2006). Unfortunately, the measurements to 

establish a baseline and progress on ‘community cohesion’ are not as easy to build. 

2.2.2. Measuring residential segregation 

The study of ethnic residential segregation has attracted geographers for a long time 

(Clarke et al, 1984; Jackson and Smith, 1981; Peach et al, 1981), and more recently 

they have made interesting contributions to the ethnic segregation debate (Dorling 

and Rees, 2003; Johnston, Burgess et al, 2006; Peach, 1996d; Simpson, 2005a), that 

begin with the difficult task of ascertaining the degree to which neighbourhoods and 

cities are considered segregated (Peach, 1981; 1996a). Underlying ‘geographers and 

politicians [fascination] with measuring residential segregation’ (Simpson, 2007: 

406), seems to be an implicit association between high values of measured 

segregation and a lack of social integration (Simpson, 2007) that is threatening the 

social fabric of society (Fortuijn et al, 1998). What is more, Peach denounces the fact 
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that ‘the literature has taken for granted that high levels of segregation are 

characteristic of marginalized and racially discriminated groups only, and that all 

high levels of segregation are negative, imposed, involuntary and transitory’ (Peach, 

2000: 622). But in reality, when looking at policies that have reversed residential 

segregation, such in post-apartheid South Africa, it has been found that desegregation 

initiatives alone do not solve the problem of lack of social integration (Lemanski, 

2006). 

 

However problematic, measuring segregation is useful to compare differences in 

population compositions between neighbourhoods and their changes across time. 

There is an established consensus in the quantitative sociological and geographical 

literature that there are different dimensions of residential segregation, and that 

separate indices should be used to independently measure these dimensions. Massey 

and Denton’s (1988) seminal work proposed five major dimensions termed as; 

evenness, exposure, concentration, centralisation, and clustering, which have become 

very established as the standard in the last twenty years of segregation studies. 

Evenness relates to the degree of geographical spread of two groups among small 

areas; exposure measures the degree of potential contact between members of two 

different groups within the same small area; concentration speaks to the relative 

amount of physical space occupied by a group; centralisation addresses the degree to 

which a group is spatially located near the centre of an urban area; and clustering 

refers to the spatial clustering of groups (or their adjacency). Simpson (2007) has 

recently suggested two additional dimensions that measure migration over time and 

the overall composition of ethnic groups as: movement which relates to the extent of 

movement towards localities that already have relatively high proportions of the 
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same group; and diversity that concerns how close a set of groups are to equal 

numbers within an area. 

 

Geographers are contributing to the methodological debate of segregation measures 

by moving the argument in two directions; measuring change over time and better 

reflecting the spatial aspects of segregation. The first contribution relates to the task 

of measuring whether segregation is increasing or decreasing through time and at 

different scales (Rees and Butt, 2004; Stillwell and Phillips, 2006), and the 

apportionment of any such change to demographic factors such as immigration, out-

migration, and natural growth (Simpson, 2004; 2006; Stillwell and Duke-Williams, 

2005). The processes behind each of these different factors have totally different 

meanings in the social integration debate, and relate to aspects of the so called ‘good 

and bad segregation’ (Peach, 1996c). For details of this debate on segregation change 

through time see Johnston et al (2005) and Simpson (2005b). The second 

contribution is concerned with measures that better reflect the spatial aspects of 

social interaction and segregation, which many of the established composite indices 

ignore. This builds upon well-established concepts in Geography such as the 

Modifiable Areal Unit Problem (MAUP) (Openshaw, 1984) and spatial 

autocorrelation (Goodchild, 1986), proposing innovative solutions to remove the 

effects of change of scale (Voas and Williamson, 2000), of  shape and size of 

statistical areas, or the topological arrangement of ethnicity data (O'Sullivan and 

Wong, 2007; Wong, 2003; 2004). 

 

A third aspect of the segregation debate that seems to be overlooked in the 

geographical literature is the effect of changes in the definitions and meanings of 
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ethnic groups. This is probably because the majority of the research in this field in 

most countries depends solely upon the information provided by censuses of 

population (Logan and Zhang, 2004), and the inert nature of ethnic categories is thus 

taken for granted. However, and as will be fully described in Section 2.4, censuses 

typically utilise only a few self-assigned ethnic categories, the number, definition and 

reporting of which may be highly inconsistent through time (Kertzer and Arel, 2002). 

Therefore, the spatial distribution of alternative ontologies of ethnicity, arranged in 

multiple possible combinations will have a strong impact on the level of segregation 

of particular neighbourhoods. This raises the issue of what we mean by a 

‘segregated’ or an ‘integrated’ neighbourhood or city? (Peach, 1996d) 

2.2.3. Ethnic segregation and neighbourhood profiling 

After the UK 2001 Census results were released, the debate on the measurement of 

ethnic residential segregation and subsequent classification of neighbourhoods in 

Britain has experienced a new momentum of research and publications, linked to the 

debate on cohesive communities and the new localism of area-based policies. There 

are two key aspects of this new research stream. Firstly, it exploits the new features 

of the 2001 Census, typically employing more than one variable to measure 

ethnicity, and analysing it in combination with the new question on religion 

(Brimicombe, 2007; Peach, 2006): it also uses several levels of geographical 

disaggregation down to very fine Output Areas (Martin, 2002), and compares 

changes over the inter-censal period 1991-2001 (Simpson, 2005a). Secondly, it starts 

to use alternative ethnicity data sources to the census, primarily using the Pupil Level 

Annual School Census (PLASC), which reports ethnicity of children in state 

education every year and hence allows analysis of residential and school segregation 

as well as change over time (Burgess et al, 2005; Johnston, Burgess et al, 2006).  
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This renaissance of geographical research has also reignited an old debate in 

geography, concerning the motivation of inferring process from pattern. Two general 

strands can be identified, defined by those who prefer to use relative measures of 

segregation and focus on investigating processes (Peach, 2006; and Simpson, 2007) 

and those who prefer to use absolute measures and focus on patterns (Johnston, 

Poulsen and Forrest, 2002a; 2002b; 2003; 2005; 2006; Poulsen, 2005). The latter 

group seems to have caught the attention of the media and policy makers, because 

they develop a classification of neighbourhoods according to certain interpretations 

of segregation, that once labelled as ‘ghettos’ or ‘enclaves’ easily catches the eye of 

the public. The declarations by Trevor Phillips quoted above were based on research 

presented at the Royal Geographical Society Annual Conference by Poulsen (2005), 

that depicted highly segregated areas as increasing. Johnston et al (2002a; 2002b; 

2003; 2005; 2006) and Poulsen et al (2005; 2002; 2001) have built classifications of 

neighbourhoods in different countries that include the terms ‘ghettos’ and ‘enclaves’. 

This typology is further subdivided into; ‘polarised’, ‘encapsulated’, ‘concentrated’, 

or ‘assimilated’ enclaves according to a set of absolute thresholds for different 

measures of segregation deemed to mark the transitions between different 

neighbourhood types in a pre-conceived model of segregation-multiculturalism-

assimilation. A similar approach is followed by Brimicombe (2007). Other authors 

do not agree with this interpretation of segregation because it does not take into 

account temporal change and demographic dynamics (Dorling, 2005b; Simpson, 

2004; 2005a; b; 2006; 2007), or because they prefer to use relative measures, such as 

the Index of Dissimilarity rather than absolute ones (Dorling and Rees, 2003; Peach, 

2006). 



 
Chapter 2 - Concepts and Measurements of Ethnicity 47 

 

This neighbourhood profiling exercise follows a tradition in the urban sociological 

literature that started with the Chicago school of urban ecology and Burgess and 

Park’s famous concentric rings model of the growth of Chicago (Park et al, 1925). 

They marked areas of the city as ‘Black belt’, ‘Chinatown’ ‘Deutschland’, ‘Ghetto’, 

‘Little Sicily’, or ‘Second Immigrant settlement’, depicted by adjectives such as 

‘Vice’, ‘Under-world’ or ‘Slum’ (see Figure 2.2). Since then, many authors have 

classified neighbourhoods and cities according to the ethnic composition of their 

populations, establishing links between these communities, their position in the 

socio-economic hierarchy of the city and the type of urban environment that they 

occupy. 

 

Figure 2.2: Burgess' Concentric Rings Model of the growth of Chicago 
Source: Park et al (1925) reproduced in Johnston et al (2000:904) 
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Philpott (1978) studied these classifications and concluded that there was a profound 

distinction between European immigrant ethnic enclaves, where only a minority of 

the total populations of these groups lived, and the true ghetto of African Americans, 

where most of the population of this group lived. These distinctions have been used 

by Peach (1996a; 1999a) and Poulsen (2001) to build their classifications of areas 

and levels of segregation, and continue to influence the literature of urban 

segregation. 

2.2.4. Meanings of segregation and the geography of ethnic inequalities 

It is interesting to note the persistence of the skin colour criterion when creating 

these segregation classifications of neighbourhood, where the White/Non-White 

divide seems to be a perennial axis of segregation, and is construed as ‘a problem’, 

both in the early twentieth century as well as today. It seems that the definition of the 

segregation/integration problem lies upon a racial dichotomy, which seems to depict 

Non-White concentrations as negative (Simpson, 2004), when the reality looks more 

like a complex spectrum of ‘skin tones’ and cultures. 

 

Even when several ethnic groups are analysed, most research on segregation has 

been reduced to just a few of the largest minorities in a country, which in the UK 

have typically been South Asian (Indian, Pakistani and Bangladeshi) (Peach, 1998) 

and Black minorities (Phillips, 1998), or increasingly a Muslim minority (Peach, 

2006; Peach and Owen, 2004). Little consideration is usually paid in segregation 

studies to what it means to be ‘White’ (Peach, 2000), who the ‘Other’ ethnic groups 

are (Connolly and Gardener, 2005), or whether it is meaningful to use overarching 

groups such as ‘Asians’ (Aspinall, 2003) or ‘Hispanics’ (Choi and Sakamoto, 2005). 

On the contrary, the question that seems to be missing from segregation studies is; 
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what are the key cultural differences or discrimination factors that justify the study of 

segregation as a vehicle for understanding the wider geography of ethnic 

inequalities? 

 

Therefore, although the meaning of segregation is hotly debated in geography 

(Johnston et al, 2005; Peach, 1996a; d; Simpson, 2006), the meaning and ontology of 

ethnicity nevertheless seems to go unnoticed in the discipline, whereas it constitutes 

one of the central issues in contemporary public health research (Aspinall, 2007; 

Bhopal, 2007). It is in this precise gap where this PhD intends to make a 

contribution, helping advance the debate about the ontology of ethnicity and how it 

may affect the results of geographical analysis at the neighbourhood level. 

2.3. Defining Ethnicity and Race 

Ethnicity and race are very controversial variables in scientific inquiry, and during 

over 150 years of speculation biologists, anthropologists and geneticists have 

demonstrated over and over again that these terms are both socially constructed and 

lack any biological reality (Cavalli-Sforza, 1997).  

2.3.1. Race 

The history of how, during the age of European colonialism, scientists identified 

races and ranked them according to their biological and social value, with the ‘White-

European race’ always ranking on top, is unfortunately well known (Gould, 1984). 

They justified such rankings based on claims of intelligence hierarchies using 

measurements of the size and shape of the head, and even the contents of the brain 

(Gould, 1984), with the underlying value that biology determined social position; in 

short, biological determinism (Bhopal, 1997). This type of research whereby human 
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populations were divided into sub-species, mainly on the basis of visible physical 

characteristics, was used to justify slavery, imperialism, anti-immigration policy, and 

the social status quo (Bhopal, 1997). It was dominant for most of the 19th century and 

beyond until its abandonment with the defeat of the Nazis at the end of the Second 

World War (Bhopal, 2004). Attached to the ideas of the Nazis were the Eugenic 

theories, which sought the improvement of the ‘human race’, in particular the ‘Aryan 

race’. A book titled ‘Outline of Human Genetics and Racial Hygiene’ was published 

in 1921 by the geneticist Fritz Lenz, a leading advocate of the Aryan ideology, and is 

claimed to have been very influential in Hitler’s (1925) own book ‘Mein Kampf’, 

where he set out his political beliefs about German racial superiority (Olson, 2002).  

 

Today race is defined in the Cambridge English Dictionary as ‘a group, especially of 

people, with particular similar physical characteristics, who are considered as 

belonging to the same type, or the fact of belonging to such a group’ (University of 

Cambridge, 2004). Therefore, it is a subjective ‘consideration of belonging’ that 

makes it a social construct. There is a general agreement, forged through the last four 

decades of population genetics research, that the concept of race is socially 

constructed, and cannot be explained by genetic differences between human groups 

(Cavalli-Sforza, 1997). But even though none of the numerous ‘scientific’ racial 

classifications has stood the test of time (Bhopal, 2004), current ‘race’ classifications 

remain influenced by ‘biologically rooted’ racial stereotypes (Graves, 2002), and the 

concept of ‘race’ is still strongly used in many countries, such as the U.S., when 

subdividing populations according to their ancestral origins. The persistence today in 

the U.S. of the concept of race, and hence the use of racial classifications in 

administrative records and academic studies, may be traced to the legacy of the 
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American Civil Rights Movement (1954-1968) and the legislation subsequently 

introduced to prevent racial discrimination. Although the contemporary concept of 

‘race’ has partially lost its roots in distinguishing differences in physical appearance 

alone (phenotypes), it is still loaded with ideological assumptions about innate, 

hereditary, ranked differences between groups of people (Chapman and Berggren, 

2005).  

 

However, the debate surrounding biological differences of human groups has not 

been closed, but actually moved on to a new stage in the era of individual human 

genetics. In a recent issue of Science magazine commemorating its 125th anniversary, 

two of the ‘125 big questions that face scientific inquiry over the next quarter-

century’ are very closely related to this debate: 

‘What are human races, and how did they develop? Anthropologists have long 

argued that race lacks biological reality. But our genetic makeup does vary 

with geographic origin and as such raises political and ethical as well as 

scientific questions’ 

(Science, 2005 : 100. Emphasis added)  

‘To What Extent Are Genetic Variation and Personal Health Linked?’ 

 (Couzin, 2005:85) 

There is a growing belief, in the health and anthropological literature, that the 

biological concept of race made a strong come back at the turn of the Millennium, 

hand in hand with the genetics revolution in science (Kahn, 2005). In this era of race 

genetics and genetic medicine (Nature Genetics, 2001), ‘Gene hunting [has become] 

the new research colonialism’ (Pearce et al, 2004: 1071), in which scientists try to 

identify key differences in gene frequencies between different ‘populations’. The key 
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to mapping DNA groups therefore lies in the definition of such ‘populations’, which 

are again socially constructed based on geographical, anthropological and historical 

assumptions (M'charek, 2005). 

 

In order to overcome the biological determinism implicit in the term ‘race’, and to 

include other non-biological factors that make us perceive human groups as different 

from each other, the concept of ‘race’ has been rapidly abandoned in favour of that 

of ‘ethnicity’. This trend has been observed in the last three decades of the 20th 

century, primarily outside the US (Oppenheimer, 2001), and is especially well 

documented in the health literature (Afshari and Bhopal, 2002).  However, this trend 

is not without problems, since it assumes that both terms can be used 

interchangeably, as if it both described the same quality – despite this assumption 

being disproved by many authors  (Bhopal, 2004).  

2.3.2. Ethnicity 

The word ethnicity derives from the Greek word ethnos, meaning a nation, and the 

term ethnic group is considered to have been introduced by Max Weber in 1922. He 

defined ethnic groups as ‘Those human groups that entertain a subjective belief in 

their common descent because of similarities of physical type or of customs or both, 

or because of memories of colonization and migration (...) it does not matter whether 

or not an objective blood relationship exists’ (Weber, 1922, cited in Guibernau et al, 

1997). Therefore, at the core of the concept of ethnicity is a subjective belief of 

common origins without the necessary existence of genetic linkages or physical 

similarity. This concept is thus closely linked to the question of an individual’s 

identity, which is defined by the characteristics of the ethnic group to which he or 

she recognises belonging. Amongst the main reasons for such perception of self-
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identity are certain shared characteristics, including physical appearance, but most 

importantly geographical and ancestral origins, cultural traditions, religion and 

language (Bhopal, 2004). Therefore, the most widely accepted notion of ethnicity is a 

multi-dimensional concept that encompasses different aspects of a group’s identity, 

in relation with kinship, religion, language, shared territory, nationality, and physical 

appearance (Bulmer, 1996). Understood as such, ethnicity is considered to differ 

from race, nationality, religion, and migrant status, sometimes in very subtle ways, 

although it is considered to include traits of these other concepts as well (Bhopal, 

2004). 

 

Therefore, at the core of the concept of ethnicity is the question of an individual’s 

identity, which is defined by the characteristics of the ethnic group that he or she 

considers herself to belong to, always understood in a contextual rather than in an 

essentialist way (Peach, 1996b: who himself might be considered Welsh in England, 

British in Germany, European in Thailand, and White in Africa). The social context 

in which the ethnic group is defined is therefore key to understanding its identity. 

This idea stems from one of the more interesting facts observed during the processes 

of ethnic group formation; not only a firm belief in group affinity is required for 

group identities to emerge,  but this is usually defined in opposition to other groups 

perceived as being culturally different and with whom contact is required (Eriksen, 

2002). In other words, if there is no contact with other groups that are perceived as 

‘culturally different’, the identity of an ethnic group to which one belongs does not 

emerge. For example, the concept of a Hispanic ethnic group only emerged in the US 

during the 1960s and 1970s, when large numbers of Spanish speaking immigrants 

from many countries and their descendents found a common identity through a 
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shared language and migration history in an English-speaking country. Not only did 

the ‘host culture’ consider them as one group, but Spanish-speakers from Latin 

America considered that this new identity would make them stand out in the US in a 

much stronger way than with their individual national identities (Skerry, 2000). The 

paradox is that no Spanish speaker outside the US would consider himself or herself 

as ‘Hispanic’, and the group’s homogeneity is difficult to sustain (Choi and 

Sakamoto, 2005). This important appreciation of contact between differently 

perceived groups explains why the debate on ethnic identity has grown since the end 

of the Cold War in developed countries (Castells, 1997). This recent trend is 

explained by the disappearance of the communist-capitalist bipolar world and its 

political antagonism that prevented mass population movements and the redrawing 

of national borders, the diminishing role of the nation-state, the growth of 

nationalisms, and a growing number of different human groups living amongst each 

other in large numbers (Castles and Miller, 2003). 

2.3.3. Criticisms 

Nonetheless, the characteristics that together define ethnicity are not fixed or easily 

measured, so ethnicity is considered in science as a subjective, contextual, transient 

and fluid concept (Senior and Bhopal, 1994), and probably the most controversial 

subject of study in social science (Nobles, 2000). The fluidity of the concept of 

ethnicity is at the root of the anti-essentialists’ critiques, who challenge the whole 

idea of trying to classify people into discrete and immutable categories, such as 

social classes but especially ethnic groups (Brubaker, 2004). These authors favour 

the concept of ‘identities’ which are subjective, fluid and always evolving, where 

people can assign themselves to several categories which, taken together, may better 

reflect the complexity of their lives (Pfeffer, 1998). Even the American Sociological 
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Association describes race (in the US research context) as ‘a social invention that 

changes as political, economic, and historical contexts change’ (American 

Sociological Association, 2002: 7). Although, as has been mentioned above, there is 

a consensus that the modern concept of race is not equivalent to ethnicity, the 

differences between the two are still widely ignored by researchers (Comstock et al, 

2004). This confusion makes the understanding of the separate processes of 

inequalities, arising from racial or ethnicity factors, even more difficult and 

controversial. 

 

Other authors such as David Harvey relate current issues of ethnicity and race 

difference with more traditional structural differences in class identity;  

‘Popular as well as elite class movements make themselves, though never 

under conditions of their own choosing. And those conditions are full of the 

complexities that arise out of race, gender, and ethnic distinctions that are 

closely interwoven with class identities.’ (Harvey, 2005: 202)  

This contention seems to suggest a situation of ‘old wine in new bottles’, in which 

new identities formed around minority groups (according to race, ethnicity, gender, 

sexuality, age, or disability) have replaced old divisions along social class lines in the 

explanation of socio-economic inequalities. 

 

Going back to the concept of ethnicity, because it is considered a core element of 

personal identity, the current preferred method for ascribing one’s ethnicity in 

research and government statistics is self-assessment. However, since the 

categorizations of ethnic groups are usually pre-classified and individual choice is 

constrained to choosing amongst them, the concepts of ethnic groups themselves are 
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also considered an externally imposed identity (Senior and Bhopal, 1994). Therefore, 

the definition and measurement aspects of identity are closely related and cannot be 

studied in isolation. The problem of ethnicity measurement is dealt with in the next 

section. Ethnicity, rather than the more biologically rooted concept of race 

commonly used in the US, will be used from now on since it is the concept most 

widely used to define the identity of population groups by ancestral and cultural 

origin. 

2.4. Measurements of Ethnicity 

Following from the complex definition of ethnicity presented in the previous section, 

and with the aim of studying ethnic inequalities at neighbourhood level, this section 

will review the issues around the difficult task of measuring ethnicity in order to 

classify people into ethnic groups. 

2.4.1. Measurement issues in official ethnicity classifications  

It should be obvious by now why the measurement of ethnicity is problematic; 

because ethnic identification is subjective, multi-faceted and changing in nature and 

because there is not a clear consensus on what constitutes an ‘ethnic group’ 

(Coleman and Salt, 1996; Office for National Statistics, 2003). However, as has been 

justified in the introduction of this chapter and further explained in Section 2.1, the 

measurement of ethnicity is today useful for a wide range of purposes in many 

countries, especially to reduce ethnic inequalities. This puts pressure upon 

government statisticians who try to cope with surges of interest in collective identity 

formation and with the struggle of States to monitor and sometimes try to shape these 

processes (Kertzer and Arel, 2002). Even when a consensus in social statistics is 

reached, with time the action of statisticians cannot be detached from their 
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consequences on the reality being measured, and as Barrier (1981) puts it; ‘The 

census imposes order of a statistical nature. In time the creation of a new ordering of 

society by the census will act to reshape that which the census sought to merely 

describe’ (Barrier, 1981: 75). 

 

The national Census of Population comprises the major classificatory effort of a 

society, and has been described as a sort of communal ‘family photograph’ that is 

only taken every ten years (Skerry, 2000). Therefore, the social processes and groups 

that appear in such photograph are of high importance, since census enumeration 

brings with it political and economic power (through representation and funding). As 

such, the classification of the population into the groups of common ancestry used in 

the census brings with it an official statistical recognition that transcends the census 

enumeration exercise and determines all sorts of possibilities in the arena of identity 

politics during decennial inter-censal periods and beyond (Skerry, 2000). As such, in 

most countries the de facto ‘gold standard’ for ethnicity measurement usually 

emanates from the categories created by the national population censuses (Kertzer 

and Arel, 2002). 

 

The UK Office for National Statistics (ONS) recognises that measurement of 

ethnicity should be done in a way that is sound, sensitive, relevant, useful, and 

consistent over some period of time (Office for National Statistics, 2003). However 

laudable these statisticians’ principles, Skerry (2000) depicts very well the tension in 

the US Census Bureau ‘between the extremely technical character of the census and 

the emotional, highly symbolic nature of race politics’ (Skerry, 2000, 4). These types 

of frictions were behind the reasons why, despite having been considered since 1971, 



 
Chapter 2 - Concepts and Measurements of Ethnicity 58 

an ethnicity question was not introduced in the UK until the 1991 Census (Coleman 

and Salt, 1996), why it is still not asked in many countries (for example in France or 

Spain), and why it has created so much controversy before and after each US census 

during the last decades (Nobles, 2000). An early quote from the introduction in the 

US of an official racial and ethnicity classification summarises well this point: 

‘These classifications [set in the Racial and Ethnic Standards for Federal 

Statistics and Administrative Reporting] should not be interpreted as being 

scientific or anthropological in nature’  (Office for Management and 

Budget, 1978: 19269) 

 

Even when national consensus is reached, a further problem arises when trying to 

perform international comparisons between national censuses, since the terms used to 

describe ethnic groups are developed within each country in response to their own 

particular historical processes of ethnogenesis (Aspinall, 2005). In the round of 

population censuses conducted at the turn of the Millennium, 141 countries collected 

information about the ancestries or identities of their populations, using questions on 

one or more of the following dimensions of identity; ethnicity, race, indigenous/tribal 

origin, and nationality (Morning, 2008). However, international comparisons are 

highly limited because of the different ontologies of ancestral origin and identity that 

underlie each of the classifications. Henceforth this PhD thesis will mainly focus on 

the UK context, unless otherwise specified. 

2.4.2. The UK Census ethnicity classification 

After two consecutive UK censuses collecting ethnicity information, the census 

ethnicity classification has become a ‘gold standard’, currently being used by most 

public bodies and many private institutions as a template for data collection. The set 
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of ethnic categories used in both the 1991 and 2001 Censuses, as well as that 

proposed for the next 2011 Census, are listed in Table 2.1. This shows an expansion 

in the number of categories and the specificity of the descriptions. 

 

The 2001 classification addressed some of the omissions in the 1991 question (mixed 

ethnicities, and breakdown of the white category) (Bulmer, 1996; Rankin and 

Bhopal, 1999), expanding the 8 original categories to 16. An additional and 

voluntary question on religion complemented the 2001 Census ethnicity 

classification. 

 

However, the 2001 classification has been criticised for continuing to stress the 

importance of skin colour across the whole classification (Aspinall, 2000), the 

problematic mix of ‘racial’, ‘ethnic’, and ‘geographical’ domains, the vague 

definitions of the smaller minority groups (buried under the ‘other’ categories) 

(Connolly and Gardener, 2005), the mismatch with self-descriptions of identity given 

by a high volume of write-in answers (that the ONS assigns back to one of the 16 

categories) and the move to pan-ethnic racial groups in some census outputs (White, 

Black, Asian, Other). Furthermore, the classification has been criticized for failing to 

reflect the internal heterogeneity of some groups such as ‘Black African’  

(Agyemang et al, 2005), ‘Asian’ (Aspinall, 2003), ‘White’ (Peach, 2000), or ‘Other’ 

(Connolly and Gardener, 2005). As a result, Aspinall (2000) states that the 2001 

classification falls short of what is needed in the ethnicity and health context, 

because it does not capture adequately the multi-dimensional character of ethnic 

identity. 
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1991 Census  2001 Census  2011 Census  
(proposed for England) 

      
0 White White A - White 
  A British  English 
1 Black - Caribbean B Irish  Other British 
  C Any other White   Irish 
2 Black - African    Any other white  
    
3 Black - Other Mixed B - Mixed 
  D White and Black Caribbean  White and Black 

Caribbean 
4 Indian E White and Black African  White and Black African 
  F White and Asian  White and Asian 
5 Pakistani G Any other mixed  Any other mixed 
      
6 Bangladeshi Asian or Asian British C – Asian 
  H Indian  Indian 
7 Chinese J Pakistani  Pakistani 
  K Bangladeshi  Bangladeshi 
8 Any other ethnic 

group 
L Any other Asian background  Chinese 

     Any other Asian 
background 

9 Not Given   
  Black or Black British D - Black or Black British  
  M Caribbean   Caribbean  
  N African  African 
  P Any other Black background  Any other Black 

background 
    
  Other Ethnic Groups E - Other ethnic group 
  R Chinese  Arab 
  S Any other ethnic group  Gypsy / Romany / Irish 

Traveller 
     Any other ethnic group 
  Z Not stated  Not stated 

 
Table 2.1: UK Census ethnicity classifications in 1991, 2001 and 2011 (proposed) in England 
Source: (Coleman and Salt, 1996; Office for National Statistics, 2000; 2006a) 
 

Despite the problems with the UK 2001 Census ethnicity classification it has been 

widely adopted as the standard to be used by public institutions when collecting 

ethnicity data in order to facilitate comparisons (Office for National Statistics, 2003), 

especially in the health arena (Department of Health, 2005a). When the 16 categories 

are not sufficient to reflect the diversity of the population being measured for a 
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particular purpose (for example to analyse equity of admissions to a Hospital in Inner 

London), the Department of Health condones breaking down any census category 

into sub-categories, but requires that these always ‘nest-together’ back into the 16 

census categories (i.e. no overarching group is permitted, such as ‘Arab’), thereby 

preserving levels at which data aggregations should always be available (NHS 

Information Authority, 2001). A similar arrangement is adopted by the Department 

of Education and Skills for reporting ethnicity in the Pupil Level Annual School 

Census (PLASC), resulting in a large number of 95 ethnic groups. A full list of the 

ethnic group categories contained in PLASC data is offered in Appendix 2. 

 

Plans for the UK 2011 Census are already well under way, and after a period of 

public consultation the Office for National Statistics is testing a full questionnaire for 

England and Wales in May 2007. It includes a total of 19 ethnicity categories, the 16 

from 2001 plus a new breakdown of White into English and Other British, and two 

new categories of Arab and ‘Gypsy / Romany / Irish Traveller’, as listed in Table 

2.1. Furthermore, the test questionnaire also includes two new multiple response 

questions on languages spoken and national identity (Office for National Statistics, 

2006a), and the question on religion and country of birth. This set of questions for 

2011 partially addresses some of the often-rehearsed issues with official ethnicity 

classifications, which are summarised in the next subsection. 

2.4.3. Issues with official ethnicity classifications 

Despite their widespread influence, there are three major problems with the way 

ethnicity is currently officially measured in most developed countries. First, ethnicity 

is usually measured as a single variable, that of an ‘ethnic group’ into which the 

individual self-assigns his or herself from a classification of a reduced number of 
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classes, with no leeway to represent any characteristics of the multi-faceted nature of 

self-identity described above. This problem has been partially addressed in the U.S. 

2000 Census in which respondents were able to choose from more than one 

‘race/ethnic group’, although it has created a new issue of comparability across time 

and between different combinations. 

 

A second problem is that pre-set ethnic classifications are used as opposed to just an 

open question, and the responses are then arranged according to the most meaningful 

common identities. This is of course justified with the need to facilitate the creation 

and comparison of the resulting statistics over time and between different 

information sources (Office for National Statistics, 2003). However, as mentioned 

before these categories have proved not to reflect the complex heterogeneity found 

within each group (Agyemang et al, 2005; Connolly and Gardener, 2005; Rankin and 

Bhopal, 1999). 

 

A third problem arises from the method of determining ethnicity by self-assessment, 

which comprises the current consensus across datasets and the literature (Bhopal, 

2004), as opposed to it being assigned by a third person or a computer according to 

some established measurable criteria. As a result of self-classification, the ethnicity 

of the same person can vary through time, since perceptions of individual and social 

identity changes over time (Aspinall, 2000) and are influenced by the type of 

ethnicity question asked (Arday et al, 2000), the definitions of categories offered 

(Olson, 2002), and the country and method of data collection. Although this is not 

the aspect of ethnicity classification that is the most highly debated, self-defined 

ethnicity has been deemed as ‘unhelpful’ (McAuley et al, 1996). 
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In addition to these three major issues of official ethnicity classifications, an 

additional recognised problem is the lack of routine collection of ethnicity data in 

most government or public service datasets.  

2.4.4. The limits to ethnicity data in the UK 

Despite the UK Census ethnicity classification having become the standard for 

ethnicity information collection, ethnic group is still not recorded in most public 

sector datasets, including population registers such as birth, death, electoral and 

health general practice registrations (London Health Observatory, 2003; Nanchahal 

et al, 2001). In the health area, even though such collection has been mandatory in 

hospital admissions statistics since 1995 (NHS Executive, 1994), data coverage is 

still a poor 74% of all episodes (London Health Observatory, 2005) and of low 

quality when compared with other research sources (Bhopal et al, 2004). 

 

Table 2.2 shows the results of a recent study by the Association of Public Health 

Observatories (2005) that analyses the percentage of records with incomplete 

ethnicity coding in eight separate datasets. The study concludes that a substantial 

proportion of events are not assigned an ethnic group because of organisational 

issues, rather than because of the relative size of ethnic minority groups at the local 

level (i.e. when ethnic minorities represent a small share of the population it might be 

argued that there is little incentive to record ethnicity for all of the population). 
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Dataset England London
 (percentage) 

Pupil Level Annual School census (PLASC), 2004    

  Primary schools 2.3 1.6

  Secondary schools 3.4 2.5

  Educational attainment/PLASC 2003 5.7 3.9

Children in need 2003 8 8

Enhanced TB Surveillance 2000-02 6.6 5

AIDS/HIV: SOPHID data 2003 3 4

Drug misuse: NDTMS data 15.6 9.5

Social Services Workforce 2004 8.9 7.1

Non-Medical Workforce 2004 11.7 16.8

Medical & Dental workforce 2004 2 1.9

Hospital Episode Statistics, 2003/04 36 34

 
Table 2.2: Percentage of records with incomplete ethnicity coding in different datasets 
PLASC= Pupil Level Annual School census; TB= Tuberculosis; AIDS= Acquired Immune Deficiency 
Syndrome; HIV= Human Immunodeficiency Virus; SOPHID= Survey of Prevalent HIV Infections 
Diagnosed; NDTMS= National Drug Treatment Monitoring System 
 Source: (Association of Public Health Observatories, 2005, 12) 
 

However, that these datasets include any ethnicity information at all makes each the 

exception rather than the norm (Bhopal et al, 2004; Harding et al, 1999). This lack of 

ethnicity information has been described as critical in frustrating attempts of social 

science and health researchers to measure ethnic inequalities, produce accurate 

population forecasts, assess public service use, and demonstrate compliance with 

policy and legislation. There has been a specific call for an effort to record ethnicity 

at least for all births and deaths (London Health Observatory, 2003), although this 

has been a classic unattended demand (Cook et al, 1972). The problem is such that in 

the latest Status Report on the Programme for Action in Health Inequalities the UK 

Department of Health states in several points that ethnicity, although a powerful 

factor of health inequalities, is not systematically covered in the report because of 

lack of data availability (Department of Health, 2005b). They add; ‘this is crucial 
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since targeting sectors of the population is a key characteristic of most effective 

[health] interventions’ (Department of Health, 2005b, 61). This gives a sense of the 

scale of the problem of lack of availability of ethnicity data.  

2.4.5. The limits to comparability between research studies 

Even when ethnicity information is collected, its consistency and comparability is 

usually very poor. As a consequence, research on ethnicity has been hampered by a 

lack of common methodologies in the collection and treatment of ethnicity 

information (Whitehead, 1992). Different studies define ethnicity in different ways, 

and create independent classifications and non-comparable methods of data 

collection (Choi and Sakamoto, 2005). Decisions taken in this respect are only based 

on the tactical considerations deemed most appropriate for each context, while 

making explicit neither the methodology nor the classification. The inevitable 

consequence is that results cannot be correctly interpreted and compared between 

studies.  

 

The problem of lack of comparability is especially critical in research about 

differential outcomes by ethnic group. Comstock et al (2004) summarise very well 

the extent of this problem in public health research. They conducted a comprehensive 

review of 1,198 articles published in the American Journal of Epidemiology and the 

American Journal of Public Health from 1996 to 1999, and found 219 different 

terms to describe just 8 core ‘ethnic groups’. Moreover, the authors denounce the 

frequent failure of researchers to explicitly define the ethnic categorizations and their 

context of use, to differentiate between race and ethnicity, to state the study methods 

used, and to significantly discuss the results. Bearing in mind that the large collection 

of articles were drawn from just two journals of the same scientific discipline in the 
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same country, where research on ethnic disparities has a longer tradition, this issue 

poses a crucial problem that requires  ‘continued professional commitment […] to 

ensure the scientific integrity of race and ethnicity as variables’ (Comstock et al, 

2004:611). This problem has been also identified by other authors, and defined as an 

ontological problem that constitutes ‘a problem with basics’ (Bhopal, 2004: 441).  

 

It is important to mention here the efforts made, especially in health research, to 

overcome the comparability issues in ethnicity studies. In the UK, this debate began 

following the 1991 Census inclusion of the ethnicity question and its mandatory 

recording in hospital admissions since 1994. Most of the main issues with the official 

ethnicity classifications described in this section have already been pointed out by 

Senior and Bhopal (1994), and have been highly debated  during the last decade, 

with important contributions by Peter Aspinall (2002; 2005; 2007), and Raj Bhopal 

(2004; 2007; 1998). These and other authors agree that researchers in health and 

ethnicity should use comparable ethnic classifications and make explicit the 

meanings of the ethnic group categories selected, the criteria use for such selection, 

their method of ascribing ethnicity to individuals, and give precise explanations of 

differential health outcomes by each of the ethnic groups studied. Unfortunately, this 

objective is still far from becoming a reality, and even more so outside ethnicity and 

health research. 

 

Taken together, the issues of lack of reflection of the multi-dimensional nature of 

ethnicity, the use of just a few pre-defined coarse categories, the variability of self-

assignment of ethnicity, the lack of routine collection of ethnicity information, and 

its low quality and comparability, present major impediments for researchers and 
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public policy decision makers. Their consequences are that researchers are prevented 

from measuring socioeconomic inequalities, equity of access to and uptake of public 

services by ethnic group, and demonstration of compliance with anti-discrimination 

and equal opportunities legislation, in an increasingly multicultural population.  

2.4.6. Alternative measurements 

As a consequence of the lack of ethnicity data availability, other proxies, such us 

country of birth, have been used to ascribe a person’s ethnicity when it is not known 

(Marmot et al, 1984; Wild and McKeigue, 1997). Despite its utility to classify 

migrant origins, with growing numbers of second generation migrants, the proportion 

of the ‘ethnic majority’ people born abroad, and migrants born in ‘intermediate’ 

countries (i.e. East African Indians that migrated to the UK), this method has become 

increasingly inappropriate (Harding et al, 1999). In the UK 2001 Census, only half of 

the ethnic minority population was recorded as born outside the UK. Furthermore, 

many health and demographic studies use country of birth from death certificates, 

which rely on an informant and may be less accurate than the census, when the 

person is still alive to provide the information (Gill et al, 2005). 

 

In some countries where the concept of ‘foreigners’ (as opposed to nationals or 

citizens) is still used as a proxy for ethnic minority, such as Germany, Spain or 

France, the main variable used to classify populations by origin is nationality, which 

is not recorded by the UK Census. This proxy is also problematic since it can change 

over time, some people retain more than one nationality, and usually second or third 

generation migrants acquire the host country’s nationality. 
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A third alternative method employed as a proxy for ethnicity is the analysis of name 

origins. Personal names are in principle good indicators of ethnicity, at least in 

relation to the immediately previous generations, that gave the forename to their 

descendants and probably exercised some preference in the surname. After migration 

to another country or region, names can probably be viewed as a kind of ‘self-

assignment’ of ethnicity that is likely to have strong links to the language, culture 

and geography of a person’s ancestry. Names have been used in particular to identify 

the main ethnic minority populations in some ‘destination countries’, with a 

relatively good degree of accuracy. This alternative method forms the core 

methodology of this PhD thesis, and as such will be further reviewed in detail in 

Chapter 3, and built upon through an innovative methodology in subsequent 

chapters. Therefore, repetition is avoided here. 

 

The different dimensions that define ethnicity are usually summarized as; kinship, 

religion, language, shared territory, nationality, and physical appearance (Bulmer, 

1996). In principle one could accurately classify a person into an ethnic group if 

these six dimensions were to be measured separately. This conclusion has been 

reached by several researchers in ethnic inequalities in health, that call investigators 

to use a range of variables instead of just one summary measure that is deemed to 

encapsulate language, religion, country of birth, family origins, and length of 

residence (Bhopal, 2004; Gerrish, 2000; McAuley et al, 1996). Physical appearance 

seems to be a much more sensitive aspect to ask about, and even more to classify.  

 

Even the trend in national censuses is now towards measuring these different 

dimensions separately, with a religion question having been introduced in the 2001 
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UK Census, in addition to ethnicity and country of birth questions: there are also 

plans for a question on language spoken and national identity in the 2011 Census, 

and these are currently being evaluated (Cope, 2005; Office for National Statistics, 

2006a). The collection of data on languages spoken in the UK Census will not only 

provide a richer insight into the culture of ethnic minorities in Britain, for example 

allowing public services to be better targeted to different languages, but it will also 

allow for a key aspect of the individual identity to be revealed. This is of course, 

assuming that the final census question makes it possible to differentiate between the 

primary mother tongues and other languages learnt outside the household. 

 

Therefore, and constituting one of the hypotheses that this PhD will try to test, it is 

believed that there is a strong relationship between the ethnic identities of human 

groups and their mother languages, and that an indication of these can be revealed by 

the analysis of name origins. If this hypothesis can be proved correct and a 

methodology developed for the purpose of studying ethnic inequalities at 

neighbourhood level, this research may be invaluable in overcoming the problems 

arising from ethnicity being measured as a single variable, the difficulties in 

classifying and generalising about ethnicity, the lack of data between censuses, and 

the coarse categorisations that census-type surveys adopt. 

 

2.5. Conclusion 

The evidence on ethnic inequalities in the developed world that has accumulated 

over the last two decades has allowed researchers to identify consistent and stark 

differences between ethnic groups along the most important dimensions of quality of 

life: health, education, employment, housing, general well-being and social support. 



 
Chapter 2 - Concepts and Measurements of Ethnicity 70 

A range of diverse and intertwined factors lie behind these inequalities, but they have 

at best only been described in terms of associations and not as cause and effect 

relationships. This is largely because of the lack of data that are fit for purpose. 

 

The subdivision of populations according to ethnicity and geography has allowed 

better understandings of contemporary society and neighbourhoods, as populations 

and cities are becoming increasingly multi-culturally diverse and globally connected. 

Today and in the immediate future, improved methods of understanding the 

processes of population composition and change by ethnic group and small area are 

desperately required to improve our knowledge of the whole population’s dynamics 

and the impact of welfare provision. 

 

The debate about residential segregation in Britain has gathered increased public 

interest in recent years along headlines of ‘ghettoisation’, ‘parallel lives’ and lack of 

community cohesion. New policies have been implemented within a re-launched 

‘new localism’ agenda implemented through area-based policies, but unfortunately 

such policy analysis has not been able to establish the baseline measurements 

necessary to define concepts such as ‘community cohesion’. There are different 

meanings and dimensions of segregation, and geographers have contributed to their 

measurement, adding spatial and temporal dimensions to the extensive sociological 

literature. However, research remains divided between those who favour the use of 

relative measures and emphasise the processes of change, and those who prefer 

absolute measures and focus on patterns of segregation. Much more complex 

combinations of ethno-religious groups and spatio-temporal scales are now 
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facilitated by more detailed classifications (e.g. 2001 UK Census) and alternative 

datasets to the census (e.g. Pupil Level Annual School Census - PLASC).  

 

As pioneering methods to study ethnicity begin to mature, and society experiences 

very rapid changes, the problems of what ethnicity means and how should it be 

measured, assume ever greater importance. Ethnicity is a multi-dimensional concept 

that encompasses various aspects of individual identity expressed in reference to a 

group’s origin. As such, it is socially constructed, contextual, and fluid, and thus very 

problematic to define and even more to measure. 

 

Measurements of ethnicity have become increasingly standardised through the wide 

adoption of official ethnicity classifications throughout public datasets. However, 

such classifications have a series of problems: they fail to reflect the multi-

dimensional nature of ethnicity; they are restricted to just a few pre-defined coarse 

categories; and they are subject to the variability of self-assignment of ethnicity. 

Moreover, the lack of routine collection of ethnicity information, and its low quality 

and comparability across datasets and periods of time, present major shortcomings 

for researchers and public policy decision makers. As a result, they have turned to 

alternative methods to classify population by ethnicity such as analysing country of 

birth, nationality and name origins as proxies for ethnicity, whenever existing 

ethnicity information is clearly not fit for purpose. 

 

Through all of the above conclusions, it is clear that new methods are required in the 

classification of populations according to ethnicity in increasingly diverse societies 

and neighbourhoods. Such improved methods are fundamental in informing public 
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policy in the reduction of ethnic inequalities, such as in planning health services at 

local level, providing more robust evidence in the residential segregation debate, and 

producing accurate population statistics by ethnic group and small area.  

 

It is in this methodological research area where this PhD intends to make a 

contribution. As such, it is located at the intersection between the debate on the 

ontologies of ethnicity and the development of alternative measurements in the 

classification of populations and neighbourhoods along new and complex 

multidimensional aspects of identity. One specific alternative measurement will be 

fully developed and will form the core of the PhD: name origin analysis will be used 

to ascribe populations to ethnic cultural and linguistic groups. The next chapter 

reviews the literature in this area with a view of identifying the research gaps and 

potential contributions of improved methods to ascribe ethnicity for the purposes that 

have been described here. 
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Chapter 3. Names and Ethnicity 

A core argument of this thesis is that the analysis of personal names can be used to 

ascribe populations to a robust and defensible taxonomy of ethnic, cultural and 

linguistic groups, and that name taxonomies are valuable when ethnicity 

classifications are not available at the desired quality, geographical scale or nominal 

groupings. The previous chapter has justified the need to classify populations by 

ethnicity, and considered the problems with its measurement primarily from a 

population geography perspective. This chapter will review in depth the 

multidisciplinary literature of name-based ethnicity classifications with a view to 

summarising the different approaches that have been independently developed, to 

identifying the research gaps, and to setting out a research agenda for potential 

contributions using the improved methods, that will be described and developed in 

the rest of the thesis. 

 

Name origin analysis techniques have been independently developed in several 

disparate research fields, such as human genetics, anthropology, public 

health/epidemiology, geography, history, demography, linguistics, computer science, 

economics and marketing. The common motivation in applying name origin analysis 

in these various disciplines is typically to reveal some hidden process in the 

population, with names analysis serving as a method for applied research. Therefore, 

although the objectives of such research might be very different, all of these 

disciplines have developed a set of relatively similar ‘tools of the trade’ as it were. 

Since the object of this thesis is to create an innovative method in population 

geography, the methods upon which it is based will be garnered from all the other 
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disciplines that have used names for the purpose of classifying populations by 

ethnicity. This chapter brings together the different approaches to developing these 

methods and the evidence to justify them for this application. 

 

Hereinafter two types of personal names will be distinguished as follows; surnames 

(also known as family names or last names), which normally correspond to the 

components of a person’s name inherited from his or her family, and forenames (also 

known as first names, given names, or Christian names), which refer to the proper 

name given to a person usually at birth. Where the term ‘names’ is used on its own it 

will usually refers to both forenames and surnames indistinctively.  

 

The chapter is organised in five sections. The first section reviews the human 

genetics literature on name analysis and weaves together the evidence of how 

languages, names, genes and human origins all tell a similar story about our ancestral 

origin and historic migration flows. The second section summarises the history of 

name-based ethnicity analysis in the twentieth century, reviewing its use to study 

historic domestic and international migration patterns as well as contemporary ethnic 

inequalities. The third and fourth sections carry out a systematic review of the 

literature with a focus on identifying and analysing the most representative research 

studies in which a new name-based ethnicity classification has been developed and 

evaluated. The third section describes how 13 studies were selected and analysed, 

comparing how these built their own name-based ethnicity classifications and how 

they applied them to target populations. The fourth section evaluates these 13 

studies, and summarises the limitations and advantages of the overall methodology. 

Finally, the fifth section explores alternative approaches to building universal name-
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based ethnicity classifications from computational, marketing and onomastic 

perspectives, and suggests how they offer promising methodological developments 

that complement the rest of the literature. 

 

3.1. Languages, Names, Genes and Human Origins 

 ‘It may be worthwhile to illustrate this view of classification, by taking the case 

of languages. If we possessed a perfect pedigree of mankind, a genealogical 

arrangement of the races of man would afford the best classification of the 

various languages now spoken throughout the world; and if all extinct 

languages, and all intermediate and slowly changing dialects, were to be 

included, such an arrangement would be the only possible one’  (Darwin, 1859, 

422).  

3.1.1. Human and language evolution  

The quote above is from Charles Darwin’s ‘On the Origin of the Species’ (1859) 

which included a parallelism between the evolution of languages and of humans, 

suggesting that the genealogical arrangement of the ‘races of man’ necessarily had to 

follow a taxonomy of languages. With subsequent advances in modern genetic 

techniques, population geneticists have recently demonstrated the existence of such a 

relationship in human evolution, mapping human origins, gene evolution, and 

geographical spread and intermixing across the planet and comparing it with the 

evolution of language and the archaeological record (Cavalli-Sforza and Cavalli-

Sforza, 1995; Piazza et al, 1987). 
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One problem that population geneticists face when analysing the genetic linkages 

between human groups, is how precisely to define those groups in the first place in 

order to analyse genetic similarities within the group and differences between 

groups. Luigi Luca Cavalli-Sforza, at Stanford University is considered the ‘father of 

population genetics’, and has carried out very successful research in this area for 

over 40 years, summarized in his masterpiece ‘The History and Geography of 

Human Genes’ (Cavalli-Sforza et al, 1994). He has primarily used a mother language 

criterion to define such human groups, avoiding cases where there is known to have 

been a historic language replacement (e.g. Spanish imposed to Native Americans, or 

Finno-Urgic language to Hungarians: Cavalli-Sforza, 1997). His justification for so 

doing is that the classification of languages, as opposed to the classification of places 

or regions, or of anthropological human groups, is well standardised and commonly 

accepted (Cavalli-Sforza and Cavalli-Sforza, 1995). Moreover, the 6,000 or so 

languages currently in existence in the world may be arranged into a hierarchical 

taxonomy that relates each to one of six major families – that is, according to the 

most widely accepted language taxonomy of Greenberg and Ruhlen (Ruhlen, 1987). 

Population geneticists are able to compare such language trees with the genetic 

linkages between populations (i.e. an evolutionary tree), to corroborate the 

geographical spread or explain any differences with historical data (Cavalli-Sforza et 

al, 1988), following the path suggested by Darwin in 1859. 

 

In the age of DNA (deoxyribonucleic acid) research, population geneticists have 

demonstrated that there is a continuum of human genes across continents that have 

migrated and intermixed over the millennia. However, the relative frequencies of 

certain genetic markers do vary between regions and human groups, sometimes in 
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very marked ways, but the way in which differences between these groups are 

defined in the first place, lies to a certain extent ‘in the eye of the beholder’ (Cavalli-

Sforza, 1997). The Human Genome Diversity Project, which intends to trace human 

genes across the globe back to ancient migrations, has also defined human groups, 

called ‘populations’, by the common mother language of the subjects to be studied 

(M'charek, 2005).  

 

There is a fascinating genetic history of human evolution that links the places and 

regions our ancestors inhabited, their migration flows initially out of Africa and then 

back and forward between continents and regions, with the way cultural heritage, 

including language, has developed, evolved and been transmitted from one place to 

another and from one generation to the next. There is a vast literature on population 

genetics and molecular anthropology that studies these relationships, having made 

great advances in disentangling ancestral human movements, cultural exchange and 

distant historical settlement and migrations. Various researchers have used 

languages, as well as surnames, to study populations genetic structure, endogamy, 

and the cultural evolution of populations.  

 

This PhD will use some of the evidence collected in the analysis of surnames in the 

human genetics field, although it will only focus on name origin analysis to classify 

‘contemporary populations’ according to recent migrations (their own or that of their 

ancestors to three or four generations back), and not ancient ones. For a full review 

of the literature on names and genetics see Lasker (1985) and Colantonio et al 

(2003). 
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3.1.2. Isonymy studies in genetics 

The ‘discovery’ of a statistical relationship between family names distribution and 

population structure, is attributed to George Darwin (1875), son of Charles Darwin. 

George’s parents were first cousins (relatively common amongst the more affluent 

classes of 19th century Victorian Britain) and he was very interested in 

demonstrating that there was not a statistical association between first cousin 

marriages and a higher frequency of mental disorder or congenital disease. To do so 

he computed the actual frequencies of same surname marriages compared with the 

true rate of first cousin marriages, and then extrapolated it to the general population 

in an area comparing variations with that of the rates of disorders or diseases. His 

most interesting discovery is in the association he established between same surname 

marriages with the probability of endogamy. 

 

Several researchers throughout the 20th century have studied the relationship between 

surnames and population structure (Crow and Mange, 1965; Yasuda et al, 1974), 

building models that were then compared with the genetic evidence. The base 

premise in these studies is the fact that ‘[s]urnames are not distributed 

homogeneously in different places and among different social groups. The general 

purpose of surname studies in human biology is to measure the different probabilities 

of finding the same surnames in different times, places, groups and, especially, in 

marital partners’ (Lasker, 1985: 5). This probability is defined as the degree of 

‘isonymy’, and can be calculated between marital partners or between places or 

population groups. Marital partners’ isonymy is not relevant to this PhD, so the 

meaning given here to isonymy will be that between places or regions and between 

human groups.  
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In human genetics, differences in isonymy across space or groups are compared with 

differences in gene frequencies to isolate common boundaries, or barriers to human 

exchange that create ‘geographic patterns of genetic, morphologic, and linguistic 

variation’ (Manni et al, 2004: 173). The underlying hypothesis of isonymy studies is 

that areas or groups that have freely exchanged individuals between them, since the 

time when surnames were introduced, will tend to have similar proportions of 

common surnames, while areas or populations that remain isolated from each other 

will have very distinct surname frequency distributions. This is well illustrated by 

Figure 3.1, which shows two maps of France comparing surname clusters derived 

from isonymy between departments (left) with dialect clusters derived from 

dialectometric distances between departments (Scapoli et al, 2005). The similarities 

between surname and linguistic regions are striking, given the two independent data 

sources. 

 

 

Figure 3.1: Maps of  France's surname (left) and dialect (right) clusters 
The map on the left shows surname clusters derived from isonymy (Lasker distance) between 
departments, and the map of the right represents dialect clusters derived from dialectometric distances 
between departments. Source: Reproduced from Scapoli et al (2005: 83-84) 
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The methods used to study isonymy in entire populations were initially very limited 

and human biology studies of surnames were traditionally reduced to the name 

structure of isolated villages, valleys, or ethno-religious groups (e.g. the Mormons: 

Jorde and Morgan, 1987), for which researchers were able manually to process 

individual Parish or marriage records (Lasker, 1985). However, in the early 1990s 

large population registers, such as Electoral Registers or telephone directories, 

started to become available in digital form, and this triggered an explosion of interest 

in analysing the name structure of whole populations. A team based at the University 

of Ferrara in Italy has been a pioneer in these studies, and has published their 

findings for the whole population of the following countries: Austria (Barrai et al, 

2000); Switzerland (Barrai et al, 1996; Rodriguez-Larralde, Scapoli et al, 1998); 

Germany (Rodriguez-Larralde, Barrai et al, 1998) ; Italy (Manni and Barrai, 2001); 

Belgium (Barrai et al, 2003); the Netherlands (Manni et al, 2005); Spain (Rodriguez-

Larralde et al, 2003); Venezuela (Rodriguez-Larralde et al, 2000) ; Argentina 

(Dipierri et al, 2005); the US (Barrai et al, 2001); and France (Scapoli et al, 2005). 

The same research group has produced an extensive comparative review of the 

surname distribution of the total population of eight countries in Western Europe 

(Scapoli et al, 2007) in which they conclude that the present surname structure of 

Western Europe is intimately linked to local languages.  

 

This PhD author obtained the inspiration to carry out the research presented in this 

thesis from the link between surname structure, geography and languages established 

by these authors. Furthermore, at the core of this research are parallels between how 

these authors had tackled the problem of finding regional and structural patterns in 

the name distributions of entire populations using the entries in telephone directories 
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and Electoral Registers, and the task of classifying ethnic groups in multicultural 

societies using the same materials and principles. 

3.1.3. DNA, surnames and population structure 

Another stream of research in names and genetics has analysed the relationship 

between individual surnames and Y-chromosomes, since both are patrilinearly 

inherited (Jobling, 2001; McEvoy and Bradley, 2006). This has allowed researchers 

to group surnames according to regional frequencies and to study the genetic 

linkages between the contemporary bearers of such surnames. An example of this is 

shown in Figure 3.2, which plots the network of genes (haplotypes) shared between 

individuals with four related surnames. If the necessary caveats of name change, 

migration, and large differences in name frequency are taken into account, surnames 

are deemed to be good markers for establishing individual ancestry and for intra-

group relationship histories (King et al, 2006).  

 

Figure 3.2: Median-joining network of Y-chromosomes in the surname McGuinness and four 
putatively related surnames  
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(Reproduced from McEvoy and Bradley, 2006: 218) The network illustrates Y-chromosome 
phylogeny, where each circle represents a distinct haplotype, with circle area proportional to 
frequency, and line length between haplotypes indicates their mutational divergence. Different colours 
represent different surnames with proportional ‘pie-slices’ for haplotypes shared across surnames. 
McGuinness Y-chromosomes are shown in grey (n=99), McCartan in blue (n=13), McCreesh in red 
(n=7), Neeson in yellow (n=8) and Guinness in green (n=3).  
 

As a consequence of this type of relationship, a new stream of research has been 

rapidly developing in what has been termed the ‘era of genetic genealogy’  (Shriver 

and Kittles, 2004). People who do not know who their immediate ancestors were can 

search DNA databanks for their most similar genetic markers, and obtain the 

common surnames with those markers (Sorenson Molecular Genealogy Foundation, 

2007). Recent research in this area has also suggested that the police might be able to 

identify a suspect’s surname by his/her DNA traces (Jha, 2006). 

 

More relevant to this PhD are applications of DNA and surnames at the group level, 

rather than at that of the individual. It is relevant to mention here the case of genetic 

medicine, a thriving and polemic field of research (BBC Radio 4, 2005) which 

investigates the associations between genetics and disease by isolating the complex 

multigene reactions to different environments. What these studies require, in order to 

isolate individual genes, are individuals that can be easily ascribed to similar groups 

according to a genetic tree. As with many other classic studies in biology and 

geography, researchers have turned to study islands, and not surprisingly one of the 

favourite places in the world for studies of genetic medicine is Iceland, a classic field 

study area for human and physical geographers (Haggett, 2001). The company 

deCODE Genetics has built a genealogical database of all Icelanders tracing each 

individual’s ancestors forename and surname and place of birth back to 1650 through 

very detailed parish records and censuses, with the aim of isolating genetically based 

diseases in present day DNA through geo-historical stratification of Icelandic 
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population structure and their gene pool (Wade, 2005). Their results indicate that 

sampling strategies to isolate human groups with common origins in medical 

research need to take account of substructure even in a relatively homogenous 

genetic isolate. This fact is usually ignored in studies that sample their cases and 

controls from groups that share the same nationality or self-reported ethnic 

background, with the implicit assumption that no substructure exists within such 

groups (Helgason et al, 2004). This information, ultimately based on genealogical 

relationships, has allowed deCODE Genetics to test certain drugs to specific genes 

and produced findings that are just starting to unwind the braids binding DNA, drugs 

and disease (Couzin, 2005). However, this type of research is polemic because of its 

obvious parallels with the methods employed in 19th and early 20th century racial 

medicine studies to isolate discrete ‘races’ with a view of justifying biological 

determinism. 

3.1.4. Wrapping up the evidence 

Taken together, it is apparent that: first, surnames correlate well with Y-

chromosomes at the regional and national levels; second, several genetic markers 

also significantly correlate with languages at a continental and global scale; third, 

there are distinct geographical patterns in surname structure identified through 

isonymy; and fourth, there is an obvious link between names and the languages from 

which they originate. All of this indicates that personal name analysis can offer a 

reliable method to ascribe individuals to common human groups, where such groups 

are defined as having a common linguistic, geographical and ethnic origin.  
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3.2. The History of Name-based Ethnicity Analysis 

3.2.1. Names and domestic migration 

Most of the studies of surnames distributions across space and time pertain to finding 

patterns, structures and changes across the regions of a single country, as opposed to 

international comparisons. When studying population migration, therefore most 

surname analysis studies have studied the nature of internal or domestic migration 

within a specific country, and usually over the last 200 years for which reliable 

written records and statistics exist. The number of studies of this kind is not very 

large, but they have been attempted from very different research fields, such as 

demography, geography, genetics, history, and linguistics. 

 

In order to illustrate their value to this thesis a few examples of this type of study will 

be mentioned here, taken from France, Belgium, Britain and Spain. From a human 

genetic perspective, Degioanni and Darlu (2001) propose the application of a 

Bayesian method to estimate the probability of geographical origin of migrants in an 

area using surname frequencies measured in two time periods. By using birth 

registers in France in 1891-1915 and 1916-1940, they demonstrate the validity of 

using surnames to estimate the probable region of origin of migrants between these 

two time periods. Poulain et al (2000), used a similar approach in a historic 

demography study that proposed the use of patronyms (surnames derived from the 

father’s forename, such as Johnson) to measure historic migration flows of Flemish 

people to Wallonia (Belgium) and Northern France in the early 20th century. This 

method removed the requirement for two datasets from subsequent periods of time, 

since frequency of Flemish patronyms, such as those starting with ‘Van’ or ‘Ver’, 
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will clearly indicate the major destination areas of Flemish migrants. From a 

geographical and geodemographic perspective, Longley et al (2007) present a set of 

applications of the classification of surnames in groups of regional origin (e.g. 

Cornish surnames) to study historic migrations and social mobility at very fine 

geographical scales. In a similar guise Aranda Aznar (1998) studies migration 

patterns in the Basque Country in Spain and of people taking Basque surnames to the 

rest of Spain, and the degree of intermarriage between Basque and non-Basque, 

using very detailed population registers.  

 

What differentiates these three last studies (Aranda Aznar, 1998; Longley et al, 2007; 

Poulain et al, 2000) from the rest of studies mentioned so far in this chapter, is that 

rather than studying individual surnames (which is what, for example, isonymy 

does), they group them according to their language or culture of origin (Flemish, 

Cornish, Basque). This is an important step for reasons that will become clear later in 

this chapter, and the use of classifications of surnames into groups according to 

origin to analyse migration patterns will be further developed in this thesis. 

 

In these and similar studies, surnames are proven to offer very revealing insights not 

only into population or regional structures over the last centuries, but also into the 

migration flows of specific human groups.  However, whereas a substantial 

proportion of the surname analysis literature has focussed on domestic migration (an 

exception being Chiarelli, 1992 who used surnames to study the regional origins of 

Italians who emigrated to Toronto, Canada), this PhD is concerned with the use of 

names as a proxy for ethnicity, hence its primary focus on international migrants and 

their descendants. 
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3.2.2. Names and international migration 

The use of people’s name origins to subdivide contemporary populations into ethnic 

groups has been applied in population studies, especially in the US where attempts 

have been made  to segment the ‘melting pot’ into its alleged original constituents, at 

least since the beginning of the twentieth century. Rossiter’s (1909) ‘A Century of 

Population Growth, from the First Census of the United States to the Twelfth, 1790-

1900’ was the first in a series of studies concerned with calculating immigration 

quotas, which were set according to the estimated ethnic composition of the ‘original 

national stock’ of the population of the US in the 1790 Census.  

 

In the 1920’s the US Federal Government attempted to control the size and character 

of the streams of immigration, and passed the Immigration Act in 1924 which 

established that from 1927 ‘the flow of immigrants should be related to the ‘national 

origins’ of the existing population’ (Akenson, 1984: 103). In this context ‘national 

origins’ was the term used then for contemporary’s ethnicity (McDonald and 

McDonald, 1980). Therefore the government needed to establish a baseline 

determining what was the original stock of white population in the 18th century when 

the country was created (US Senate, 1928), and the only method available was to 

examine the origins of surnames in the individual responses of the first US Census of 

Population, that of 1790 (Purvis, 1984).  

 

A thorough study was commissioned to the American Council of Learned Societies, 

and led by Howard Barker, who was a leading linguistic scholar specialising in 

names and very keen on using name frequency statistics (Barker, 1926; 1928). The 

results were published in 1932 as the ‘Report of Committee on Linguistic and 
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National Stocks in the Population of the United States’ (American Council of 

Learned Societies, 1932). Therefore, ‘fundamental to a determination of who would 

be let into the United States from the late 1920s (…) until 1965 (…) was an analysis 

of the ethnic character of the American population in 1790’ (Akenson, 1984: 103), 

more precisely through the surnames origin of the 1790 population. 

 

 Estimate by 

National Origin  
(1790 Census) 

Rossiter 
(1909)

%
ACLS (1932) 

% 

English and Welsh 82.1 60.1 
Scottish 7.0 8.1 
Irish 1.9 9.5 
German 5.6 8.6 
Dutch 2.5 3.1 
French 0.6 2.3 
Swedish n.a. 0.7 
Spanish n.a. 0.8 
All others/ unassigned 0.3 6.8 

Total 100 100 
 
Table 3.1: Estimates of national origin breakdown of the US white population in 1790, using 
surnames 
Source: Rossiter’s (1909) reported in Akenson (1984: 103) and the American Council of Learned 
Societies (ACLS) (1932: 124)  
 

The results of both the Rossiter (1909) and the American Council of Learned 

Societies (1932) studies are summarised in Table 3.1. However, both studies have 

been heavily criticized for being inherently flawed and full of errors, with biases that 

served well the purpose of limiting ‘undesired’ migration (Akenson, 1984; 

McDonald and McDonald, 1980; Petersen, 2001; Purvis, 1984). Amongst the major 

critiques, are the lack of expertise in name transformations (Anglicisation, 

transliteration, transcription, etc) that the clerks who undertook the work had, the use 

of non-random sampling, and the attempts to make international comparisons of 
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name frequencies using different time periods and sources of various qualities 

(Akenson, 1984; McDonald and McDonald, 1980).  

 

Despite the problems in their methods, both studies set an important precedent 

justifying their approach on ‘[t]he fundamental assumption (…) that in the absence 

of direct data on ethnicity, surnames provided the most accurate of all possible 

informational surrogates’ (Akenson, 1984: 103). This is actually the same 

assumption upon which this PhD thesis is based, and the literature since these studies 

in the early twentieth century will be analysed in the following sections. 

3.2.3. Names and ethnicity 

Following the Second World War, there were large population movements in 

Western Europe and the US, political boundaries were re-drawn, new nationality and 

citizenship rules were applied to migrants, and ethnic minorities and refugees started 

to be recognised. In this context the concept of ethnicity started to take root 

displacing that of national origins or country of birth, as an expedient to describe first 

and second generation migrants. 

 

At that time names origin analysis began to be used to ascribe ethnicity, and to be 

validated in the fields of demography and public health, especially with respect to 

US Hispanic populations (US Bureau of the Census, 1953; Winnie, 1960). The key 

factor for the early success of surname and ethnicity analysis in the US was that the 

Census Bureau was involved in the development and validation of these techniques, 

lending robust official support to the use of these methods and their derived 

statistical results.  
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A key figure was Robert Buechley, an epidemiologist who conducted studies on the 

health of Mexican migrants using Spanish surnames in the 1950’s and 60’s 

(Buechley et al, 1957). He used counts of Spanish surnames by area as provided by 

the US Census Bureau in 1950 and 1960 for the five southern border states, and used 

these figures as denominators to calculate the incidence and prevalence rates of 

certain conditions of Mexicans in California relative to the general population 

(Buechley, 1961). He quickly realised that ‘the difficulties arise in explicit listing and 

definition of ‘Spanish Surname’’ (Buechley, 1961: 88), and devoted several studies 

to overcoming them (Buechley, 1961; 1967; 1976).  

 

This work was paralleled by statisticians in the US Census Bureau, who for over 

forty years kept improving the official Spanish Surname list (US Bureau of the 

Census, 1953), using census country of birth information, geographical distribution 

analysis and text string mining (Fernandez, 1975; Word et al, 1978). This work 

resulted in the widely used Word-Passel Spanish surname list in the 1980’s (Passel 

and Word, 1980; US Bureau of the Census, 1980) and the Word-Perkins surname list 

in the 1990’s (Perkins, 1993; Word and Perkins, 1996) which have both been 

distributed as official statistics by the US Census Bureau (US Census Bureau, 2006), 

and used by many researchers in population and public health studies. Similar 

attempts were made by the US Census Bureau to produce a list of Asian surnames 

(Passel et al, 1982) which was used as a sampling frame for the Survey of Minority-

Owned Business Enterprises (SMOBE) using both forenames and surnames 

(Abrahamse et al, 1994). However, no Asian surnames list has been published or 

documented in the same way as the Spanish surnames list (Lauderdale and 

Kestenbaum, 2000). 
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Many other researchers have developed and applied these techniques, and interest 

has grown very rapidly through the past 30 years, following increasing relevance of 

research in international migration, improvements in computer processing power, 

and (most importantly) with the wider availability of digital name datasets covering 

entire populations at the individual person level. Given the level of interest in name-

based techniques, and the known limitations to their accuracy (Choi et al, 1993), a 

few studies have concentrated upon measuring the accuracy of different name-based 

ethnicity classification methods, a stream of research that was opened by Nicoll et al 

(1986) and which has been sustained over time (Nanchahal et al, 2001). There is a 

vast range of studies that developed, evaluated or applied these techniques, and 

therefore the purpose of the next two sections is to carry out a thorough review of the 

literature of those studies that developed their own surname classification methods, 

comparing them in a systematic way. 

 

3.3. Name-based Ethnicity Analysis: Building the Classifications 

A literature search and systematic review has been carried out to identify the most 

representative research papers that specifically deal with the problem of classifying 

lists of names of individuals into ethnic groups through the development of new 

methods, and that provide a full evaluation of their accuracy. The objective of this 

and the following section is to bring together isolated efforts in the literature and 

provide a coherent comparison, a common methodology and terminology in order to 

identify new research gaps to be tackled in the rest of the thesis. Through this review, 
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the methodological commonalities, achievements and shortcomings of the selected 

studies have been extracted.  

 

This section presents a summary of this review, the main characteristics of the 

studies evaluated, and how they built the name to ethnicity classification. The 

following section will then separately analyse their evaluation and the results of the 

comparison. 

3.3.1. Literature review 

The literature search was carried out using three databases of scholarly publications; 

PubMed Medline, the ISI Web of Knowledge (CrossSearch), and Google Scholar. 

The keywords and search string used to search these databases were:  

(1) [ethnic* OR race OR racial OR minorit* OR migrant* OR immigrant*]; 

in the title, keywords or abstract of the publication (abstract not used for 

Google Scholar) 

AND  

(2) [name* OR surname* OR forename*]; only in the title or keywords of the 

publication (due to the common use of the word ‘name’ in abstracts). 

This search retrieved 186 unique publications at the time (January 2006). 

 

The inclusion criteria were to select any study; (a) that developed or used a name-

based ethnicity classification method to subdivide contemporary populations at the 

individual level, and (b) that evaluated its accuracy in a systematic way. On the other 

hand, the exclusion criteria were; (a) studies that neither offered a new method of 

name-based ethnicity classification, nor evaluated a previously developed method 

that had not been tested before; (b) studies that did not validate the classification 
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using an alternative ethnicity information source (i.e. non-name-based); (c) studies 

that provided insufficient detail of their research process and results as to support this 

systematic review, for which at least the method’s sensitivity and specificity needed 

to be explicit, and (d) studies that were not published in English. 

 

The 186 publications retrieved by the search were filtered through a three-tier 

process. First, potentially relevant publications were evaluated against the inclusion 

criteria, using solely the information offered in their title, with non-relevant 

publications being rejected, most of them using surnames in the genetic domain to 

study ancient migrations or isonomy. In cases of doubt, the publication was left 

included in this phase. This reduced the number of publications to 129. Second, these 

were then evaluated against the exclusion criteria using the information provided in 

their abstract, which reduced the number of selected publications to 37. Finally, the 

full text of these 37 publications was analysed against the exclusion criteria, ending 

up with 11 publications that met all the selection criteria. These 11 publications were 

analysed in-depth, and all of their references were retrieved and also checked against 

the inclusion and exclusion criteria. This last step contributed two additional 

publications that were not found by the original search, one of them because the 

word ‘name’ or its equivalents did not appear either in the title or in the keywords 

(Sheth et al, 1999), and the second because it is a government report only published 

on-line (Word and Perkins, 1996). 
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Name to Ethnicity 
Assignment 

Paper Reference 
Geographical area of 

study  
Country and (Region) 

Ethnic Minorities (E.M.) 
classified Method 

---   
Automatic 
Manual 

Name 
components 

--- 
Surname 

Forename 
Middle name 

Choi, et al (1993) Canada   
(Ontario) 

Chinese A S 

Coldman, Braun 
& Gallagher 
(1988) 

Canada 
 (British Columbia) 

Chinese A F, S, M 

Lauderdale & 
Kestenbaum 
(2000) 

US  
(National) 

Chinese, Japanese, 
Filipino, Korean, Indian, 
& Vietnamese 

A S 

Razum, Zeeb, & 
Akgun (2001) 

Germany  (Rhineland-
Palatinate & Saarland) 

Turkish A F, S 

Word & Perkins 
(1996) / Stewart et 
al (1999) 

US  
(National) 

Hispanic A S 

Harding, Dews, & 
Simpson (1999) 

UK 
(Bradford & Coventry) 

South Asian + Hindu, 
Muslim & Sikh 

A F, S 

Cummins, et al 
(1999) 

UK  
(Thames, Trent, 
W.Midlands & 
Yorkshire) 

South Asian A F, S 

Nanchahal, et al 
(2001) 

UK  
(London, W.Midlands, 
Glasgow) 

South Asian A F, S, M 

Sheth, et al (1997) Canada  
(National) 

South Asian and Chinese A/M S 

Martineau & 
White (1998) 

UK  
(Newcastle; 4 General 
Practices) 

Bangladeshi, Pakistani, 
Indian Muslims, Non-
South Asian Muslims, 
Sikh, Hindu, White, Other 

M F, S and 
Gender 

Bouwhuis &. Moll 
(2003) 

Netherlands  
(Rotterdam; 1 Hospital) 

Turkish, Moroccan, 
Surinamese 

M F, S 

Nicoll, Bassett, & 
Ulijaszek (1986) 

UK  
(Selected areas) 

South Asian M F, S 

Harland, White & 
Bhopal (1997) 

UK  
(Newcastle) 

Chinese M F, S 

  
Table 3.2: Summary of the general characteristics of the 13 studies reviewed 
Method of name to ethnicity assignment: ‘A’ = Automatic, ‘M’ = Manual. Name components used in 
the classification; ‘S’= Surname, ‘F’= Forename, ‘M’= Middle Name. 
 

The final selection of publications consisted of 13 papers representing five countries 

(Canada, Germany, Netherlands, UK, and the US), and most of them from the field 
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of public health. Table 3.2 shows the key characteristics of these studies, whose 

findings will be analysed in the following sections. The subsets of ethnic minorities 

studied represent the biggest and most recently arrived groups in each country: (a) 

South Asians (Indian, Pakistanis, Bangladeshis, Sri Lankans); (b) Chinese; (c) other 

East and South-east Asians (Vietnamese, Japanese, Korean, and Filipino); (d) 

Hispanics; (e) Turks; and (f) Moroccans (see third column in Table 3.2 for the 

correspondence between these groups and each study). 

 

Amongst the publications excluded in the last phase of the selection strategy (n=26) 

there were some other interesting research papers in which an independent name-

based approach was developed, although not explicitly explained or independently 

evaluated. However, some of these studies are worth mentioning, since they typically 

used telephone directories to select names from a particular ethnic group as a 

sampling strategy for their surveys, showing the usefulness of the name-based 

approach to classify Vietnamese (Hinton et al, 1998; Rahman et al, 2005), Korean 

(Hofstetter et al, 2004), Cambodian (Tu et al, 2002), Chinese (Hage et al, 1990; Lai, 

2004), South Asian (Chaudhry et al, 2003), Japanese (Kitano et al, 1988), Irish 

(Abbotts et al, 1999), Jewish (Himmelfarb et al, 1983) Iranian (Yavari et al, 2005) 

and Lebanese (Rissel et al, 1999) names, in the US, Canada, UK and Australia. 

3.3.2. Structure of the selected studies 

The 13 selected papers aimed to demonstrate a satisfactory accuracy rate in 

separating individuals of either one, or just a few, ethnic minority groups from the 

rest of the resident population in some developed countries. None of them tried to 

classify the whole population into all of the potential ethnic groups in a country, 

something that remains a research gap. The studies differ substantially in the sizes of 
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the target populations to be classified (from 137 to 1.9 million people), the numbers 

of unique forenames or surnames in the reference list used in the search (from fewer 

than 100 to 27,000 names), and hence the method to allocate them (manual vs. 

automatic classification). However, each of the studies includes a number of 

common methodological processes and research components: firstly a name 

reference list is independently built or sourced from another study or from ‘an 

expert’; secondly a separate target population is manually or automatically classified 

into ethnic groups; and thirdly the accuracy of the method is evaluated against a 

previously known ‘gold standard’ for ethnicity in the target population. These 

common structures and processes are summarised as a flow chart in    Figure 3.3. 

Reference
Population

Name 
Reference

List

Target
Population

Name Expert 
knowledge

Name-
based 

ethnicity

Ref. List 
creation

Independent 
ethnicity 

(gold std.)

Automatic

Manual

Evaluation
(Sensitivity, Specificity, 

PPV, NPV)

 

   Figure 3.3: Common structures and processes of name classifications 
 

3.3.3. Source data, reference and target populations 

The primary source material for each of the studies are datasets of individuals’ 

personal data that are usually sourced from population administrative files, health 
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registers or surveys. Target population is the term given to the list of individuals to 

be classified into ethnic groups using their names, either manually or automatically. 

Automatic classification methods require an independent reference list of surnames 

or forenames with their pre-determined ethnic origin, which is used to perform the 

computerised search and allocation of ethnicity for each individual in the target 

population (in the manual methods the equivalent to the reference list is the expert’s 

knowledge). This distinction between reference and target lists of names is key to 

the understanding of the methodologies analysed here. 

3.3.4. Building reference lists 

The first step thus involves building reference lists or borrowing them from previous 

studies.  These would typically include several hundreds or thousands of surnames, 

each one of them with a pre-assigned ethnic group (e.g. Nguyen - Vietnamese; 

Chang - Chinese). The characteristics of how the reference lists in the eight studies 

that used automatic classification were developed are further detailed in Table 3.3. 

Two of these studies used a software application previously developed to identify 

South Asian names in the UK, Nam Pehchan (Cummins et al, 1999; Harding et al, 

1999), which contains 2,995 unique South Asian surnames, and was derived from the 

Linguistic Minorities Project (1985). The study of Nanchahal et al (2001) developed 

similar software called SANGRA, but did not offer sufficient information about how 

they built their reference list of 9,422 South Asian names. In the remaining five 

studies, purpose-built reference lists were constructed, containing between 427 and 

25,276 unique surnames. These reference lists were typically built from a source 

independent of the target population, a second population generally described as the 

reference population (see the left half of Table 3.3). Exceptions to this are Choi et al 
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(1993) and Coldman et al (1988), with important consequences for their results, as 

will be discussed below.  

Reference Population Reference List  Paper 
Reference 

Total  
Population 

E.M. pop. 
identified

% 
E.M. Source Dates Production 

Method 

Nr. Unique 
E.M. 

Surnames 

E.M. 
people / 

Surname 
Choi, et al 
(1993) 

270,139 1,899 0.7% Mortality 
database 

1982-
1989 

Country of 
Birth  + 
Manual 
cleansing 

427 4.4  

Coldman, 
Braun & 
Gallagher 
(1988) 

203,354 5,430 2.7% Death 
registrations 

1950-
1964 

Ethnicity 
(family) 

544 16 
(Chinese) 

1.7  
(other) 

Lauderdale & 
Kestenbaum 
(2000) 

1,765,422 1,609,679 91.2% Social 
Security Card 
Applications 
(MBR) 

Born 
<1941 

Country of 
Birth 

27,000 59.6 (avg.)

Razum, Zeeb, 
& Akgun (2001)

4,000,000 108,500 2.7% Rhineland-
Palatinate 
Population 
Register 

c.2000 Nationality + 
Manual 
cleansing 

12,188 12.8 (in 
Germany) 
/ 3.1 (in 
Turkey) 

Sheth, et al 
(1997) 

2,782,000 
(estimated) 

N/K N/K Canadian 
Mortality 
Data Base 
(CMBD) 

1979-
1993 

Country of 
Birth 
(deceased & 
parents) 

4,271 N/K 

Word & 
Perkins (1996) / 
Stewart et al 
(1999) 

5,609,592 
people; 

1,868,781 
househlds. 

597,533 10.7% 1990 US 
Census Post-
enumeration 
Sample 

US 
Census 

Day 
1990 

Ethnicity 
(self-
assigned) 

25,276 23.6 (avg.)

Harding, Dews, 
& Simpson 
(1999) 

List of 2,995 surnames in Nam 
Pehchan program 

Nam Pehchan 
program 

1981-
1998 

Experts’ 
knowledge  

2,995 N/A 

Cummins, et al 
(1999) 

List of 2,995 surnames in Nam 
Pehchan program 

Nam Pehchan 
program 

1981-
1998 

Experts’ 
knowledge 

2,995 N/A 

Nanchahal, et al 
(2001) 

List of 9,422 surnames in 
SANGRA program 

Surveys and 
Hospital 
Records 

1995-
1999 

From list of 
voluntary 
organisations 
and ONS 

9,422 N/A 

 
 

Table 3.3: Characteristics of reference populations and reference lists in the automatic methods 
E.M. = Ethnic Minority, N/K= Not Known, N/A= Not Available.  
Reference Population: ‘Total population’ is the input dataset used, of which ‘E.M. population 
identified’ is the ethnic minority population identified within the ‘total population’. Reference List: 
‘Production Method’ is the technique or piece of ethnicity information in the reference population 
used to produce the reference list; ‘Nr. Unique E.M. Surnames’ is the final number of ethnic minority 
surnames present in the reference list. ‘E.M. People / Surname’ is the average number of people of the 
ethnic minority sharing the same surname (column 3 / column 8). 
 

Despite big differences in the sizes of the reference populations, the methods 

employed to derive the name reference lists were broadly similar. Generally, they all 

used some type of ‘ethnic origin information’ in the reference population, such as 
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self-reported ethnicity, country of birth, or nationality, to classify individuals into 

ethnic groups, and they then aggregated them by surname and produced a frequency 

count for each surname and ethnic group combination (and the same for forenames 

when available). Each surname or forename was then assigned to the ethnic group 

with the highest frequency, using a series of rules or thresholds in some cases 

(Lauderdale and Kestenbaum, 2000; Word and Perkins, 1996), producing the final 

reference list. 

 

In general, there are four factors affecting the accuracy and coverage of the reference 

list, as will be explained in the accuracy evaluation section: the independence 

between reference and target populations, the size of the reference population, its 

spatio-temporal coverage (the countries and regions where it was sourced and the 

time period covered), and the method used to ascribe ethnicity (using proxies vs. 

self-reported ethnicity). Therefore, the desired qualities of the reference list are to be 

large enough to maximise coverage in the target population, and accurate enough as 

to minimise misclassifications (Coldman et al, 1988; Nanchahal et al, 2001). These 

two qualities are usually mutually exclusive, and hence there is a trade-off to be 

made between extra coverage of a larger number of names and marginal extra 

accuracy of the classification, as each extra name tends to be rarer than the last. The 

final decision concerning the size of the reference list will depend on each specific 

type of application. A similar issue arises regarding the nominal resolution of the 

ethnic group categorisations used: the finer the groups that are defined (e.g. Hindu, 

Bengali, Tamil, Urdu, Gujarati, Punjabi, vs. ‘Indian’ or ‘South Asian’), the less 

accurate the name classification becomes, and vice versa.  
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3.3.5. Minimum size of the reference list 

For calculating the ideal size of the reference population from which a robust 

reference list will be produced, the best attempt has been proposed by Cook et al 

(1972: 40) using the following formula: 

y
xn

log
)1log( −

≥  

where n is the required minimum size of the reference population, x is the desired 

level of confidence for the allocation of an individual to his or her appropriate ethnic 

group, and y is the required level of confidence that a particular surname will 

perform as desired. For example, for x= 80% and y=95% the minimum size of the 

reference population required will be n ≥ 13.4, meaning that for every surname to be 

classified a list of at least 13.4 individuals with that surname and their known 

ethnicity is required within the reference population.  

 

The minimum value of n (in the above example equal to 13.4) refers to the unlikely 

situation that all individuals with the same surname in the reference population had 

the same ethnicity, and hence the size would have to be extended in proportion to the 

‘noise’ found in each specific reference population. Cook et al (1972) proposed 

multiplying n by a -‘rule of thumb’- factor of 4 to obtain a realistic reference 

population size. The actual reference population sizes used in the five studies 

evaluated here, that built their own reference lists, have been compared against these 

two ‘Cook et al criteria’: first criterion; n=13.4 people per surname, and expanded 

criterion; n=13.4 x 4= 53.6 people per surname and the results are presented in Table 

3.4. It is surprising to find that only two of the five studies’ reference populations 

satisfy the first ‘Cook first criterion’ (Lauderdale and Kestenbaum, 2000; Word and 
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Perkins, 1996), with the remaining three below 75% of the required size. Moreover, 

only one satisfies the ‘Cook expanded criterion’ (Lauderdale and Kestenbaum, 

2000), with the rest below 45% of the required minimum reference population 

size.

 

Reference 
List 

Ethnic Minority Reference Population Size (Nr. People) 
 

Minimum Ref. Pop. Size Required 

Paper Reference Nr. Unique 
Ethnic 

Minority 
Surnames 

Actual Ref. 
Pop. Size 

Used 
  Cook first 

criterion 
(13.4) 

Actual 
size as % 
of Cook 

first 
criterion 

  

Cook 
expanded 
criterion 
(13.4x4) 

Actual 
size as % 
of Cook 

expanded
criterion 

 a b c 
= a * 13.4 b/c  d 

=a * 13.4 * 4 b/d

Choi, et al (1993) 427 1,899   5,722 33%   22,887 8%

Coldman, Braun 
& Gallagher 
(1988) 

544 5,430   7,290 74%   29,158 19%

Lauderdale & 
Kestenbaum 
(2000) 

27,000 1,609,679   361,800 445%   1,447,200 111%

Razum, Zeeb, & 
Akgun (2001) 12,188 108,500   163,319 66%   653,277 17%

Word & Perkins 
(1996) / Stewart 
et al (1999) 

25,276 597,533   338,698 176%   1,354,794 44%

  

Table 3.4: Comparison of actual reference population sizes used in five studies with the 
minimum reference population size criterion established by Cook et al (1972) 
The five studies included are the only ones that developed their own name reference lists from 
reference populations. Actual reference population size used in each study is compared against two 
Cook et al criteria: first criterion; n=13.4 people per surname, and expanded criterion; n=13.4 x 4= 
53.6 people per surname. Only two studies satisfy the first ‘Cook first criterion’ and only one satisfies 
the ‘Cook expanded criterion’ (highlighted in bold). 
  

3.3.6. Classification of target populations 

The second step in the 13 studies analysed consisted of classifying the target 

population into ethnic groups, using either a manual (i.e. human expert) or an 
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automatic method (through computer algorithms). The characteristics of the target 

populations selected in each of the 13 studies are summarised in Table 3.5 (‘Target 

Population’ section). 

 

Manual methods have the advantage of not requiring a name reference list and also 

of being amenable to a rich number of ‘fuzzy rules’ that the experts performing the 

classification can apply in order to decide the group into which an individual should 

be assigned. However, the manual method has a series of major limitations, the main 

one being that it is cumbersome and time-consuming (Bouwhuis and Moll, 2003) and 

this seriously constrains the size of the target population to be coded. In order to 

increment the number of individuals to be coded, additional experts need to be 

recruited, which also causes inconsistency in the subjective decisions taken by 

different human subjects. Additionally, most of the manual classification studies 

focus on a two-group classification problem, which only requires a simple binary 

decision on whether the individual belongs to a specific ethnic minority group or not, 

but when more groups are introduced, several experts from different cultural 

backgrounds are required, and hence the number of misclassifications quickly rises, 

especially when names overlap across similar ethnic groups (Martineau and White, 

1998). For these reasons, no further specific attention will be given here to those 

studies using manual methods (last four papers in Table 3.2). 

 

On the other hand, automatic methods to classify target populations rely on the 

availability of an appropriate name reference list. The studies analysed here applied 

an automated algorithm to search for the name of each individual in the target 

population against the reference list, and then assign the pre-coded ethnic group for 



 
Cha
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that name to the individual. One of the main differences between the studies is 

whether they used only one name component of the individual (surname) or more 

(forename and surname, or even middle name) (see last column of  Table 3.2 for 

details). Nam Pehchan includes a set of rules that use name stems if the name has no 

match in the reference list (Cummins et al, 1999), but this is avoided by SANGRA 

since it is deemed to produce an unacceptable number of false positives (Nanchahal 

et al, 2001).  

 

A second difference between studies is whether one or several ethnic groups are to 

be classified. It must be emphasised that almost all of the studies that used automatic 

classification were designed to classify individuals using a binary taxonomy in mind, 

that seeks to identify members of a particular minority group or macro group (i.e. 

South Asians) from a general population. The exception is Lauderdale and 

Kestenbaum (2000) who classify six substantially different Asian ethnic groups 

(Chinese, Vietnamese, Japanese, Korean, Asian Indian and Filipinos). A third 

difference, is the use of certain name scores or thresholds related to the strength of 

the association between each name and the ethnic group of origin (e.g. heavily 

Spanish, moderate Spanish, etc.), to the final user’s advantage when fine-tuning the 

classification to their specific target population and purpose. Only two studies use 

such thresholds (Lauderdale and Kestenbaum, 2000; Word and Perkins, 1996). 

 

 



 C
hapter 3 –N

am
es and E

thnicity  
 

 
 

 
 

        103 

 

Table 3.5: Summary of target population characteristics and results of the evaluation of classification accuracy in the 13 papers reviewed 

Target Population Method Evaluation 
(single value or a range) 

Paper Reference Division of 
Reference & 

Target 
Population 

Total 
Population

 Nr. E.M. 
classified

% 
E.M. 

Source Dates Ethnicity Gold 
Standard  

Sensitivity
 

Specificity PPV NPV 

Choi, et al (1993) Random split 270,138 1,910 0.7% Same as Reference 1982-
1989 

Country of Birth 0.73 N/K 0.81 -  
0.84 

N/K 

Coldman, Braun & 
Gallagher (1988) 

Chronological 
split sample  

155,629 3,205 2.1% Same as Reference 1965-
1973 

Ethnicity 0.89-0.97 1.00 N/K N/K 

Lauderdale & 
Kestenbaum (2000) 

Different 
sources 

1,900,000 N/K N/K 1990 US Census Sample 1990 Ethnicity 0.55 - 0.70 N/K 0.76 - 
0.83 

N/K 

Razum, Zeeb, & 
Akgun (2001) 

Different  
sources 

NK 192 N/K Saarland Population 
Register 

c.2000 Nationality 0.40 - 0.84 0.99 0.14 - 
0.98 

1.00 

Word & Perkins 
(1996) / Stewart et 
al (1999) 

Different 
research 
papers 

7,232 780 10.8% Greater Bay Area Cancer 
Register 

1990 Ethnicity (self-
reported) 

0.61 0.98 0.70 0.96 

Sheth, et al (1997) Different 
sources 

200 100 50% Telephone survey 1990s Ethnicity (self-
reported) 

0.96 0.95 N/K N/K 

Harding, Dews, & 
Simpson (1999) 

Different 
sources 

275,353 6,585 2.4% a) Resident Survey, b) 
School Survey, c) Death 
Register, d) Census 
Longitudinal Study 

1981-
1998 

Ethnicity  
[self-rep. (a)&(d) 
parents(b)], 
c)Visual inspection

0.94 0.99 0.96 N/K 

Cummins, et al 
(1999) 

Different 
sources 

356,555 3,845 1.1% Thames, Trent, W. 
Midlands & Yorkshire 
Cancer registers 

1990-
1992 

Visual inspection + 
computerised 
dictionary 

0.90 N/K 0.63 N/K 

Nanchahal, et al 
(2001) 

Different 
sources 

130,993 15,390 11.7% London and Midlands 
Hospital Admissions 

1995-
1999 

Ethnicity (self-
reported) 

0.89 - 0.96 0.94 - 0.98 0.80 - 
0.89 

0.98 - 
0.99 

Martineau & White 
(1998) 

N/A 137 107 78.1% Family Health Service 
Authority Register 
(FHSA) 

Born  
Oct 93 - 
Sep 94 

Ethnicity (3rd  
party reported) 

0.87- 0.98 
(outlier 0.5)

0.60 - 0.97 N/K N/K 

Bouwhuis &. Moll 
(2003) 

N/A 335 99 29.6% Hospital Internal Survey 
to parents of children 

Sep - 
Dec 99 

Parents' country of 
birth (COB) 

0.40 - 0.95 0.80 - 0.99 0.61 - 
0.86 

N/K 

Nicoll, Bassett, & 
Ulijaszek (1986) 

N/A 846 348 41.1% (a)Child Register, 
(b)School Survey  
(c)Stillbirth Certificate 

N/K  Ethnicity [(3rd pty. 
(a),parents (b)]; 
Mother COB (c) 

0.67-1.00 0.92 - 1.00 0.72-
1.00 

0.96-
1.00 

Harland, White & 
Bhopal (1997) 

N/A 129,914 1,702 1.3% Family Health Service 
Authority Register 
(FHSA) 

1991 Individual contact N/K 1.00 0.95 N/K 

 

‘E.M.’ = Ethnic Minorities; COB = Country of Birth; ‘N/K’ = Not Known; ‘PPV’= Positive Predictive Value; ‘NPV’= Negative Predictive Value.  
A range of values is included here when a study reports several values of results for different subpopulations (e.g. by gender or ethnic group), or under 
different evaluation criteria 
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3.4. Name-based Ethnicity Analysis: Evaluating the Classifications  

All of the 13 studies measure the accuracy of the name-based classification, by 

comparing it to a ‘gold standard’ for the ethnicity of the individuals in the target 

population, which had to be previously known through an independent source (the 

exception is Word and Perkins, 1996, but another study that evaluates their method is 

used here: Stewart et al 1999). This ‘gold standard’ is either the person’s ethnicity 

(self-reported, by a next-of-kin, or by a third party), or a proxy for it such as country 

of birth or nationality (of the person or of his/her parents), all of which are assumed 

to represent the individual’s ‘true ethnicity’. However, such assumption should be 

interpreted with caution, as an objective entity such as the ‘true ethnicity’ does not 

exist, and hence ‘there can be no such thing as a completely correct method of 

classifying individuals into ethnic groups’ (Cook et al, 1972 : 39), but to a certain 

extent a more appropriate one. 

3.4.1. Accuracy evaluation 

The studies reviewed here self-evaluated their accuracy using the epidemiological 

measures of sensitivity, specificity, positive predictive value (PPV), and negative 

predicted value (NPV). Sensitivity, is the proportion of members of ‘Ethnic Group X’ 

(gold standard) who were correctly classified as such; specificity, the proportion of 

members of ‘Other Ethnic Groups’(gold standard) who were correctly classified as 

such; Positive Predictive Value (PPV), is the proportion of persons classified as 

‘Ethnic Group X’ (predicted) who were actually from ‘Ethnic Group X’; Negative 

Predictive Value (NPV), is the proportion of persons classified as ‘Other Ethnic 

Groups’ (predicted) who were actually from ‘Other Ethnic Groups’. These concepts 

are better explained in Table 3.6 in a more visual fashion using a ‘confusion matrix’ 
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(Longley et al, 2005). Any classification’s objective is to maximize the number of 

correct classifications across the main diagonal (‘a’ and ‘d’)  and to minimise the 

number of misclassifications (‘b’ and ‘c’).  

 Gold Standard (‘true’ ethnicity) 

Classification 
(predicted ethnicity) 

Ethnic Group X Other Ethnic Groups 

Ethnic Group X a b 

Other Ethnic groups c d 

 
 Measures of classification accuracy: 

  Sensitivity = a / (a + c)  

  Specificity = d / (b + d)  

  Positive Predictive Value (PPV) = a / (a + b) 

  Negative Predictive Value (NPV) = d/ (c + d) 

 
Table 3.6: Explanation of measures of classification accuracy: Sensitivity, Specificity, PPV and 

NPV 
 

The results for these four variables in the 13 studies are given in Table 3.5 (‘Method 

Evaluation’ section) and a range of values is offered where the study evaluated 

different populations, or made separate evaluations for subpopulations (e.g. by 

gender). If certain isolated outliers are excluded, the sensitivity varies between 0.67 

and 0.95, the specificity between 0.8 and 1, the PPV between 0.7 and 0.96, and the 

NPV between 0.96 and 1 (only reported in four studies).  

 

It is striking to notice that there are no substantial differences between the accuracy 

of the manual (bottom four in Table 3.5) and automatic classification methods, 

removing the theoretical advantage, in accuracy terms, of the former over the latter. 

In general the studies tend to reach a high specificity and NPV (near to 1), to the 

detriment of a slightly lower sensitivity and PPV (e.g. see Razum et al, 2001), a fact 

linked to the aforementioned trade-off between the extra coverage of a classification 
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and its marginal extra accuracy. The differences between the statistics of the 13 

studies do not seem to imply substantial differences in the quality of the methods 

adopted. Rather, they reflect variations between the degree of distinctiveness of each 

subpopulation’s names in the particular context of the general population studied, as 

well as constraints imposed by the characteristics of the datasets used.  

 

All authors read into these results a validation of the name-based classification 

method to ascribe ethnicity, when other data sources are not available, giving further 

details of their advantages and the limitations found which will be discussed in the 

next two sections. However, one could argue the factor of publication bias, by which 

studies that did not achieve satisfactory results may have not been published. 

3.4.2. Limitations found in the methodology  

The 13 studies list a series of issues and limitations, many of them common between 

them, which are summarised below complementing them with other studies (Jobling, 

2001; Senior and Bhopal, 1994) under the following eight major themes: 

(a) Temporal differences in name distribution between the reference and target 

populations: different migration waves and changing geographical distributions 

through time, introduces misclassification and reduced coverage in 

classifications. For example, Lauderdale and Kestenbaum (2000) used a 

population reference list of people born in Asia before 1941, which might not 

represent the current distribution of common Asian names in the US across all 

age groups, and a similar problem is present in Coldman et al (1988) with 

Chinese names in Canada. 
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(b) Regional differences in the frequency distribution of names, whether these are 

between the origin and the host country, within either of them, or between 

different host countries. Such differences arise from geo-historical processes 

and migration flows. If this heterogeneity in name distribution is ignored when 

sampling the reference population, the subsequent name reference lists will be 

biased and names from a single region might not represent well the names 

present in other regions. Some examples found are: different Pakistani names 

present in the north of England, compared with the South East (Cummins et al, 

1999); different Turkish names between a region in Germany and Istanbul, 

Turkey (2001); or Chinese migrant names that seem to be common in Australia 

but not so in Canada (Choi et al, 1993). 

 

(c) Differences in the average frequency of surnames (i.e. the average ratio of 

people per surname). The following differences in the average frequency of 

surnames have been observed; between the ethnic minority (typically with 

higher average surname frequencies) and the host population (with a lower 

average), and between the ethnic minority in the host country (with a higher 

average) and in the origin country (with a lower average). These differences are 

depicted in the last column of Table 3.3: ‘E.M. People / Surname’. This 

asymmetry is caused by a combination of the phenomenon of ‘family 

autocorrelation’ in the data (Lasker, 1997), and the uneven initial distribution of 

migrant names arising because of selective migration (a few initial names that 

can be rare in the origin country but grow rapidly because of intra-group 

marriages in the host country, or transcription and transliteration issues). This 

invites the false assumption that a common name in the host country might also 
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be common in the origin country, which together with item (b) above makes a 

strong case for sourcing name reference lists from the entire population of both 

the origin and host countries. 

 

(d) Name normalisation issues; data entry misspellings, forename and surname 

inversions and name corruptions, all need to be normalised both in the reference 

and target populations in order to cleanse the datasets. However, such 

normalisation entails making the difficult decision whether to keep the ones that 

might be accepted as official names, even for several generations (Lasker, 

1985). This could arise through different transcriptions of a name into a 

different language’s alphabet and/or pronunciation (called transliteration); and 

creates name duplications and long lists of name variants that present a barrier 

to the accuracy of the reference lists. This problem is linked to other processes 

of name change, the ‘acculturation of a name’ in a host country, and the degree 

of inter-marriages between groups, which are all well documented for ‘older’ 

immigrant groups in the US such as Norwegians (Kimmerle, 1942), Finnish 

(Kolehmainen, 1939), Italian (Fucilla, 1943) or Polish (Lyra, 1966). In a non-

research context this lack of name normalisation has serious consequences for 

tracing individuals worldwide in an era of ‘global terrorism’ (The Economist, 

2007b). 

 

(e) Names usually only reflect patrilineal heritage; and thus the methodology 

assumes a high degree of group endogamy, and is incapable of identifying 

mixed ethnicity or women’s ethnicity in mixed marriages (when maiden names 

are unavailable) (Harland et al, 1997). If exogamy increases, as is anticipated in 
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the near future, the method's discriminatory ability may decline. This has 

already happened in highly mixed populations such as the US or Argentina, 

where more than three generations have passed since immigration of the 

traditional European migrant groups. In such instances,  populations are 

assimilated into the general population, and the male surnames that are passed 

on do not normally reflect a perceived ethnic identity (Petersen, 2001), although 

distinct (fore)naming practices nevertheless do survive after generations 

(Tucker, 2003). 

 

(f) There are different histories of name adoption, naming conventions and 

surname change that vary from country to country (e.g. Caribbeans have British 

surnames, Spanish women do not change surname at marriage), leading to the 

overlapping of certain names between ethnic groups (Martineau and White, 

1998) which is difficult to accommodate in a single classification. 

 

All of the above issues result in differences in the strength of association of a 

particular name with an ethnic group, measured by the proportion of people with a 

name ascribed to a certain ethnic group that actually consider themselves to be from 

that ethnic group. The effects of issues (a) (b) and (c) can be mitigated by sourcing 

broad reference populations from both the origin and host country and from a wide 

enough time period, using the Cook et al (1972) formula mentioned above to 

calculate its minimum size. This would ensure that the name reference list would 

reflect all of the potential names and true frequencies from the regions of the origin 

and host countries in more equal probability than has been the case with the methods 

analysed here. Moreover, when aggregating the reference population by household 
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surname, the issue of family autocorrelation can be avoided (Word and Perkins, 

1996). The effects of issues (d) to (h) can be ameliorated by the use of ‘name scores’ 

to measure the strength of the association between a name and its ethnic group 

(Lauderdale and Kestenbaum, 2000), and using such scores in different ways 

alongside other contextual information (e.g. such as address of residence, which can 

be linked to census information on the distribution of ethnic groups in an area). 

3.4.3. Advantages of the methodology   

According to the authors of the studies analysed here, name-based ethnicity 

classification methods present a valid alternative technique for ascribing individuals 

to ethnic groups through their name origins, where self-identification is not available. 

The criterion for such validity is that the methodology makes it possible to subdivide 

populations to a sufficient degree of accuracy at the ethnic group aggregate level, and 

not necessarily at the individual level (i.e. it produces reasonably accurate total 

figures and orders of magnitude). In general, there is a consensus in the literature that 

although this methodology cannot entirely replace self-assigned ethnicity 

information, it provides a sufficient level of classification confidence to be used in 

the measurement of inequalities and in the design and delivery of services that meet 

the needs of ethnic minorities. In predicting these types of outcomes, name-based 

classifications have proved a very cost effective method compared with conventional 

collection of self-assigned ethnicity information (e.g. projects aiming to collect all 

patients' self-reported ethnicity in the UK have had an average response rate of 56%: 

Adebayo and Mitchell, 2005).  

 

Some of the methods evaluated here also provide a measure of the degree of strength 

in the assignment of an ethnic group to each name (Lauderdale and Kestenbaum, 
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2000; Word and Perkins, 1996), and others offer the probable religion and language 

associated with each group of names (specifically those using Nam Pehchan or 

SANGRA). These efforts have produced three computerised name classification 

systems, Nam Pehchan (Cummins et al, 1999) and SANGRA (Nanchahal et al, 2001), 

designed to classify South Asian names in the UK, and GUESS (Generally Useful 

Ethnicity Search System) (Buechley, 1976) which identifies Hispanic names in the 

US. These computer systems have been used in a wide variety of studies in public 

health, having proven very useful in identifying areas of inequality and health needs 

within populations (Coronado et al, 2002; Honer, 2004).  

 

Furthermore, name-based methods have been successfully applied to sample 

members of particular ethnic groups using Electoral Registers or telephone 

directories (see discarded studies listed in Section 3.3.1), presenting significant cost 

advantages over other alternatives (Cook et al, 1972). Moreover, this methodology 

has also proven useful in combination with conventional ethnicity classification 

information (Coronado et al, 2002). When some degree of ethnicity information is 

already available for a population, name-based classification can provide 

complementary information to detect errors, complete missing data, or correct bias 

introduced by proxies of ethnicity used, such as country of birth (e.g. second 

generation migrants).  

 

Despite having found some inconsistencies between Nam Pehchan and SANGRA, 

when trying to classify the entire UK population (using the Electoral Register), Peach 

and Owen (2004) concluded that name-based methods are of potential value to health 

organisations, local authorities, commerce and academics, but further research to 
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improve the classifications is needed. A similar conclusion was reached by Bhopal et 

al (2004), who also used Nam Pehchan and SANGRA in an extensive study linking 

census and health data in Scotland, highlighting that name-based methods are 

valuable in the absence of alternative information sources, and more crucially, 

suggesting that they produce important information at low cost (Bhopal et al, 2004). 

3.5. Alternative Approaches to Building Universal Name 

Classifications 

The 13 research studies reviewed in the previous two sections have demonstrated the 

advantages of name-based methods as well as their principal current limitations. 

With respect to the latter, three general priorities for improvement arise, as justified 

in the previous section: (a) a need for a reference population with high spatio-

temporal coverage including name frequency data sourced both in the host and 

origins countries, (b) the need to use name scores to measure the probability of a 

name being associated with a particular ethnic group, and (c) the need for a system 

that classifies the whole population into all of the potential ethnic groups, and not 

just one or a few. This section will review some alternative approaches in the 

literature that have attempted to build such ‘universal’ name classifications, making 

partial contributions to these three general needs. 

 

These tasks are made much easier today by the use of population registers that cover 

most of the population, such as Electoral Registers or telephone directories, 

providing very valuable name frequency information, name spelling variants, 

linkages between surnames and forenames, precise addresses, etc. A few of the 

studies analysed in the previous review make use of some of these resources, 
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although they only cover parts of a country, or use manual methods such as counting 

names in a paper telephone directory. Electronic versions of such registers can today 

be accessed through special requests or purchased from data providers, making this 

type of analyses much simpler. 

 

However, such directories or registers do not obviously contain any ethnicity 

information associated with people’s names. Therefore, by using these registers 

population coverage is maximised, but knowledge about the origin of the names is 

minimal. Researchers in marketing, computer science, and linguistics have made 

independent attempts to impute the language or culture of origin to a name using 

different data mining techniques. The field within linguistics that studies proper 

names is called ‘Onomastics’, and includes personal names, place names, and unique 

new naming in general (objects, companies, brands, etc). Other fields that have 

tackled the problem of identifying the origin of personal names are computational 

linguistics, an interdisciplinary field dealing with the statistical and rule-based 

modelling of natural language from a computational perspective, and in marketing 

and geodemographics, where imputation of ethnic group membership may be used in 

order to target potential customers and neighbourhoods. These approaches will be 

reviewed here to try to illuminate alternative ways of assigning the linguistic or 

cultural origin of each name in large lists derived from population registers (i.e. 

>25,000 names), when no ethnicity or related surrogate data are present, and without 

having to code them individually. 

3.5.1. Computational and marketing approaches 

The task of building a name classification system covering a large number of ethnic 

groups, when comprehensive name reference populations with ethnicity information 
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is not available, has been tackled specially in the US since the 1980s (Abrahamse et 

al, 1994). All of these attempts have been based on particular applications for which 

they were developed, usually in the commercial sector or under commercial 

relationships with the public sector. Therefore, most of these approaches have not 

been properly documented or published, their methods are opaque and external 

validations if done are not made explicit. One exception is Abrahamse et al (1994), 

from Rand Corporation, who evaluate two name-to-ethnicity databases in order to 

identify Hispanics and Asians in the US, the latter built by Donnelley Marketing. 

They conclude that the best approach to developing a comprehensive Asian surname 

dictionary entails combining three stages: take a seed of 1,000 Asian names provided 

by the US Census Bureau; expand it, identifying the most common surnames in areas 

of high concentration of Asians by crossing names from the Electoral Roll with the 

Census information at small area level; and then subdividing them by country of 

origin using country of birth information from tax records. 

 

There are at least four companies in the US that have commercially exploited such 

databases, but unfortunately their methods have not been published. Language 

Analysis Systems (LAS; Herndon, Virginia) developed an extensive knowledge base 

to manage names in large databases, involving de-duplication of names about the 

same individual, name translation and transcription, and name-matching techniques, 

and also assigning names to its language of origin using a proprietary ‘name 

classifier algorithm’. LAS did publish some of their name classification techniques 

(Williams and Patman, 2005), but after the company was sold to IBM in 2006, a lot 

of their public papers disappeared from their website (Dance, 2007). Ken Williams, 

the former owner of LAS and ex-president of the American Names Society, now 
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working for IBM, has filed a US patent protecting his name classifier algorithm 

(Williams, 2007). The importance of this business is such that IBM has created a 

‘Global Name Recognition’ business unit (http://www-

306.ibm.com/software/data/globalname/), which is very successful in security 

applications dealing with international lists of names in a post-September 11th world 

(The Economist, 2007b).  

 

Other companies focus upon an applications area often termed ‘multicultural 

marketing’, and offer similar products to perform the ethnicity profiling of names, 

such as: 

 - Donnelle Marketing, now a branch of InfoUSA 

 (http://www.donnelleymarketing.com/) 

 - List Service Direct Inc (LSDI) 

  (http://www.listservicedirect.com/ethnic_religious.html) 

- Ethnic Technologies 

 (http://www.ethnictechnologies.com/index.html) 

 

The applications of these name-based ethnicity profiling techniques not only cover 

the segmentation of customers or public service users, but also tasks such as survey 

sampling (Hage et al, 1990; Himmelfarb et al, 1983), drawing members of jury 

services and electoral redistricting (Abrahamse et al, 1994), and improving automatic 

document archival and speech recognition and synthesis systems (Bonaventura et al, 

2003). However, the majority of these computational and marketing approaches 

generally ignore the detailed issues of ascertaining the geographic, cultural and 

linguistic origin of the name forms that are found in their databases, once names have 

http://www-306.ibm.com/software/data/globalname/
http://www-306.ibm.com/software/data/globalname/
http://www.donnelleymarketing.com/
http://www.listservicedirect.com/ethnic_religious.html
http://www.ethnictechnologies.com/index.html
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arrived in the countries of destination of migrants. The study of such linguistic 

processes lies in the field of Onomastics. 

 

3.5.2. Onomastic studies: the cultural ethnic language group (CELG) 

technique 

In Onomastics, the classical way to study the origin of a surname is to investigate the 

genealogies of people with that surname, using the earliest historical documents 

available that mention that surname and linking it to a place and period of time 

(Reaney, 1958). Through this method, a linguistic expert may be able to assign a 

language of origin and an etymological definition of a name (original meaning of the 

name or explanation of its origin). The main problems that onomastic researchers 

face in this task is identifying reliable genealogical sources and accommodating the 

regularities of language change so as to recognise true mutations in the way that a 

surname has been written and pronounced in one or several languages through 

history.  

 

This clearly involves a very cumbersome and slow process, and it is estimated that a 

experienced name researcher would have a productivity of only four surnames a day 

(Hanks and Tucker, 2000). Adopting a rule of thumb that a surname dictionary 

should represent the names at least of 70% of the people in a population, this would 

require the explanation of several tens of thousands of names, a task that would be 

too time-consuming for any single researcher if it were attempted manually (Tucker, 

2003). Furthermore, only a small percentage of most common names in the UK or 

the US have been studied genealogically, and most of the successful genealogies 

have dealt with rare and unusual surnames (Hanks and Tucker, 2000). These are the 
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reasons why there have been so few surname dictionaries published: forenames 

dictionaries, by contrast, are more numerous since forenames are relatively easy to 

investigate and fewer in number. 

 

This has led to a proposal for a semi-automatic onomastic means of developing a 

‘surname to language’ reference list by Tucker (2005). Hanks and Tucker (2000) pre-

classified the 70,275 most common surnames in the US into 44 ‘Cultural, Ethnic and 

Linguistic’ groups (CELG), to be further studied by each of the etymologists that 

wrote the descriptions of the entries in the Oxford Dictionary of American Family 

Names (DAFN) (Hanks, 2003). Tucker (2005) developed a technique termed 

Cultural-Ethnic-Language Group (CELG) in which a database of individuals with 

both forenames and surnames is required. To do this he used the US telephone 

directory with 88 million subscribers, from which he computed forename and 

surname frequencies and established relationships between the two. 

 

This entailed a number of stages. First, a set of ‘diagnostic forenames’ (good 

predictors of ethnicity) was manually classified into cultural-ethnic-linguistic groups 

(CELG) by onomastic experts (Hanks and Tucker, 2000). This manual coding was 

achieved in a much more efficient way than with surnames, since there are less 

forenames than surnames, as will be explained later, and forenames are usually 

derived  from a common set of religious or popular characters that are distinctively 

written in each language or culture and hence easier to be intuitively classified than 

surnames. In this way, Hanks and Tucker (2000) created a reference list of 85,000 

unique forenames with a frequency greater than 9 in the US, which for simplicity 
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will be termed the ‘F_list’. For each forename in F_list, an entry was created that 

included the following fields (Hanks and Tucker, 2000): 

 - Diagnostic Forename: (Yes/No) Indicating whether the forename is a good 

predictor of ethnicity or not 

 - Gender: (Female, Male, Both, Unknown) 

 - Cultural Ethnic Linguistic Group (CELG): One of 44 CELGs, assigned 

manually 

The 85,000 forenames were not manually coded all at once, but in a series of steps 

starting with the most common forenames and using their surnames’ CELG, as will 

be explained in the next paragraphs. 

 

Second, the F_list was linked to the forenames of the individuals in the telephone 

directory. Third, a new surname reference list was produced, comprising all unique 

surnames in the telephone directory (1.75 million) and which will be termed ‘S_list’, 

which was also linked to the telephone directory through the surnames of individuals. 

The structure of the database at this point is represented as follows (the arrows 

indicate the relationships between the three tables in the database):  

F_List Telephone Directory S_List 
(n= 85,000) (n= 88 million) (n= 1.75 million) 

Forename          Forename  

 Surname   Surname 

 

Fourth, using the three linked tables, the objective was to calculate for each surname 

in the S_list the percentage of people in the telephone directory with forenames 

assigned in the F_list to each particular CELG. However, in performing this 

calculation, Tucker (2005) introduced different weightings to two types of 

forenames: 
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(a) Forenames considered as ‘diagnostic’ in F_list are given double weight when 

computing the counts, i.e. counts are multiplied by a value of 2 

(b) Female forenames are weighted down to 80% of their count values, i.e. counts are 

multiplied by a value of 0.8 (Tucker, 2007a). This is a ‘rule of thumb’ value to 

counteract the fact that women’s forenames are less indicative of their surname’s 

ethnicity because of intermarriage between ethnic groups and subsequent adoption of 

their husband surname. 

 

These weights improve the efficiency of the classification, since diagnostic 

forenames are more representative of a CELG than non-diagnostic which tend to 

overlap between groups (e.g. Maria). Moreover, married women usually carry their 

husband surname (especially as listed in the Telephone Directory, e.g. Maurizio & 

Tünde Moretti) and could introduce a misinterpretation of the true CELG of the 

female’s forename. One additional problem of anomalies in the CELG connectivity 

between forenames and surnames is child naming fashions, since a forename from a 

different CELG can be chosen by a family following a fashion (e.g. French girl 

names being popular amongst Anglo-Saxons). Unfortunately this problem cannot be 

avoided in the absence of other data, but it is deemed to be of a small relative 

importance (Tucker, 2005). 

 

The weighting mechanism is here illustrated through a worked example using 

hypothetical figures. Say the surname Moretti had a total count in the US telephone 

directory of 645 people. The distribution of the forenames’ CELG of these 645 

people according to the F_List was as follows: 

 English; 311, Italian; 162, Spanish; 142, Others; 30 
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These people counts for each CELG were weighted according to the two criteria 

mentioned above; diagnostic forenames and female forenames. For example, the 162 

people with forenames associated to the Italian CELG, were weighted as follows: 

 10 male diagnostic forenames;  10 x 2 = 20 

 12 female diagnostic forenames;  12 x 2 x 0.8 = 19.2 

 80 male non-diagnostic forenames;  80 x 1 = 80 

 60 female non-diagnostic forenames; 60 x 0.8 = 48 

   Total weighted count = 167.2 

The total re-weighted count of 167.2 for the Italian CELG contrasts with the original 

162 people, meaning this surname is slightly more prone to be associated with Italian 

forenames. The same exercise was repeated for all CELGs deriving the following re-

weighted counts and relative sizes in brackets;  

English; 192.7 (42.8%), Italian; 167.2 (37.2%), Spanish; 58.7 (8.6%), Other; 

41.4 (11.4%); Total  weighted count = 460 (100%) 

The percentages above indicate relative weighted frequencies per CELG. 

 

Finally, each surname was assigned to the CELG of highest relative weighted 

frequency other than ‘English’, this group being excluded since it is the ‘default 

CELG’ in the US, due to a ‘host-country’ assimilation effect. Moreover, only CELGs 

with a relative weighted frequency of at least 4% were considered (e.g. if the largest 

CELG other than English had a relative frequency of 3.7% the surname was left 

unclassified). This minimum threshold was introduced to make sure that there was a 

sufficient minimum number of weighted counts associated with the CELG finally 

selected. As a result, in the previous example the surname Moretti was finally 
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classified as Italian. This technique can be repeated iteratively to increase the number 

of diagnostic forenames classified and then the number of surnames and so forth.  

 

At the end of the process, the 70,275 surnames included in DAFN were classified 

into 44 CELGs, 40,098 of them into the British/English/Welsh/Irish categories, and 

the remaining 30,177 of them into the rest of non-Anglo Saxon CELGs. The 

performance of the CELG technique is deemed to have an accuracy of between 88% 

and 94% (Tucker, 2005), based on a range of rates of misclassification identified by 

the DAFN language experts to which the surnames were sent for further study. 

 

The uniqueness of Tucker’s method is that it exploits the patterns of cross-

occurrences between forenames and surnames that are more common amongst 

groups of the population that may be defined by their common ancestry. Hanks and 

Tucker (2000) contend that forename naming practices survive generations after 

immigration, even when the original language may have been lost by descendants. 

This method is very efficient because it leverages the differential skew of the name 

frequency distribution between forenames (extremely positively skewed) and 

surnames (largely positively skewed). To illustrate this with an example, 10% of the 

surnames in the US are sufficient to cover 91% of the population, while 1% of 

forenames is sufficient to cover 95% of the population. There are 1.25 million unique 

forenames in the US, so concentrating upon just 1% of them (12,500 forenames) 

allows one to code forename ethnicity of 95% of the US population, and hence the 

corresponding surname ethnicity (Tucker, 2001). Furthermore, by applying the 

CELG technique this population coverage can be increased to nearly 100%, while 

improving the overall accuracy of the names classified. This is further eased by the 
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use of etymology dictionaries of forename origins to code ‘diagnostic forenames’, 

with larger coverage and availability than surname dictionaries. 

 

3.6. Conclusion 

‘The classificatory role of names proves very useful. By studying names we can find 

out how the human race divides up and then sorts into groups the many people living 

in a single society’ (Smith-Bannister, 1997: 15) 

 

Languages have evolved, branching out from a few original ones, following a 

parallel evolution with human genes across space and time. Surnames are derived 

from contemporary languages or others spoken in the last three to ten centuries. They 

have also been transmitted or extinguished through the generations following their 

populations’ dynamics. Surnames have been proven to correlate well with several 

human genetic markers that are patrilinearly inherited, as well as with other cultural, 

religious and linguistic indicators that are vertically transmitted (such as forenames, 

dialects, accents and customs). The geographic distribution of surnames follows very 

distinct patterns that parallel zones of cultural interaction and marked linguistic 

boundaries. The very few exceptions to this trend can be explained by recent 

domestic and international migrations. Although the geography of forenames and 

their naming practices varies much more than that of surnames, it also reveals 

aspects of a group’s ancestry that can complement the analysis of surnames. These 

factors indicate that personal name analysis can offer a reliable method to ascribe 

individuals to common human groups, where such groups are defined as having 

common linguistic, geographical and ethnic origins. 



 
Chapter 3 - Names and Ethnicity  123 

 

 

Within the wide research field of names origin analysis, this thesis focuses on its 

applications to classify contemporary populations according to recent migrations, 

meaning their own or those of their most recent three or four generations of 

ancestors. A large number of researchers have developed and applied name-based 

ethnicity classification techniques, in disciplines as diverse as human genetics, 

anthropology, public health/epidemiology, geography, history, demography, 

linguistics, computer science, economics and marketing. Research in this area has 

grown very rapidly over the past 30 years, following increasing interest in 

international migration and ethnicity, improvements in computer processing power, 

and the wider availability of digital name datasets that cover entire populations at the 

individual person level.  

 

Only a few studies have focused upon measuring the accuracy of these different 

name-based ethnicity classification methods, by trying to identify their limitations 

and advantages.  This chapter has presented a thorough review of 13 research studies 

representative of these efforts, which have demonstrated the advantages of these 

name-based methods as well as their current principal limitations. These studies 

share a number of common methodological processes and research components: first, 

a name reference list is independently built or sourced from another study or from 

‘an expert’; second, a separate target population is manually or automatically 

classified into ethnic groups; and third, the accuracy of the method is evaluated 

against a previously known ‘gold standard’ for ethnicity in the target population. The 

claimed prediction success of the different classifications are measured using the 

epidemiological concepts of sensitivity, specificity, positive predicted value and 
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negative predicted value that summarise the measures from a confusion matrix. The 

different classifications’ sensitivity varies between 0.67 and 0.95, their specificity 

between 0.80 and 1, their positive predicted value between 0.70 and 0.96, and their 

negative predicted value between 0.96 and 1. These evaluation results prove the 

value of name-based ethnicity classifications for most applications. 

 

This methodology makes it possible to subdivide populations to a sufficient degree 

of accuracy when ethnicity information is not available, especially at the aggregate 

ethnic group level, producing relatively accurate total figures and order of magnitude 

estimates. Moreover, name-based classifications have proved a very cost effective 

method compared with conventional collection of self-assigned ethnicity 

information, suggesting ways to complement or replace self-assignment depending 

on the type of application. Amongst its limitations, its classification accuracy and 

coverage needs to be improved for some groups and contexts. Three general needs 

for improvement arise from the review presented here: (a) a need for a reference 

population with greater spatio-temporal coverage, including name frequency data 

sourced both in the host and origin countries; (b) a need to use name scores to 

measure the probability of a name being associated with a particular ethnic group; 

and (c) a need for a system that classifies the whole population into all of the 

potential ethnic groups, and not just one or a few. These are the research gaps 

towards which this thesis contributes. 

 

Alternative but rather obscure computational and marketing approaches have been 

attempted to build ‘universal’ name classifications, especially when little or no 

ethnicity and name information is available, making partial contributions to these 
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three general needs. Outstanding from the rest, the Cultural, Ethnic and Linguistic 

Group (CELG) technique, developed in the computer linguistics and onomastics 

field, has great potential for efficiently classifying hundreds of thousands of names 

into all of the potential ethnic groups present in a given population, with little 

ethnicity information. Furthermore, this makes it possible to create the desired 

‘surname scores’, measuring the degree of association between a surname and an 

ethnic group by setting thresholds to the ethnicity distribution of its bearers 

forenames. The CELG technique is the main methodology used in this thesis, which 

has been further explored, enhanced and evaluated, as it will be described through 

the next chapters. 

 

Finally, in order to create an improved ethnicity classification covering all of the 

potential ethnic groups present in a population, the name reference list has to be 

created using reference populations originating in a large number of countries, as is 

possible today through the use of electronic telephone directories, population 

registers and a growing realm of genealogical internet resources. Starting with these 

materials, two other ingredients are required: a taxonomy of cultural, ethnic and 

linguistic (CEL) groups into which to classify the names; and a set of techniques to 

perform the classification that puts each name in a slot of the taxonomy. These are no 

trivial tasks and form the first step in the development of the methodology presented 

in this thesis, which is discussed in detail in the next chapter. 
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Chapter 4. Taxonomy, Materials and Methods 

By this stage it should be clear why the ontology of ethnicity supported by this PhD 

thesis is based upon personal names, as its title suggests. However, in order to create 

a universal ethnicity classification of names (i.e. one covering all potential ethnic 

groups as opposed to the partial ones which have dominated the literature to date), a 

formal taxonomy of ethnicity for this purpose must be conceived as a preliminary 

step. Name origins follow a very particular set of rules and patterns which usually 

follow linguistic and cultural criteria. Therefore, a classification of human groups 

using name origins will necessarily have to be based upon those linguistic criteria. 

The issues about creating a taxonomy of human groups for the purpose of classifying 

names will be further discussed in this chapter, as a precursor to proposal of a 

cultural, ethnic and linguistic taxonomy of personal names that will form the basis 

for a posterior classification of people into groups of common ancestry. 

 

In the construction of the desired universal ethnicity classification of names, not only 

are large lists of surnames and forenames required as the input materials, but also 

data about their frequency and geographical distribution, whenever possible sourced 

from different geographical areas and periods of time – for the reasons set out in 

Chapter 3. Such materials can only be obtained from population registers with 

universal coverage, such as Electoral Registers or telephone directories. 

 

Finally, once an extensive list of names has been sourced, and a universal taxonomy 

of cultural, ethnic and linguistic groups has been created, innovative methods are 

required that make it possible to assign the names to one of the categories in the 
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taxonomy, that is, a classificatory methodology. Several approaches have been 

proposed by different researchers from multiple disciplines in the literature, as 

reviewed in Chapter 3. This chapter will summarise these and other key 

classificatory and clustering methods and explain how they have been adapted to the 

classification exercise tackled in this thesis. 

 

Therefore, this chapter describes the three integrated components of the first phase in 

the development of a name-based ethnicity classification; taxonomy, materials and 

methods. The first section deals with the justification and explanation of the concepts 

used to formalise a new taxonomic classification of names based upon cultural, 

ethnic and linguistic (CEL) groups. The second section discusses the potential 

universal name register data sources and presents the materials finally selected for 

use in this research. The third section describes the methodologies that are 

subsequently used to put these two components together; the universal list of names 

classified into the CEL taxonomy. 

 

4.1. A Taxonomy of Cultural, Ethnic and Linguistic Groups (CEL) 

4.1.1. Approaches to building taxonomies of human groups 

As set out in the introduction to this chapter, before creating an ethnic classification 

of names it is first necessary to build a taxonomy of ethnicity that is tailored 

specifically to the characteristics of human groups as reflected in the contemporary 

names of multicultural populations. This is no trivial task, and is closely tied to the 

ontology of ethnicity supported by this thesis. This subsection will review a range of 

approaches to create such a taxonomy for the UK society at the beginning of the 
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second millennium. Rather than reviewing approaches to the creation of taxonomies 

of ethnicity in general, only those considered to be closely related to names will be 

mentioned, and as such most of them adopt a linguistic perspective.  

 

The initial premise of this research is that current official ethnicity classifications are 

of only limited use for the purpose of classifying names into all of the potential 

ethnic groups present in a society. As explained in Chapter 2, they combine aspects 

of race, skin colour, geography and nationality into a single classification. 

Furthermore, they usually only cover the largest 10 to 15 ethnic groups present in a 

society, which sometimes are reduced to just 8 workable categories (if we discard the 

‘other’ and ‘mixed’ groups, that are not very useful for most research purposes).  

 

In order to gain a better idea of the kind of ethnicity classification that is actually 

useful to researchers in Britain, as well as to members of the population that is 

classified, two contemporary lists of meaningful ethnic groups will be consulted. One 

is the ethnicity classification that is currently part of the England and Wales Pupil 

Level Annual School Census (PLASC), which contains 95 ethnic groups of pupils 

and is listed in Appendix 2. Another is the UK 2001 Census ‘write-in’ answers to the 

ethnicity question, used by people who selected an ‘other’ category, allowing the 

Office of National Statistics to compile a detailed list of people’s perceived ethnic 

identities that extends beyond the 16 standard groups. This list has been published 

for London and is reproduced in Appendix 2: it comprises 77 loosely defined ethnic 

groups many of them with several thousands people in London. These groups 

emanated directly from people’s responses, and although have been standardised by 

ONS they present a high degree of overlap and fluidity (e.g. ‘Moroccan’, ‘Arab’ and 



 
Chapter 4 - Taxonomy, Materials and Methods  129 

 

‘North African’). These two lists, PLASC and ‘Census write-in’, which primarily 

follow a list a of languages spoken in British schools and in London neighbourhoods, 

provide a useful picture of the type of ethnicity classification that is actually required 

in order to carry out research on ethnicity at a much finer level than current official 

classifications permit. But how can it be ensured that such a list is exhaustive, non 

overlapping, hierarchically organised, and connected to name origin groupings? 

 

Anthropologists have built classifications of human groups and their relationships 

based on cultural customs, languages and also fossil and archaeological records 

(Eriksen, 2002: xviii). Almost separately, linguistics have established a genealogical 

tree of the language families of the world, based on similar observable characteristics 

of languages, such as the phonetic, morphologic, semantic, or syntactic common 

origins and their evolution through history  (Ruhlen, 1994). More recently, human 

geneticists have also attempted such classification of ancient human groups, usually 

borrowing anthropological and linguistic taxonomies to corroborate them with the 

genetic record (Cavalli-Sforza, 1997). This taxonomy work has spanned almost two 

centuries, and sometimes has been surrounded by a great deal of debate and 

speculation between different schools. 

 

Surnames derive from the languages in which they were created, generally between 

two to ten centuries ago, and that have been passed down to us or modified in written 

form following specific morphologies and alphabetical rules through those same 

languages or those of the places to which those holding particular surnames have 

migrated. Forenames follow similar linguistic rules but are voluntarily picked up and 

almost freely modified by parents following a set of cultural, religious, linguistic, 
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social interaction and identity conventions, being propagated through a specific 

temporal and social medium. Therefore, language represents the primary factor in the 

processes of creation, modification, transmission and migration of surnames and 

forenames. Other secondary factors are religious, cultural and geographic aspects 

that together with linguistic considerations constrain the choice of forenames or the 

choice of marital partners and thus influence the ways in which both surnames and 

forenames are transmitted through generations within specific human groups. 

Therefore, a classification of names into human groups according to four criteria 

(linguistic, religious, geographic, and cultural factors) would necessarily primarily 

follow a classification of languages, being locally modified by the other factors. 

Surprisingly enough, this is the same proposal to divide human groups made by 

Charles Darwin (1859) in the Origin of Species quoted at the beginning of Chapter 3. 

 

There are several classifications of the world’s languages, which aim to list the 

languages currently spoken and organise them into linguistic families. The language 

family classification most widely accepted (Cavalli-Sforza, 2001) is that of 

Greenberg and Ruhlen, that attempts to relate all existing languages to a set of 

approximately 20 families, each grouping a larger number of languages related by 

descent from a common proto-language (Ruhlen, 1987). The list and coding system 

most commonly used is the Ethnologue system in combination with the international 

standard for language codes ISO 639-3. The ISO standard provides an extensive 

enumeration of languages, including living and extinct, ancient and constructed, 

major and minor, written and unwritten languages (International Organisation for 

Standardisation, 2007). ISO 639-3 is the third version of the international coding of 

languages and was released in February 2007, containing 7,618 languages. 



 
Chapter 4 - Taxonomy, Materials and Methods  131 

 

Ethnologue 15th edition, released in 2005 (Gordon, 2005) contains 7,299 languages, 

most of them considered alive, providing a taxonomy of languages giving the ISO 

639-3 code, the number of speakers, locations, dialects, and linguistic affiliation 

which relates all of them to a multilevel hierarchy of subfamilies that connect to 108 

language families at the top (see www.ethnologue.com for the complete list and 

hierarchy). However, most of these 108 language families are considered language 

isolates, and most of the languages are assigned to the core of Ruhlen’s 20 families.  

 

The tandem Ethnologue - ISO 639-3 language classification forms the basis for the 

taxonomy of ethnicity based upon personal names developed in this thesis. As such, 

this taxonomy initially distinguishes ethno-linguistic groups through the names 

currently present in the UK, and is later modified by cultural, religious and 

geographic criteria where required to reflect the uniqueness of the group’s names in 

the UK. 

4.1.2. The CEL taxonomy 

Following Hanks and Tucker’s (2000) onomastic method developed for the 

Dictionary of American Family Names (DAFN) (Hanks, 2003), the taxonomy of 

names developed in this thesis is called the ‘Cultural, Ethnic and Linguistic’ 

classification, abbreviated by the acronym ‘CEL’. It is based upon the Ethnologue - 

ISO 639-3 language classification for the languages found today in the UK and 

modified by cultural, religious and geographic classifications that were considered 

appropriate.  

 

In this thesis the CEL concept is used as a basis for classifying both forenames and 

surnames currently present in the UK, defined as those names of UK residents with a 

http://www.ethnologue.com/
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frequency of three or more occurrences per surname or forename. Each CEL is used 

to define a human group whose names share a common origin in terms of their 

culture, ethnicity or language, and is judged to be distinct enough from other CELs 

along one or several of these dimensions. The CEL concept summarizes four 

dimensions of a person’s identity: a religious tradition, a geographic origin, an ethnic 

background - usually reflected by a common ancestry (genealogical or 

anthropological links) - and a language (or common linguistic heritage). The 

assumption underlying this thesis is that, the four dimensions that define a CEL, 

religion, geography, ethnicity and language, have left a ‘trail’ which can be today 

discerned from the characteristics of the forenames or surnames that belong to each 

CEL. These characteristics can be a name’s morphology (elements, letter patterning, 

endings, stems, etc), its etymology (meaning and origin), and its historic or current 

geographic distribution (other more subtle characteristics such as phonetic or 

calligraphic differences are not considered here). These characteristics are also the 

‘raw materials’ used by researchers in the field of onomastics. 

 

The criterion used to create the CEL taxonomy, both in DAFN and in this thesis, is 

primarily an onomastic one, that is, a list of human groups based on name origins. 

The CEL taxonomy created in this research is based on the empirical analysis of 

name characteristics, grouping them in a way that maximises each group’s 

homogeneity along the four dimensions of human origins (geography, religion, 

ethnicity and language) identified above. A subset of the four dimensions may be 

allowed to dominate in the classification of a particular name. This approach 

produces a taxonomy of CELs that is hierarchical and varies in scope of detail from 

very fine categories (e.g. Cornish, Romania Transylvania or Sephardic Jew) to very 
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broad ones that overarch others (e.g. Muslim or European), as to best represent the 

common aspects shared by homogeneous groups of names present in western 

societies.  

 

The taxonomy is exhaustive but not fixed, in that new CELs can be created through 

the classification process as a sufficient number of names with distinct 

commonalities are either newly gathered or spun off from a pre-existing CEL 

category. The CEL taxonomy presented here is optimised for the names present in 

the contemporary UK population, and currently includes 185 CEL categories of 

which 7 describe different aspects of ‘void or unclassified names’ and 178 ‘true’ 

CELs (see Table 4.1 for the complete list). The resulting CEL taxonomy is thus 

comprised of a series of homogenous categories of various resolutions (in terms of 

size and scope) that primarily follow an onomastic criterion to classify names 

according to their common origins. The individual CELs form the building blocks of 

a multidimensional system, in which they can be aggregated into higher level groups 

not only following onomastic criteria, as applied here, but also using alternative 

combinations according to religious, geographic, ethnic or linguistic criteria. These 

different aggregations of CELs can then be applied to classify a population according 

to the criterion that best fits the purpose of each application (see Appendix 3 for the 

correspondence between CELs and the different aggregations proposed). 

 

The process by which the CEL taxonomy was created is therefore a heuristic one, 

and has been developed in parallel with the overall classification of names, since the 

original very coarse groupings of languages, religions or continents (e.g. Hispanic, 

Muslim, or African categories) have been subdivided into finer categories during the 
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process by which the classification rules explained in Section 4.3 and Chapter 5 shed 

new light upon the homogeneous characteristics of subgroups of names. As a result 

of this process, a categorization of 185 CELs has been created, termed here ‘CEL 

Types’, which are grouped into 15 coarser categories according to onomastic criteria 

and termed here ‘CEL Groups’. A list of these CEL Types, ordered by CEL Group, 

is presented in Table 4.1, while the full details by CEL Type are described in 

Appendix 3. 

 



 
Chapter 4 - Taxonomy, Materials and Methods  135 

 

 

CEL GROUP CEL TYPE 

AFRICAN AFRICA, BENIN, BLACK SOUTHERN AFRICA, BOTSWANA, BURUNDI, CAMEROON, 
CONGO, ETHIOPIA, GAMBIA, GHANA, GUINEA, IVORY COAST, KENYAN AFRICAN, 
LIBERIA, MADAGASCAR, MALAWI, MOZAMBIQUE, NAMIBIA, NIGERIA, OTHER 
AFRICAN, RWANDA, SENEGAL, SIERRA LEONE, SWAZILAND, TANZANIA, UGANDA, 
ZAIRE, ZAMBIA, ZIMBABWE 

CELTIC CELTIC, IRELAND, NORTHERN IRELAND, SCOTLAND, WALES 

ENGLISH BLACK CARIBBEAN, BRITISH SOUTH AFRICA, CHANNEL ISLANDS, CORNWALL, 
ENGLAND 

EUROPEAN AFRIKAANS, ALBANIA, AZERBAIJAN, BALKAN, BELARUS, BELGIUM, BELGIUM 
(FLEMISH), BELGIUM (WALLOON), BOSNIA AND HERZEGOVINA, BRETON, 
BULGARIA, CANADA, CROATIA, CZECH REPUBLIC, ESTONIA, EUROPEAN, FRANCE, 
FRENCH CARIBBEAN, GEORGIA, GERMANY, HUNGARY, ITALY, LATVIA, LITHUANIA, 
MACEDONIA, MALTA, MONTENEGRO, NETHERLANDS, POLAND, ROMANIA, 
ROMANIA BANAT, ROMANIA DOBREGA, ROMANIA MANAMURESCRIANA, ROMANIA 
MOLDOVA, ROMANIA MUNTENIA, ROMANIA TRANSILVANIA, RUSSIA, SERBIA, 
SLOVAKIA, SLOVENIA, SWITZERLAND, UKRAINE, YUGOSLAVIA 

NORDIC DENMARK, FINLAND, ICELAND, NORDIC, NORWAY, SWEDEN 

GREEK GREECE, GREEK CYPRUS 

HISPANIC ANGOLA, BASQUE, BELIZE, BRAZIL, CASTILLIAN, CATALAN, COLOMBIA, CUBA, 
GALICIAN, GOA, HISPANIC, LATIN AMERICA, PHILIPPINES, PORTUGAL, SPAIN 

JEWISH OR 
ARMENIAN 

ARMENIAN, JEWISH, SEPHARDIC JEWISH 

MUSLIM AFGHANISTAN, ALGERIA, BALKAN MUSLIM, BANGLADESH MUSLIM, EGYPT, 
ERITREA, IRAN, IRAQ, JORDAN, KAZAKHSTAN, KUWAIT, KYRGYZSTAN, LEBANON, 
LIBYA, MALAYSIAN MUSLIM, MIDDLE EAST, MOROCCO, MUSLIM, MUSLIM INDIAN, 
MUSLIM INDIAN, MUSLIM OTHER, OMAN, PAKISTAN, PAKISTANI KASHMIR, SAUDI 
ARABIA, SOMALIA, SUDAN, SYRIA, TUNISIA, TURKEY, TURKISH CYPRUS, 
TURKMENISTAN, UNITED ARAB EMIRATES, UZBEKISTAN, WEST AFRICAN, WEST 
AFRICAN MUSLIM, YEMEN 

SIKH INDIA SIKH 

SOUTH ASIAN ASIAN CARIBBEAN, BANGLADESH HINDU, BHUTAN, GUYANA, HINDU NOT INDIA, 
INDIA HINDI, INDIA NORTH, INDIA SOUTH, KENYAN ASIAN, MAURITIUS, NEPAL, 
SEYCHELLES, SOUTH ASIAN, SRI LANKA 

JAPANESE JAPAN 

EAST ASIAN CHINA, EAST ASIA, EAST ASIAN CARIBBEAN, FIJI, HONG KONG, INDONESIA, 
MALAY, MALAYSIAN CHINESE, MYANMAR, POLYNESIA, SINGAPORE, SOLOMON 
ISLANDS, SOUTH KOREA, THAILAND, TIBET, VIETNAM 

INTERNATIONAL INTERNATIONAL 

VOID AND 
UNCLASSIFIED 

UNCLASSIFIED, VOID, VOID - SURNAME, VOID INITIAL, VOID OTHER, VOID 
PERSONAL NAME, VOID TITLE 

 
Table 4.1: The CEL Type taxonomy and its assignments into CEL Groups 
See Appendix 3 for a full lookup table between CEL Types and their various groupings 
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4.2. Data sources  

‘I imagine Alexander Graham Bell rejoicing if he could see my private library 

of those typically very bulky books, usually printed with fonts verging on the 

microscopic, that have been defined as works “with a lot of characters and 

little action”. I am referring to telephone directories. (…) To the surname 

scholar these books are of fundamental importance.’ 

 (Tibón, 2001: xviii, translated from original in Spanish) 

4.2.1. Some discussion of potential data sources 

The literature review presented in Chapter 3 has suggested that two main types of 

population datasets are required in order to build a new name classification: a 

reference and a target population. The reference population is a list of names of 

individuals with their ethnicity, or a proxy for it (e.g. country of birth), that is used to 

build a unique name-to-ethnicity reference list. By contrast, the target population is 

just used for validation purposes, to evaluate the accuracy of the reference list. The 

target population has to be independently sourced from the reference population, and 

it must also contain names of individuals and their ethnicity (or a proxy for it), but 

always be obtained via non-name methods (self-reported, country of birth, 

nationality, third-person reported, etc). Therefore, the target population is classified 

into ethnic groups according to the name categories in the reference list and 

compared with the ‘true ethnicity’. For reasons of clarity and ease of reading flow, 

the data sources discussed here will only be those for reference populations, which 

will be then used to create a name-to-ethnicity reference list. Data sources used for 

the evaluation of the classification, that is, the target population, will be discussed in 

Chapter 7 when describing the evaluation of the classifications.  
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In the 13 studies described in Chapter 3, such ‘true ethnicity’ (or a proxy for it) in 

both the reference and target populations had to be previously known using an 

independent method (i.e. not name-based) and are listed in Table 3.3 (‘Reference List 

Production Method’). In building their name reference lists, these researchers had 

access to the names and ethnicity of people, always understood as a self-assigned 

identity, or other proxies for ethnicity, such as country of birth (of the person and / or 

parents), the parents’ ethnicity,  nationality, or judgement by a third person or name 

expert. However, as it was concluded in Chapter 3, all but two studies used very 

small reference populations to build their reference lists and to make universal 

inferences. The two studies which did have large enough reference populations as to 

satisfy the ‘Cook et al (1972) first criterion’ (of at least 13.4 people per surname) 

were Lauderdale and Kestenbaum (2000), which included 1,609,679 individuals 

from ethnic minorities, and Word and Perkins (1996), with 597,533, derived from 

patient registers and Census responses. The remaining studies used reference 

populations that were below 75% of the required minimum size of 13.4 people per 

surname. Even so these two studies only classified their populations into, 

respectively, six Asian and one Hispanic group. 

 

The aim of this thesis is to develop an ethnicity classification of the names of the 

whole population of the UK into a taxonomy that reflects the systematic variability in 

inherited names and naming conventions. Consequently, if it were to follow similar 

methods to those developed in the literature reviewed in Chapter 3, it would require a 

dataset covering the whole population and collecting ethnicity at the individual level. 

There is only one dataset available with these characteristics; the decennial Census of 
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Population. However, for reasons of privacy protection, data on individuals are not 

available until 100 years after the Census is carried out and the first time this 

question was asked in the UK was in 1991, so the first studies that will be able to do 

this will come out in 2091. There is a precedent to the use of names information from 

census sources, in that the US Census Bureau has used individual answers to the 

ethnicity question to create their own Hispanic Names file (Word and Perkins, 1996). 

However, initial attempts by this author to contact relevant people at the UK Office 

for National Statistics who had access to names in the Census were not encouraging. 

A very rich, but highly restricted dataset was indeed compiled by Bhopal et al (2004) 

in Scotland, linking individual people in the 2001 Census individual returns, hospital 

admissions, and patient, birth and mortality registers, for a longitudinal study on 

health. This linkage was done using the individual’s full name and address, and the 

South Asian name analysis techniques Nam Pechan and SANGRA were also applied 

to classify the names into these groups. Were a list of names and ethnicity or proxies 

to ever be produced from such dataset, it would definitely afford the best resource 

available for the purposes described in this research. However, early enough in this 

research it became obvious that Census data on names would not become available, 

at least within the life of the project. 

 

One alternative could be to go back over 100 years in the Census and try to use 

country of birth information to compile a list of names and most common countries 

of birth. However, this route would not have been very useful since the foreign 

names in British 19th century population bear little resemblance to today’s 

multicultural population. An analysis comparing the names of the 1881 Census and 

1998 Electoral register used in this research has been published by Tucker (2004a; 
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2004b), indicating that the main difference between the two registers are foreign 

names that have migrated through the twentieth century. 

 

Several attempts were also made to collect lists of names with ethnicity information 

or proxies such as nationality or country of birth from large population registers, 

such as from National Insurance registrations (Department for Work and Pensions), 

Workers Registration Scheme (Home Office) and the General Practice Patient 

Register (Department of Health), but these were not fully successful. A full list of 

potential datasets with data about migrants has been recently compiled by Rees and 

Boden (2006), some of which must hold names data and hence could produce 

valuable name dictionaries. 

 

However, through the Knowledge Transfer Partnership between UCL and Camden 

Primary Care Trust (PCT) that co-funded this PhD research, access to some of these 

lists – Patient Register, Birth and Mortality Registers, and Hospital Admissions – 

were made available, subject to confidentiality safeguards, for the London Boroughs 

of Camden and Islington (Camden PCT and Islington PCT). These Boroughs have a 

combined population of approximately 400,000 people. However, it was decided to 

use these rich datasets in the evaluation and applications sections of this research, 

and not to build the name classification itself, in order that it could subsequently be 

independently validated. There is only one small exception with this in the patient 

register, as will be explained in Section 4.3.5. Other evaluations of the classification 

were conducted using similar datasets of the London Borough of Southwark 

(Southwark PCT), and the Electoral Register with nationality for the London 

Borough of Hammersmith and Fulham (see Chapter 8). Even though, the analysis of 
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names for these was performed by internal researchers and the results anonymised 

prior to release to the author. 

 

Moreover, as regards the reference population, the research objective of creating a 

classification that guarantees near total population coverage is intrinsically at odds 

with the possibility of accessing a total population dataset of names that also includes 

the individuals’ ethnicity or a proxy for it.  Such universal and publicly accessible 

population registers, typically Electoral Registers or telephone directories, do not 

contain any explicit ethnicity information associated with people’s names. Despite 

this, it was decided to go ahead with this approach and to explore other techniques to 

classify names using the computational and onomastic approaches as described in 

Section 3.5.1 of Chapter 3. A range of different data mining techniques was used for 

their classification, as explained in Section 4.3. Based on these techniques and the 

literature reviewed in Chapter 3, two components of additional information were 

seen as key to enhance the knowledge about the origin of names; the relationship 

between the forename and surname in a person, and the geographic location of the 

name. Therefore, such registers had to be accessed with the person’s full forename 

and surname information, as well as full address or its fine aggregations, such as unit 

postcode or postal area. 

 

Therefore, and marking a departure point from most of the literature in this area 

(except for Tucker’s (2005) method), in this PhD thesis a reference population with 

total population coverage of individual names but without any ‘true ethnicity’ 

information was used. The names in this reference population were classified 

following a ‘computational-onomastic’ approach, in other words, names were 



 
Cha
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classified according to their intrinsic characteristics (forename-surname clustering, 

frequency, morphology, and geographic distribution) rather than the ethnicity 

reported by their bearers. 

4.2.2. Description of data sources used 

The data sources finally selected to build the name reference lists in this thesis were 

comprised of name frequency datasets with high population coverage and at various 

temporal and spatial resolutions for different countries (derived from the Electoral 

Register or telephone directories). These data sources are listed in Table 4.2, which 

also includes other characteristics such as the number of names included, and their 

temporal and geographic coverage. These datasets were obtained under a variety of 

use conditions from the data providers which restricted the level of disaggregation, as 

described in  Table 4.2 (‘resolution’ columns), or the availability of location 

information. 

 

 



 
   

 C
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Country/ 
Territory 

Name of 
Dataset 

Year Nominal 
Resolution 
(finest 
record) 

Spatial 
Resolution 
(smallest 
area) 

Data Provider Population 
included in Dataset 

Total 
Population 

Enumerated 

% of  
Country’s 

Total 
Pop.  

Country's 
Total 

Population 
(*) 

No. 
Unique 

Surnames 

Avg. 
People/ 

Surname 

Great 
Britain 

Electoral 
Register & 
Consumer 
Dynamics 

2004 Individual 
person 
(Forename 
and 
Surname) 

Postcode 
Unit 

Experian UK Residents 
registered to vote 
of age >17 (opt-in) 
+ consumer 
database 

46,336,087 77.5% 59,800,000 218,392 212 

Great 
Britain 

Electoral 
Register 

1998 Surname Postal Area Experian UK Surnames >100 
occurrences (age 
>17) 

37,278,477 63% 59,200,000 25,730 1,449 

Great 
Britain 

Census of 
population 

1881 Surname Postal Area 
(equivalent) 

ESRC UK Data 
Archive 

All census 
respondants 

28,225,211 81% 35,026,108 44,545 634 

Northern 
Ireland 

Electoral 
Register 

2003 Surname Postal Area Experian UK Residents 
registered to vote 
of age >17 

n/a n/a n/a n/a n/a 

Ireland 
(Republic 
of) 

Electoral 
Register 

2003 Surname County Experian UK Residents 
registered to vote 
of age >17 

2,912,541 73% 4,015,676 n/a n/a 

Australia Electoral 
Register 

2002 Surname Standard 
Statistical 
Division 
(SSD) 

Pacific 
Micromarketing 

Residents 
registered to vote 

7,784,676 38% 20,264,082 12,266 635 

New 
Zealand 

Telephone 
directory 

2002 Surname Province Pacific 
Micromarketing 

Telephone 
subscribers 

934,686 23% 4,076,140 n/a n/a 

United 
States 

Telephone 
directory 

1997 Surname State Ken Tucker Names with >100 
occurrences in the 
tel.directory 

81,000,000 30% 266,490,000 145,242 558 

Canada Telephone 
directory 

1996 Surname National Ken Tucker Names with >100 
occurrences in the 
tel.directory 

9,150,000 28% 33,098,932 33,355 274 

Spain Telephone 
directory 

2004 Individual 
person 
(Forename 
and 
Surname) 

Full Address Infobel Telephone 
subscribers that 
have not opt-out 

11,800,000 27% 43,200,000 292,512 148 
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Table 4.2: Sources of reference population data used to build the CEL classification 
(*) Country’s total population as per the official count for the year on which the dataset was drawn (year column) 
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The major source of data amongst those listed in Table 4.2 has been the Electoral 

Register for Great Britain, both in its 1998 and 2004 editions. The purpose of these 

registers is to record the names and addresses of British and foreign citizens entitled 

to vote in local or national elections in Great Britain (British, EU and 

Commonwealth citizens aged 18 or over, plus those that will attain age 18 during the 

year of the register’s currency).  Since 2002, UK residents have had the right to 

remove their records from of the public version of the Electoral Register, an option 

known as ‘opt-out’ (Electoral Commission, 2002). In the last few years the 

proportion of citizens who opt-out of the public version of the Electoral Register has 

risen as follows; 31.20% in 2004, 32.14% in 2005, and 36.71% in 2006, according to 

Equifax (2007). To compensate for ‘opt-outs’, private sector resellers of the Electoral 

Register, such as Experian, CACI or 192.com, supplement the public version of the 

Register, known as the ‘edited version’, with other data sources, such  as public 

registers (company directors and shareholders registers) as well as commercial 

surveys or third party customer data, in order to compile population databases.  

 

In the case of Experian (Nottingham, UK), this is now commercialised as a 

‘Consumer Dynamics’ file that in 2004 contained 46,336,087 adults, a higher 

number than those in the unedited version of the Electoral Register (Sparks, 2005). 

Two versions of this dataset for the UK were kindly made available by Experian to 

University College London. One from 1998, which represents the full Electoral 

Register of that year, but that was made available to UCL in a form that only 

included surnames held by 100 people or more and their frequencies by postal area. 

A second version for 2004 included all surnames and forenames at unit postcode 

level. Full details of these datasets are given in Table 4.2. 
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A different type of dataset used for historical analysis was the distribution of 

surnames in the 19th century in Great Britain (i.e. excluding Northern Ireland), 

derived from the individual responses to the 1881 Census. This file was kindly 

supplied by Kevin Schürer, Director of the ESRC UK Data Archive at the University 

of Essex, and contained counts of surnames by Parish in the 1881 Census (Schürer, 

2004). This file was aggregated to today’s Postal Areas in a previous project at 

University College London (Surname Profiler, 2006). In that project, this dataset 

made it possible to trace internal migration movements in the changing geographic 

pattern of names over time, while in the research described in this PhD it has been 

used to screen out names that have arrived in the UK during the late 19th and 20th 

centuries. 

 

An additional dataset used, that is not considered a ‘name dataset’ and therefore is 

not included in Table 4.2, is a Geodemographics neighbourhood classification 

system, Mosaic, provided by Experian, which classifies the UK’s 1.6 million unit 

postcodes into 61 types according to the demographics of the immediate residential 

neighbourhood as at 2001. The neighbourhood types were clustered by Experian 

using both UK Census 2001 small area statistics as well as other publicly available 

and commercial datasets (Harris et al, 2005). In this research, the Mosaic dataset has 

made it possible to match the areas of highest concentration of certain names and 

relate them to neighbourhood types with higher presence of particular ethnic groups, 

religions, socioeconomic types, or urban/rural populations, as will be described in 

Section 4.3.3. 
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Besides the UK data, other less detailed population files for other countries or 

periods have been sourced from Electoral Registers or telephone directories from six 

other countries (Ireland, Australia, New Zealand, the US, Canada and Spain) 

containing surname and sometimes forename data at different levels of spatial 

disaggregation. The full details and characteristics of these datasets are also listed in 

Table 4.2. Other minor datasets were also used at different stages of the classification 

process, and will be mentioned in the context of the purpose for which they are 

applied. 

 

The sourcing, compilation, cleansing and standardisation of the datasets listed in 

Table 4.2. consumed a considerable part of the research process and large amounts of 

computer time and power. These datasets were loaded in an Oracle database in order 

to process and link them in an efficient manner. The database contained over 100 

million records pertaining to 225 million people and approximately 500,000 

surnames and 200,000 forenames. Different types of aggregations and calculations 

were performed on the original registers using Structured Query Language (SQL) 

statements, creating multiple tables that were organised in a relational database 

management system, linking individual people with forename and surname tables, 

postcode and geographical units tables. The Oracle environment permitted efficient 

manipulation of the datasets and calculation of summary measures, not only through 

individual SQL statements but also through programming code in Oracle’s 

proprietary language PL/SQL that makes it possible to link SQL statements with 

programme flow controls and to interact with the database in a dynamic way. These 

aspects of technical manipulation of the database will only be made explicit through 

the rest of thesis wherever is deemed relevant for the particular point being 
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explained, while elsewhere they will remain an implicit aspect of the overall 

techniques used. Examples of some of these SQL queries are offered in the Appendix 

4. 

 

After this phase of data sources evaluation and compilation process, a series of 

datasets were compiled and organised in a relational database management system 

for further processing. As described, these included universal name and addresses 

publicly available population registers, sourced from telephone directories and 

Electoral Registers at various spatial granularities. The next section provides a 

general description of the techniques to classify the names in this database system, 

while the explanation of how these datasets were mined in different ways to classify 

their names into cultural, ethnic and linguistic groups is covered in the following two 

chapters (5 and 6). 

 

4.3. Name Classification Techniques 

This section will set down the basic methodological framework that was developed 

during this research for the classification of names into the CEL Taxonomy. The 

different techniques and approaches identified from the literature have been 

summarised, grouped and renamed as a set of seven techniques. They are presented 

here with the benefit of hindsight after having been evaluated in the practice of 

classifying names. However, each of these seven techniques described here 

summarises the heuristics that were developed in the exploratory phase of the 

research, covered in Chapter 5, which guided the (‘confirmatory’) stage reported in 

Chapter 6. The automated approach described in Chapter 6 focuses on the extensive 
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use of one of these techniques, forename-surname clustering, as is explained in that 

chapter.  

 

The task of classifying the 281,422 surnames and 114,169 forenames most 

commonly present in Britain in 2004 into cultural, ethnic and linguistic groups (CEL) 

is one that cannot be approached manually or following traditional etymological 

methods. The Dictionary of American Family Names (DAFN) includes the 70,000 

most common surnames in the US and their etymological explanation, and comprises 

three bulky volumes of over 2,000 pages which took ten years and more than twelve 

experts to prepare (Hanks, 2003) even using as it did a semi-automated initial 

classification system to allocate groups of names to linguistic experts according to 

diagnostic forenames (Tucker, 2003). On the other hand, building name reference 

lists based upon pre-existing name-to-ethnicity information, applying the traditional 

approach used in the public health literature and reviewed in Chapter 3, is not 

possible since there are no such datasets available which cover the whole population, 

as pointed out in the previous data sources section (4.2). Therefore, given the number 

of names to be classified and the scarce resources available, a different type of 

approach was required for the current UK project. 

 

Three main alternative approaches to classify names in ethnic groups were identified 

from the literature, and have already been covered in Chapter 3. The first one is the 

‘Forename-Surname Clustering’ technique, which classifies surnames according to 

cross-occurrences of diagnostic forenames, and vice-versa, an early version of which 

was the CELG technique developed for DAFN and described in detail in section 

3.5.2 (Tucker, 2005). The second one is a technique sometimes called ‘geocoding’ 
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(Fiscella and Fremont, 2006), ‘neighbourhood context’ (Abrahamse et al, 1994), or 

‘geographical distribution’ (Passel and Word, 1980; Word et al, 1978), that basically 

consists of relating pre-known geographical concentrations of certain ethnic groups 

with concentrations of names in the same area, relative to national averages. This 

broad technique will be provisionally termed ‘geographical analysis’ here and will be 

further discussed later in this section under two different aspects; ‘spatio-temporal 

analysis’ and ‘geodemographic analysis’. A third recurrent technique found in the 

literature is termed here ‘text mining’, and relates to all the rules and text 

manipulation procedures that relate common name stems, endings, syllable patterns, 

character sequence and character presence or absence, to a particular cultural, ethnic 

or linguistic group (Bonaventura et al, 2003; Patman and Thompson, 2003; Perkins, 

1993) or sometimes to a gender (Barry and Harper, 2000). 

 

These three broad techniques together relate forename-surname clustering, 

geographical analysis of names, and name morphology, and as such constitute the 

core data mining methodology that will be explored in this thesis. The geographical 

analysis technique is divided here into two aspects: spatio-temporal and 

geodemographic analysis, bringing the number of techniques to be described to four. 

A fifth technique that will also briefly be described here is the use of lists of names 

with pre-known ethnicity to build name reference lists, the core method used in the 

literature reported in Chapter 3. Little use of this fifth technique was made because of 

the lack of data with universal coverage explained in Section 4.2.1. Finally, two other 

methods with a smaller relative effect than the rest are manual methods to research 

individual names, and international comparison of name frequencies, the latter 

practically not mentioned in the literature. This brings to seven the tally of name 
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classification techniques used in this research, and each will be described in the 

following subsections. All of the name classification methods found in the research 

literature relate either directly or indirectly to at least one of these seven techniques. 

 

A summary of these seven major techniques used will be offered here, with the 

objective of giving meaning to the concepts employed in the next chapters and 

justifying their final selection after a preliminary evaluation. 

 

4.3.1. Forename-Surname Clustering (FSC) 

Forename-surname clustering (FSC) is the name given here to a technique that the 

present research has developed as an enhancement of the methodology originally 

termed the ‘CELG technique’ and introduced by Tucker (2003; 2005). FSC consists 

of identifying clusters of names grouped by high frequencies of cross-occurrences 

between forename and surname in individuals (e.g. surnames will be considered 

Chinese if a high proportion of their bearers also have Chinese forenames and vice 

versa). This technique is based on the underlying assumption that most cultural, 

ethnic and linguistic (CEL) groups; (a) adopt distinct forename naming practices that 

are passed from one generation to the next, even after the original language may have 

been lost in a family descending from migrants (Tucker, 2005), and (b) tend to marry 

members of the same CEL group (Lasker, 1985), with exogamy becoming prevalent 

only several generations after migration. These two processes, together with the 

geographical and social factors that underpin the relationship between marriages or 

procreation and naming practices, result in unique forename-surname clustering 

patterns and preserve the discontinuities between clusters. 
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The basic idea behind this technique is the same mechanism used in the DAFN to 

filter 70,000 surnames into 44 onomastic groups for etymology specialists to analyse, 

which was described in Section 3.5.2. The only difference being that in the DAFN 

the clustering was induced with a list of diagnostic forenames in a total list of 85,000 

forenames pre-classified by CEL, while forename-surname clustering (FSC) can also 

be done automatically. 

 

FSC can therefore be either user-induced or automatic. In the first case, the user 

selects a ‘forename A’ at random where the CEL is previously known, such as 

‘Pablo’ (Spanish CEL), which will act as a ‘seed’ for building a new Spanish CEL. 

The user then finds the most common ‘surnames B’ that Pablos bear, such as Mateos, 

Garcia, Perez, etc, and then all the ‘forenames C’ associated with those ‘surnames B’ 

(e.g. Juan, Rosa, Javier, Marta, etc.). By repeating this process from the start for the 

‘forenames C’ and conducting further iterations, the same forenames and surnames 

tend to be highly clustered around those individuals belonging to a same Spanish 

CEL category. This iterative process is illustrated in Figure 4.1, where only two of 

these cycles are shown (A-B and C-D). 
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Forenames 

(A) Pablo  Mateos 

García  

Juan 

Rosa Sánchez 

Rodríguez 

(B) 

(C) 

(D) 

Surnames 

Figure 4.1: The Forename-Surname Clustering (FSC) technique, applied to a cluster of Spanish 
names 
 

Therefore, after a few cycles one can find a set of several hundreds or even 

thousands of names belonging to a common CEL cluster, just by knowing a few 

forenames diagnostic of one CEL. In the automatic version of this technique, it is not 

even necessary to know the CEL of ‘forename A’; the computer chooses a forename 

at random and automatically identifies clusters of common cross-occurrences 

through the same cycles described above. At the end of the automated process the 

user decides the most likely CEL of the whole cluster by looking up one or two 

names in a dictionary or through one of the other techniques described in this section. 

Another option is to attempt to cluster a large list of surnames all at once, measuring 

the ‘forename distance’ between them in terms of relative frequency of forenames 

found by common bearers in a pair of surnames. This option will be further analysed 

in Chapter 6, when explaining the automatic approach to classify names. 

 

Returning to the DAFN example, manual classification of an initial set of 

approximately 3,000 forenames into CELs, and the application of FSC technique, 

allowed the authors to grow this list to 85,000 forenames preliminary coded by CEL 
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(Tucker, 2005). They used this list to automatically assign a CEL to over 100,000 

surnames using this technique, proving its effectiveness. 

 

This technique is perhaps the most useful method for the classification of large 

number of names into CELs, and it has indeed proved very reliable for classifying 

high frequency names in the heuristic approach presented in Chapter 5, and all of the 

names in the automatic approach reported in Chapter 6. It works best with CEL 

groups that are distinctive, such as Japanese names. Amongst its limitations are that 

it requires full forename and surname information, which is not always possible 

(many telephone directories just list initials instead of forenames). Furthermore, it 

has proved less appropriate for names that correspond to well-established immigrant 

groups that are very integrated with the ‘host population’ (e.g. Jewish or Huguenot 

names in Britain), since their overlap with ‘host CEL’ is high, and also for names 

with small frequencies since the pool of names for cross occurrences is too small to 

make inferences. However, as it will be explained in Chapter 6, further elaboration of 

the different clustering methods for this technique can yield much more productive 

results than all the other classification techniques taken together. 

 

4.3.2. Spatio-temporal analysis  

This technique is based on the analysis of spatio-temporal differences in the 

geographical distribution of name frequencies and rates across the locations and time 

periods available in the datasets. This implies the identification of significant 

differences in the total or relative frequencies of names between different areas 

within a country and between different countries or points in time. Once such 

significant differences are identified, there is a requirement for expert knowledge or 
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additional data on the geography and history of the countries and regions, and their 

internal and international migration and patterns. Through such human judgement or 

data analysis the CEL categories associated with such migration or differential 

distributions need to be explained. There are hundreds of different types of such 

spatio-temporal patterns and just a few different illustrative examples will be 

mentioned here. 

 

For example, in the UK those names which are proportionally more common in 

postal area ‘NW’ (North West London) than in any other of Britain’s 120 postal 

areas include large numbers of Jewish names, whilst most Greek or Greek Cypriot 

names have postal area ‘N’ (North London) as their most common. Figure 4.2 shows 

a map of Greek or Greek Cypriot names in London using the 2004 Electoral Roll 

classified by ethnicity during the first phase of the heuristic approach described in 

Chapter 5 and in Mateos et al (2007). It shows the area of concentration of Greek 

names in North London. Likewise, if a non-English name is more common pro rata 

in Wisconsin than in any other US state, this will support the contention that it is of 

German or Scandinavian origin, while other names that might appear to be Germanic 

yet are more common in New York than in any other US state are more likely to be 

Jewish than German. International comparisons are very useful, for example, most 

Chinese names are relatively more common as a proportion of the total population in 

the US than in the UK, whereas most South Asian names are proportionally less 

common in the US than in the UK. Moreover, names that are more common in 

Australia than in the US or the UK, and within Australia are even more common in 

New South Wales, are likely to be Vietnamese rather than Chinese.  
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Figure 4.2: The distribution of Greek and Greek Cypriot names in London by Output Area 
(2004) 
The map shows percentages of people in each Census Output Area classified into 5 intervals, using 
the 2004 Electoral register. Source: Mateos et al (2007) 
 

With regard to the temporal dimension of this type of analysis, names present today 

in Britain that did not appear in 1881 are likely to be of foreign origin (or of more 

recent invention). Conversely, surnames of foreign origin that were present in Britain 

in 1881 are likely to have high numbers of British forenames today and therefore are 

unlikely to be clearly identified by the FSC technique. 

 

The spatio-temporal analysis technique has been especially useful in the heuristic 

approach of this research (Chapter 5) to identify CEL groupings within regions or 

constituent countries of the UK, such as Scotland, Wales, Northern Ireland, 

Cornwall, or the Channel Islands. It has also been very useful to identify the most 

frequent names in the ethnic minority groups that are highly concentrated in a few 
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areas, such as South Asians in the UK. Its major limitation is that it requires detailed 

specialist knowledge or data of historic and current migrant settlement patterns by 

small area. Furthermore, it is applicable only to names with high frequencies, i.e. 100 

or above because a sufficient number of them are required to be able to identify 

regional clusters (e.g. if a name has a national frequency of 10, of which 9 instances 

are found in one single area, it could be just because of a couple of related families 

from an ethnic group not belonging to the area’s major ethnic groups). 

4.3.3. Geodemographic analysis 

Geodemographics is defined as ‘the study of population types and their dynamics as 

they vary by geographical area’  (Birkin and Clarke, 1998: 88). The geodemographic 

analysis used in this research entails identifying the socioeconomic types of 

neighbourhoods where a name is most commonly concentrated, and making 

inferences about the population groups living in them. The analysis of the UK 2004 

Electoral register data using the geodemographic neighbourhood classification 

Mosaic proved useful in identifying non-British names which are highly 

concentrated in a few geodemographic types.  

 

There are 61 types of neighbourhoods in the 2001 Mosaic classification, numbered 

from 1 to 61, which are aggregated in 11 groups, identified by letters A to K 

(Experian Ltd., 2004). Some examples of geodemographic types in Mosaic that 

indicate the presence of certain ethnic minorities are; Mosaic Type C20 ‘Asian 

Enterprise’ which has a particularly high proportion of residents classified by the 

Census as South Asian and of Hindu or Sikh religion.  D26 ‘South Asian Industry’ is 

an example of a Mosaic Type with a very high proportion of South Asian Muslim 

residents.  F36 ‘Metro Multiculture’ by contrast is a Mosaic Type with a high 
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concentration of more recent immigrant groups, only a small proportion of whom 

originate from South Asia. Other Mosaic Types with higher proportions of minority 

ethnic groups than the national average are A01 ‘Global Connections’, with Jewish 

and Armenian names, E28 ‘Counter Cultural Mix’, and D27 ‘Settled Minorities’, 

which is characterised by a preponderance of Caribbeans, Greek Cypriots and Turks. 

Although these ethnicity and religious aspects could have been derived directly from 

Census data at Output Area level (average 100 households), the fact that Mosaic 

synthesises several other geographic and demographic factors into one variable and 

that it is available at the unit postcode level (average of 12 households), made it 

easier for the name analysis carried out here. However, a very similar result might 

have been achieved by just using UK Census data directly (Harris et al, 2005), 

combining the questions on ethnicity, religion, country of birth and household 

demographics.  

 

An extension to this geodemographic analysis of the UK is to analyse the percentage 

of people with names characteristic of rural as opposed to urban postcodes, or with 

Mosaic Types of a ‘high socioeconomic status’. This is based on the observation that 

most ethnic minorities are concentrated in urban areas (exceptions being some 

traditional groups in agri-business work such as the Portuguese) and of that the 

groups that live in ‘high status’ postcodes tend to originate in particular countries 

(such as Japan, Scandinavian countries, Saudi Arabia, etc.). 

 

Geodemographic analysis has proven useful for identifying certain non-British 

names that are typically very concentrated in a limited number of areas, particularly 

Jewish, South Asian and African names. However, this technique is less effective in 
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drawing distinctions within the major non-British CELs (intra-South Asian or intra-

African divisions) or less residentially concentrated non-British CELs. 

4.3.4. Text mining 

Text mining embraces a series of techniques that seek to capture similarities in the 

morphology of names through text pattern analysis, in order to relate them to a 

particular language of origin and thus a CEL.  

 

Most of the literature on text pattern mining of names comes from the computer 

linguistics field, where personal names, as well as other proper names, have arrived 

relatively late to a language modelling process in which computers are being adapted 

to dealing with natural (human) language. To illustrate this point it suffices to 

mention the problem of running a conventional spell checker software to any 

document that contains a number of proper names, to the frustration of the user who 

needs to skip over most of them since they are not found in the built-in dictionary. 

Names have been recently termed ‘a new frontier in text mining’ (Patman and 

Thompson, 2003: 27), and several research efforts seek to deal with the problems and 

exceptions of efficiently managing proper names from different languages in speech 

synthesis/recognition for automated voice systems (Bonaventura et al, 2003; Llitjos, 

2002), in entity and semantic extraction (Leino et al, 2003), in identity linking across 

several databases and languages (Williams and Patman, 2005), in document 

searching and archiving, in data entry and cleansing operations, and so on. Other 

interesting approaches from statistics or biology have proposed a probabilistic 

approach for automatic discovery of character sequences patterns (e.g. Rigoutsos and 

Floratos, 1998). Most of these approaches start with a system to sort names into their 
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probable languages of origin, using amongst others text mining techniques, in order 

to apply subsequent rules to each language. 

 

The text mining approach taken in this PhD thesis has been a heuristic one, ‘letting 

the data speak for themselves’ in respect of identifying commonly recurring 

character patterns in the names database that unequivocally lead to the identification 

of a CEL group in a set of names. There are two basic techniques to find forms of 

language commonalities between names; name stems and name endings on the one 

hand, and character sequences and character absences on the other. 

 

The easiest way to group names by their stems is to sort them in alphabetical order, 

while to do so by their name endings the reverse of the name (i.e. the reverse of 

‘MATEOS’ would be ‘SOETAM’) is first created and then sorted in alphabetical 

order. Once names are sorted by either their stems or endings, they are reviewed in 

order to isolate the main groups of common stems/endings (e.g. many names starting 

with ‘ABD’ are of Muslim origin and most with ‘MAC’ are Scottish or Irish, while 

most names ending in ‘SKI’ are Polish, ‘SSON’ are Swedish, ‘OVA’ are Russian or 

Czech, ‘EZ’ Spanish, or ‘ULOS’ or ‘AKIS’ Greek). The algorithm developed to 

process names in this way is as follows: 

1. Sort all names in alphabetic order. 

2. For each unclassified name do steps 3 to 8. 

3. Look at the 10 previous and 10 subsequent neighbouring names in the 

list (20 neighbours). 

4. Identify which CEL these neighbours have been assigned to. 
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5. Assign a weight to those neighbouring CELs by inverse distance to 

the target name; a weight of 1 (farther) to 10 (closer) in each direction 

from the name (a). 

6. For each CEL present in the 20 neighbouring names, sum up their 

weights (∑a) 

7. Re-sort all the names using the reverse of the name (termed anti-

alphabetic order) 

8. Repeat the process once from 3 to 8 (∑b) 

9. Create a total score per name and CEL as follows: 

100
220

⋅
+

= ∑ ∑b a 
S  

Where S is the score, a and b are the result of step 5 for the alphabetic and 

anti-alphabetic rounds, and the denominator (220) is the maximum 

possible total score for the 10 neighbouring names (x=n*(n+1)/2; 

which is in this case is 10*11/2 =55) in the 2 directions (55 x 2= 110) 

and 2 rounds (alphabetical and anti-alphabetical order, i.e. 110+110= 

220) 

10. Rank the unclassified names by the total score. 

11. Select those name–CEL combinations with a total score of at least 

40% and then allocate the CEL to the name. 

 

An alternative method is to extract the first and last 2, 3, and 4 letters of a name, 

aggregate them and calculate their frequency in the name dataset, what makes it 

possible to locate the most common name stems and endings in a list of names. The 

CEL of each particular name stem or ending is then decided by using one of the other 
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techniques (i.e. non-text mining), and is then applied to all names with such forms 

that remained unclassified after using the previous techniques. 

 

The advantage of the sorting of names versus taking a discrete number of ending or 

stem letters, is that the former makes it possible to find in a single step patterns of 

names with a common origin even when they share 2, 3, 4 or more letters, while the 

latter might miss names that are not so obviously related (e.g. Basque names ending 

in ‘BERRI’ ‘BARRI’ or ‘URI’ are sorted together in their reverse form). 

 

The second form of commonalities between names of the same CEL is letter 

sequences and letter absence. For example, Spanish names linguists and statisticians 

have found that they never contain the letters ‘K’ or ‘W’ (Buechley, 1967), and the 

only double letters present are ‘RR’ and ‘LL’(Word and Perkins, 1996). It is also 

known that the double letter ‘AA’ is the transcription into roman alphabet of  the 

Nordic letter ‘Å’, and therefore many names starting or containing ‘AA’ are likely to 

have originated in this region. However, this technique requires the development of 

large repertoire of letter sequences and absences and hence a good knowledge of 

each CEL’s language. 

 

In the context of this research, text mining has proved useful for identifying non-

British names which have been assimilated by the host community, for example 

those which, on the basis of FSC analysis, appear to be British but which are for 

example of Scandinavian origin. It is also a useful strategy for classifying large 

numbers of low frequency names, such as Spanish or Italian names in the UK, and 

this reduces the number of names that would otherwise remain ‘unclassified’. It is 
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also useful to find different name variants that might have originated from the same 

name (e.g. Mohamed, Mohammed, Muhammad, Mohammad). The main 

disadvantage of this technique is that it is not sufficiently reliable to override the 

results found through the other techniques, since there are exceptions to the text 

pattern rules (e.g. O’Brian could be misclassified as Armenian using text mining 

because of its ending in ‘IAN’, but is in reality of Irish origin). In other words, as 

mentioned, text mining is best used in classifying names not covered by other 

techniques. 

4.3.5. Name to ethnicity data 

This is the method followed by most of the name studies in epidemiology, as 

reviewed in Chapter 3. As explained there, it is based on using population registers 

where the ethnicity (or a proxy) and the name of the person is already known in order 

to build appropriate name-to-ethnicity reference lists. Only two of the studies 

reviewed in Chapter 3 had access to a large enough population register to produce a 

reference list with a significant amount of unique surnames, in this case of over 

20,000 surnames each  (Lauderdale and Kestenbaum, 2000; Word and Perkins, 

1996). These two studies satisfied the criterion established by Cook et al (1972) for 

minimum reference population size. Even then, these two major studies only aim to 

classify 7 ethnic groups, and not all of the possible ones. 

 

As previously mentioned, it proved impossible to access a register of names in the 

UK which would include a large sample of the population surnames together with 

their ethnicities in sufficient numbers. Therefore, partial lists of names have been 

used in which a proxy for ethnicity was known, such as country of birth, or 

nationality. 
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One of the lists consulted is a list of surnames and forenames by nationality in 

Catalonia, Spain (IDESCAT, 2006). Furthermore, aggregated data of most common 

names by country of birth were obtained from patient registers from Camden 

Primary Care Trust in London, including names by country of birth with 4 or more 

occurrences (a minimum threshold for common names applied in order to preserve 

confidentiality). 

 

This technique proved useful for ‘seeding’ new CELs out of pre-existing broader 

groups (specifically, of breaking Eastern European names down into Russian or 

Polish names), especially for ‘rare’ CELs, and thus needs to be used in combination 

with the FSC technique. Independently sourced name-to-ethnicity data is also very 

useful to validate the name classification, as it will be described in Chapter 7. 

 

However, this technique does also present its limitations, the major one being the 

limited number of names for which ethnicity or place of birth is known. Even where 

these lists exist, two problems might be encountered; the availability of only a small 

number of ethnic groups (e.g. the 16 UK Census categories), and the differential 

distribution of names between; (a) periods of time; (b) receiving countries of 

immigration; and (c) regions within those countries, which all might introduce biases 

in the name to CEL attribution. These factors were explained in Chapter 3 Section 

3.4.1. 

4.3.6. Lists of international name frequencies and genealogy resources  

This technique complements the others and essentially consists of accessing new and 

more anecdotal sources of name frequency data upon which all of the previous 
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techniques are based. It entails collating lists of names, and preferably their 

frequencies throughout as many countries as possible.  

 

This has only been possible because of a significant surge of interest in genealogy 

and family history through the Internet in the last few years, which has only become 

apparent over the last ten years (see Rogers, 1995 for a striking account of the 

material available to a genealogist then). According to The Guardian, genealogy is 

now second only to pornography in generating internet traffic (The Guardian, 2004), 

and following this public thirst for information about ancestry, a range of data 

providers are willing to publish name data on the web, ranging from formal 

institutions such as national statistical offices, to amateur genealogist blogs. A 

previous project at University College London to show historic and current surname 

distributions in the UK has also leveraged this interest with over 3,000 daily visitors 

at www.spatial-literacy.org.  

 

Amongst these types of lists, several resources are available from the official 

statistics offices or public registers in some countries, for example, lists of forenames 

and/or surnames and their frequencies in Belgium (Statbel, 2006), Denmark 

(Danmarks Statistik, 2006), Iceland (Statistics Iceland, 2006), Madrid and Catalonia 

in Spain (IDESCAT, 2006; Instituto de Estadística de la Comunidad de Madrid, 

2006) and Germany (Gesellschaft für deutsche Sprache, 2006). These lists have been 

used to re-apply the techniques previously mentioned, so that broader CELs such as 

Scandinavian, Central Europe, or Hispanic, could be broken down into finer CELs, 

for example making it possible to distinguish between Wallonian and Flemish names 

in Belgium, or Catalan and Castilian in Spain.  

http://www.spatial-literacy.org/
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Other lists of names and their language of origin (with no frequencies) are available 

on the web and have allowed the classification of names from countries as diverse as 

Ghana, Romania and Albania. Furthermore, frequency data can be computed from 

electronic telephone directories from different countries, where available, in order to 

compile international comparison lists. 

 

This method is especially useful for classifying names from CELs where the names 

overlap, (e.g. Albania, Croatia, Serbia) and to search for new CELs and seed them in 

the Forename-Surname Clustering (FSC) technique to split up broader groups. 

However, FSC works best for high frequency names, and not so well for lower 

frequency ones, since a few individual surname-forename pairs can introduce a 

strong bias in the classification. Amongst other limitations is that the number of 

names available on the web is relatively small compared to an Electoral Register or a 

telephone directory, and their quality in linking names to a true language of origin is 

varied, with names ‘claimed’ as own from different countries or languages, so some 

further research and arbitration is necessary. This is where having name frequency 

with some geographical disaggregation is very useful (e.g. using telephone 

directories) 

 

4.3.7. Researching individual names 

As a last resort, when names cannot be classified using any of the methods presented 

above the last resort is to search for a particular name. Such searches can be done  

either in name dictionaries, or in electronic telephone directories, or through a web 

search engine, such as Google. In this last one type of search, the objective is to find 



 
Chapter 4 - Taxonomy, Materials and Methods  166 

 

particular associations between a name and a country or language through the 

contextual information in which they are found on the web. A similar technique to 

link geographic information found in miscellaneous web content, termed ‘heuristics 

for geo-referencing web pages’, has been developed by Silva et al (2006) to perform 

such associations automatically. The obvious limitations of this method are that it is 

time consuming, dictionaries are only available for a few names or countries, and 

different CELs have a very different presence on the Internet (e.g. African names are 

misrepresented in the web), or duplicate and competing CELs are presented for some 

of the same names. However, this method has proved very useful to seed new CELs 

into the FSC technique, where a forename or surname has a high proportion of 

corresponding names that are not classified – as, for example, to identify Fijian and 

Lao names in Australia or Ethiopian names in the UK. 

4.3.8. The name pattern analysis toolbox 

The set of seven classification techniques described in this section summarises the 

different approaches to name classifications found in the literature. They also 

comprise the preliminary outcomes of testing them on the UK data in this research, 

identifying the types of situations in which they are most or least useful. The 

underlying principles behind each of these techniques are consistent throughout the 

literature, and can be briefly summarised as finding patterns in the naming practices, 

geographic distribution, name morphology, and linguistic associations in names. 

These form the core set of tools available to the task of classifying a universal 

register of names into a comprehensive taxonomy of cultural, ethnic and linguistic 

origins.  
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4.4. Conclusion 

This chapter has set down the three cornerstones upon which the name-based 

ethnicity classification developed in this thesis will be based; name taxonomy, data 

and techniques. These three components form the interwoven elements of a system 

that will be further developed in subsequent chapters, but that needs to be explicitly 

specified and discussed from the outset. 

 

Although many possible classifications of human groups have been proposed, for the 

purpose of classifying them in terms of their name origins the use of a linguistic 

classification as a base for such taxonomy was amply justified here, following 

onomastic criteria. The Cultural, Ethnic and Linguistic classification, hereinafter the 

CEL classification, is ultimately based in Hanks (2003) DAFN dictionary’s 

taxonomy, but is expanded here to many more groups and adapted to the British 

context and the purpose of this thesis. Its terminology and relationships are now 

based on the most commonly accepted language classification (Ethnologue- ISO 

639-3), adapted to naming practices and regions according to religious or geographic 

factors. As a result, this research has proposed a taxonomy of 185 CEL types 

primarily built to classify ethnic groups as found in contemporary British society, 

and as such the hierarchy of CEL types are structured according to the relative size of 

each group and their names frequency distribution in Britain. 

 

In order to fulfil the main objective of this thesis, i.e. to develop a name-based 

ethnicity classification to cover all potential groups in Britain, a population register 

with detailed name and origin data and universal coverage would have to be sourced. 

However, such registers with name and ethnicity data, or a proxy for it, are not 
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publicly available. After evaluating several alternatives, the strategy adopted was to 

collect a series of universal name and address publicly available population registers, 

namely telephone directories and Electoral Registers from different countries and 

different levels of disaggregation, and exploit them in innovative ways to classify 

their names by ethnicity following a series of data mining techniques found in the 

literature. 

 

These techniques were used to put these two components together; the universal list 

of names to be classified into the CEL taxonomy. Three alternative broad methods 

were repeatedly found in the literature; forename-surname clustering, geographical 

analysis of names, and name morphology pattern analysis. These methods were 

subdivided into more specific techniques in combination with the more traditional 

name to ethnicity methodology reviewed in Chapter 3, to form seven techniques that 

have been described in detailed in this chapter; forename-surname clustering (FSC), 

spatio-temporal analysis, geodemographic analysis, text mining, name to ethnicity 

data, lists of international name frequencies and genealogy resources, and 

researching individual names. 

 

Therefore, taxonomy, material and methods, as the title of this chapter suggests, form 

the set of tools with which an improved classification into cultural, ethnic and 

linguistic groups of all the names occurring three or more times in Britain has been 

attempted in this research, following two different approaches; a heuristic and an 

automatic one. Both approaches are described in the next two chapters. 
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Chapter 5. Heuristic Approaches to Creating a Name 

Classification 

 

As discussed in the previous chapters, the end objective of this research is to classify 

into cultural, ethnic and linguistic groups (CELs) every surname and forename 

present in Britain that has a frequency of 3 or more people, and to assign a 

probability of association between each name and its CEL (here termed ‘name 

score’). Using the main population register data source available to this research, the 

2004 Electoral Register (and Consumer Dynamics enhancement), this means 

building and classifying a reference list of 281,422 surnames and 114,169 forenames. 

The datasets to be used as well as the potential classification techniques have been 

described in the previous chapter. It has been emphasised that the lack of available 

data linking name and ethnicity with extensive coverage of the UK population makes 

it necessary to develop alternative approaches for the purposes of this research. In 

methodological terms, there are many different ways in which the tools described in 

the previous chapter might be applied. 

 

Two approaches to classify the lists of names mentioned above were followed during 

the PhD research: an initial exploratory approach, described in this chapter, during 

which heuristics were identified and developed; and a subsequent automated and 

integrated approach, described in the next chapter (6), that sought to distil the 

accumulated experience of the exploratory phase in a robust and transparent manner. 

The name classification resulting from the automated and integrated approach is then 

evaluated in Chapter 7. 
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The initial heuristic approach, covered in this chapter, laboriously classified different 

groups of names following the techniques described in the previous chapter (4), as 

they were first investigated, specifying them through different rules and applying 

them to different stages in a dynamic and iterative process. Because of the 

cumulative and exploratory nature of this approach, it is described as ‘heuristic’, 

fitting well the definition of this term in found in Oxford English Dictionary; ‘2- 

[computing] proceeding to a solution by trial and error or by rules that are only 

loosely defined’ (Compact Oxford English Dictionary, 2005: 285)

 

The heuristic procedures are summarised in this chapter through a core set of these 

rules and processes and their sequence of use in the decision process, which have 

been substantially synthesised here for the purpose of clarity and brevity. The actual 

detailed process was in practice much more complex, in terms of number of 

exceptions and iterations, and unfortunately cannot be fully described in the space 

available in this thesis.  

 

The reason to adopt this ad-hoc methodological approach to classifying name lists is 

because the research did not start with any pre-conceived notions of the optimal 

methods to classify all of the most frequent names according to their origins, and 

neither were all of the datasets available from the outset. Therefore a series of 

exploratory rules were tested and applied in a sequential process guided essentially 

by pragmatic considerations, not necessarily in the most logical order. This 

essentially heuristic approach shaped the way in which the first version of the final 
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CEL name classification was built, the techniques that were employed, and possibly 

the results that were obtained, as it will be evaluated later. 

 

The chapter is structured in six sections. Section 5.1 describes how the heuristic 

approach was developed in a three stage design, how each of these was linked to 

availability of different tiers of names and how this presented a moving target in 

terms of the number of names to be classified. Sections 5.2 to 5.4 describe the 

detailed rules, decisions and processes for each of these three stages and tiers: section 

5.2 considers the stage and tier 1 consisting of the top 25,630 surnames; Section 5.3 

the stage and tier 2 consisting of the top 30,000 forenames; and Section 5.4 for stage 

3 including the remaining surnames and forenames to reach a final reference list of 

281,422 surnames and 114,169 forenames. In order to illustrate this sequence of 

stages, a comprehensive flow chart is included in each of these sections (Figure 5.1, 

Figure 5.2 and Figure 5.4). Finally Section 5.5 summarises how all of the classified 

names were put together in name-to-CEL tables.  

5.1. Stages in the Creation of the Classification 

A series of data sources concerning several reference populations were used in order 

to create a name reference list. These were initially described in Section 4.2.2 and 

were summarised in Table 4.2 as nine separate datasets (Great Britain- GB 2004, GB 

1998, GB 1881, Northern Ireland, Republic of Ireland, United States, Canada; 

Australia, New Zealand, Spain). However, two of these datasets could not be sourced 

at the beginning of this research project; the GB Electoral Roll & Consumer 

Dynamics file and the Spanish Telephone directory, both for 2004. The former 

dataset will hereinafter be called ‘GB04’, and together with the Spanish directory is 
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the most detailed of the datasets in terms of the number of surnames and forenames 

that they contain and their resolution at the individual level. They only became 

available at a late stage in the research project. The other eight datasets were all 

available from the outset, but only included surname data (not forenames) and the 

records were aggregations of individuals to some coarse level of geography (i.e. no 

individuals or neighbourhoods, for details see column ‘Nominal Resolution’ in Table 

4.2).  

 

It must be also added that this PhD research built upon the cumulated experience of 

the UCL Surname Profiler project (Surname Profiler, 2006), which mapped the 

geographic distribution of the most frequent 25,630 surnames in Great Britain in 

1881 and 1998 and used two of the datasets mentioned above. In this project, the 

25,630 surnames were classified according to their etymological or regional origin, 

most of them within the British Isles. However, this list included a minority of 2,978 

non-British surnames which were classified into 12 broad ‘international groups’. 

This last list formed the initial motivation to start this PhD, and the description of the 

process to develop it is incorporated in the stage 1 described in Section 5.2. 

 

The non-availability of some data sources had implications for the research design, 

and the way in which the resulting ‘heuristic CEL name classification’ was built. If 

all of the datasets had been available from the outset, and it had been understood that 

the ambitious objective of classifying such a large number of surnames and 

forenames was attainable within the lifespan of a single PhD, it is likely that other 

methodological paths would have been followed. In the event, this belated 

realisation, and the subsequent availability of all of the reference datasets provide the 
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motivation for developing the automatic classification described in Chapter 6. This 

arises from the accumulated experience of classifying 281,422 surnames and 114,169 

forenames into cultural, ethnic and linguistic groups (CELs) in three stages, and the 

development of three distinct ‘tiers’ of names used as inputs into the classification. 

The characteristics of these three stages are summarised in the following paragraphs, 

and they are explained in detail in Sections 5.2 to 5.4. 

 

5.1.1. Stage 1 and Tier 1 names 

This stage formed part of the mentioned UCL Surname Profiler project (Surname 

Profiler, 2006) upon whose ‘international surname list’ this PhD was subsequently 

built. The first dataset to be sourced from Experian in stage 1 was an extraction of 

the GB Electoral Roll for 1998, consisting of 25,630 surnames with a frequency of 

100 people or more nationally, together with their frequencies by postal area, a 

geographical division defined by the first two digits of the unit postcode (e.g. ‘BR’ 

for Bristol). There are 120 postal areas in Great Britain, with an average population 

of 500,000 people. This dataset will be referred to in this thesis as the ‘GB98 

dataset’, and formed the backbone of the UCL Surname Profiler project (Surname 

Profiler, 2006). The aim of the first phase of the heuristic approach was to classify 

these 25,630 unique surnames into British regions and major ethnic minority groups 

of origin. This table of most frequent surnames will hereafter be termed ‘Tier 1’ 

names. Moreover, the other seven datasets that were obtained at approximately the 

same time as GB98 were used primarily to support the classification of the surnames 

in ‘Tier 1’, as will be detailed in Section 5.2.2. 
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5.1.2. Stage 2 and Tier 2 names 

At the beginning of stage 2 the ‘GB04’ file was received from Experian (Electoral 

Roll & Consumer Dynamics for 2004), which included the forename, surname and 

unit postcode for each of 46.3 million electors/residents. At this stage only, it was 

considered appropriate to add to the existing CEL name classification the capability 

to classify forenames as well as surnames. Therefore, a list of the most common 

forenames, defined as those with a frequency of at least 9 people, was extracted from 

‘GB04’ and produced a file with 29,979 forenames, hereinafter termed ‘Tier 2’ 

names. The methodology to link Tier 2 to Tier 1 and classify it into CELs is detailed 

in Section 5.3. 

5.1.3. Stage 3 and Tier 3 names 

At this point the CEL classification system comprised of two files; Tier 1 with 

25,630 surnames, and Tier 2 with 29,979 forenames, each of them assigned to a CEL 

Group and Type. The names in these two files respectively covered 37.2 and 45.3 

million residents in the UK 2004 file. At that moment, a decision was taken to 

expand the classification in order to classify the entire population of the Electoral 

Roll (46.3 million people) into ethnic groups, so that most ethnic minorities could be 

correctly covered by the CEL classification. ‘Tier 3’ names are thus comprised of all 

the forenames and surnames with 3 or more occurrences in the ‘GB04’ dataset and 

that are not included in either ‘Tier 1’ or ‘Tier 2’ files, comprising a total of 255,792 

surnames and 84,192 forenames. 

5.1.4. Classification of Tiers 1, 2 and 3 

As a result, Tier 1 names contained the top 25,630 surnames, Tier 2 names the top 

29,979 forenames, and Tier 3 names the rest of both surnames and forenames. The 
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three Tiers combined comprise a total of 281,422 surnames and 114,169 forenames. 

The seven classification techniques described in Section 4.3 were applied to each of 

the three Tiers of names described in the previous Sections 5.1.1 to 5.1.3, according 

to a set of rules which will be summarised in the following three sections. 

5.2. Tier 1 Names: ‘Top’ Surnames 

5.2.1. Data preparation 

The names in the Tier 1 file were initially processed to eliminate data errors, such  as 

inconsistent geographic indicators or invalid entries (e.g. ‘N/K’), and to standardise 

the format by trimming spaces, and unifying different dashes, apostrophes and other 

special characters used. These data cleansing steps were required to make sure that 

there was a common entry for each unique name across the seven datasets that were 

to be compared (i.e. the nine datasets in Table 4.2, excluding GB2004 and the 

Spanish Directory). Other known errors in the data, such as the presence of name 

initials or honorifics (e.g. Prof., Ms., Dr., Sir), were kept in a separate field since they 

were judged to be able to provide some valuable information for later classification 

tasks. 

 

Each surname frequency per postal area was converted to a rate per 1 million people, 

in order to be able to compare the names in a consistent way across all the 

geographies studied. Two additional geographies were created for the purposes of 

calculating additional name frequencies and rates, through the aggregation of some 

countries into bigger regions; All Ireland, including the Republic of Ireland and 

Northern Ireland, and British Isles, including the former plus Great Britain.  
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Ite
m 

Attribute Description Variable 
Type 

Geography 

Items a to j are repeated for each surname and geography (a total of 9 sub-datasets: GB, NI, IE, US, 
CA, AU, NZ, All Ireland, British Isles) 
a Name Frequency Number of occurrences  Integer Countrywide 

b Name Rate Rate of occurrences per million people,  Double Countrywide 

c Top Area Area with highest rate of occurrences per 
million people (e.g. Postal Area or State) 

String Countrywide 

d Top Area Rate Rate of Occurrences per million people in 
Top Area c 

Double Top Area 
 

e 2nd Top Area Area with second highest rate of 
occurrences per million people 

String Countrywide 

f 2nd Top Area Rate Rate of Occurrences per million people in 
Next Top Area e 

Double Next Top Area

g Finer Top Area Finer Area with highest rate of occurrences 
per million people (e.g. Postal District) 

String Countrywide 
(GB & AU 
only) 

h Finer Top Area Rate Rate of Occurrences per million people in 
Finer Top Area c 

Double Finer Top 
Area (GB & 
AU only) 

i Difference between 
Country Rates 

Ratio of b between pairs of countries Double Selected Pairs 
of countries 

j Difference between 
Top Area Rates 

Ratio of d between pairs of countries Double Selected Pairs 
of countries 

Items k to s include a unique value per surname in Tier 1 

k Temporal Change 
1998/1881 

Ratio of a between GB 1998 and GB 1881 Double GB 

l Entries UK 
Gazetteer 

Number of placename entries in the UK 
gazetteer 

Integer UK 

m Top UK Gaz. Area UK County with highest number of entries 
in gazetteer 

String 
 

UK 

n Entries African/ 
Asian Gazetteer 

Number of placename entries in the African 
or Asian gazetteer 

Integer Africa and 
Asia 

o Top African/ Asian 
Gaz. Area 

African or Asian region / country with 
highest number of entries in gazetteer 

String 
 

Africa and 
Asia 

p Top Mosaic Type Socioeconomic type of neighbourhood with 
highest rate of occurrences per million 
people 

String GB 

q Top Mosaic Rate Rate of Occurrences per million people in 
Top Mosaic Type p 

Double GB 

r Rurality Percentage of names in rural postcodes Double 
(%) 

GB 

s High Status Percentage of names in ‘high status’ 
postcodes (as defined by Mosaic Types) 

Double 
(%) 

GB 

 
 

Table 5.1: List of attributes associated with each name in ‘Tier 1’ 
Country codes used: UK= United Kingdom; GB = Great Britain (ex. NI); NI= Northern Ireland; IE= 
Republic of Ireland; All Ireland = IE+NI; British Isles= IE+UK; US= United States, CA= Canada; 
AU= Australia; NZ= New Zealand 
 

In total, the surname frequency datasets at this stage included a total of 9 ‘countries 

or territories’: Great Britain (GB 2004, GB 1998, GB 1881),  Northern Ireland, 

Republic of Ireland, United States, Canada; Australia, New Zealand, All Ireland and 
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British Isles. These were linked together through the common surnames between 

them. For each surname in Tier 1, and for each of these 9 geographies, a set of 10 

different statistical and geographic variables were calculated, the details of which are 

offered in Table 5.1 (items a to j). 

 

After these two steps of data cleansing and name frequencies calculation, each name 

was linked to both a UK and a Worldwide place name gazetteer (Edina, 2006; 

National Geospatial Agency, 2006). This made it possible to evaluate whether there 

were any gazetteer entries for each name, and if so to count them by region of 

occurrence. The results of this search were stored for the UK gazetteer and for entries 

in Africa or Asia in the Worldwide gazetteer (items l to o in Table 5.1), since 

America, Europe and Oceania had substantial numbers of names in countries not 

corresponding to their apparent region of language origin (i.e. English or Spanish 

place names).  

 

Finally, the  Mosaic neighbourhood classification was included, using a separate 

table provided by Experian with the distribution per Mosaic Type for each surname. 

Using this table and for each surname in Tier 1, the Mosaic Type with the highest 

rate of names per million people was selected (item p in Table 5.1). This made it 

possible to calculate the percentage of names in rural versus urban areas, as well as 

in high socioeconomic status neighbourhoods (items r and s in Table 5.1) 

 

As a result, the Tier 1 names table included for any name, between 8 and 19 

attributes for each of the 9 geographies studied, resulting in over 100 attribute 



 
Chapter 5- Heuristic Approaches to Creating a Name Classification 178 

 

combinations for some of the most common names present across all the 

geographies. These attributes are fully described in Table 5.1. 

5.2.2. Classification rules applied to Tier 1 names 

As stated, the original aim of this first phase, which formed part of the UCL Surname 

Profiler project, was to classify the 25,630 surnames in Tier 1 into British regions 

and major ‘international’ ethnic minority groups, and therefore the techniques 

applied were spatio-temporal analysis and geodemographic analysis, combined with 

text mining. For the purpose of the CEL classification this phase consisted of 

separating British and non-British names, and subsequent subdivision of these two 

groups into finer categories. In this research the concept of ‘British names’ includes 

all names that have either originated in the British Isles (comprised of the current UK 

and Ireland), or were introduced a sufficiently long time ago as to be considered fully 

integrated into the British and Irish society. Such temporal distinction was arbitrarily 

assigned to names that arrived in the British Isles before 1700, and thus before the 

Industrial Revolution, by consensus between the UCL Surname Profiler project 

participants. Defined as such, British names, were then further subdivided into the 

following 7 CELs; English, Irish, Northern Ireland, Welsh, Scottish, Cornish and 

Channel Islands, with the addition of other CELs (Norman Huguenot, and Jewish 

names) that in this PhD are sometimes considered together with the British CELs for 

the FSC technique and other calculations, because of their high integration with 

British names. Such inclusion is made explicit in this thesis when these CELs are 

added to the British ones. 

 

Non-British names, by exclusion, are defined in this research as those which arrived 

in the British isles after 1700. These were originally divided into the following 12 
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major CEL groups present in the UK, and were reasonably straightforward to isolate; 

African, Scandinavian, Greek or Cypriot, Jewish and Armenian, Hispanic, Rest of 

Europe, East Asian, Japanese, Muslim, Sikh, South Asian, and ‘non-British 

Unclassified’. In subsequent Tiers 2 and 3 these 12 CEL groups were further 

subdivided into much finer CELs denominated CEL types (e.g. the Hispanic CEL 

group into Spanish, Portuguese, Catalan, Basque, and Galician CEL types). 

 

Offering a detailed account of all the variables and thresholds considered in each 

decision to assign a CEL to a name is much beyond the scope of this thesis. A 

summary of the main eight rules and decisions taken is offered here, in order to help 

to understand how the classification was created and the decisions and assumptions 

taken. These eight rules have been numbered A.1 to A.8. A chart with the decision 

tree of these rules is offered in Figure 5.1 and should be used to accompany the text.  

Rule A.1 

In order to split between British and non-British names, the main rule applied was to 

check whether a surname was present in the 1881 Census (potentially British) or not 

(potentially non-British, of which there were 2,374 surnames). Even if the surname 

was present in 1881, when the increase in its rate per million names between 1881 

and 1996 was judged to have been high (over 100% on average) it was considered 

potentially non-British, adding over 1,000 more surnames (mainly European) to this 

list. This rule A1 was developed as part of the UCL Surname Profiler project, and as 

a result 22,652 names were classified as British and 2,978 as non-British out of a 

total of 25,630 surnames. 
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Surnames 
Tier 1 

A.1 

Existed in  
GB 1881? 

Potentially 
British 

Potentially 
Non-British 

Y 

A.2 Top Mosaic  
C20, D26, F36  

N 

Y 

Geographic 
Concentration  

A.3 

N 

Y 

Unclassified 
British 

A.4 
Top Mosaic 

A01, C20, D26, 
D27, E28, F36  

Y 

N Geographic 
Concentration  

A.5 

Y 

Int’l  
Comparisons  

A.6 

N 

N

Y

N

Classified 
Non-British 

CEL 

Unclassified 
Non-British 

Classified 
British CEL 

Y Text Mining & 
Name Lists  

A.7 
Y

NN 

Expert Manual Check 

Text Mining & 
Name Lists  

A.8 
 

Figure 5.1: Classification Decision Tree for surnames Tier 1 
The code in a circle relates to the reference of each rule in Tier 1, A.1 to A.8 and is described in the 
text. 
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Rule A.2 

Geodemographic analysis was used to confirm a surname as British when the Top 

Mosaic Type was not C20 ‘Asian Enterprise’, D26 ‘South Asian Industry’, or F36 

‘Metro Multiculture’, since these neighbourhoods present a high number of non-

British population in the 2001 Census. Geodemographic analysis was used for 

reasons of convenience, since the data supplied by Experian was coded by Mosaic, 

but the 2001 Census raw rates could have been used as more direct indicators of 

ethnicity. 

Rule A.3 

Following the Spatiotemporal Analysis techniques, a British surname was assigned 

to a sub-British CEL type according to the region within Britain where the name was 

most concentrated both in 1881 and 1996 (Top Area and Next Top Area rates). 

Rule A.4 

The Top Mosaic Type of a potential non-British surname was used to identify 

specific CELs (letter p in Table 5.1). Those with C20 ‘Asian Enterprise’ were pre-

assigned the CEL ‘South Asian’, since this type has a particularly high proportion of 

residents classified by the census as South Asian and of Hindu or Sikh religion. 

Those surnames with D26 ‘South Asian Industry’ were assigned to the CEL 

‘Muslim’, since the majority of residents are of South Asian ethnicity and Muslim 

religion. Finally, Mosaic type F36 ‘Metro Multiculture’ representing more recent 

immigrant groups, especially Black Africans, was provisionally assigned to the CEL 

‘African’ when Top Areas were in South London, since these present a high 

concentration of this CEL. Other Mosaic types with high proportions of minority 



 
Chapter 5- Heuristic Approaches to Creating a Name Classification 182 

 

ethnic groups are A01 ‘Global Connections’, with Jewish names, E28 ‘Counter 

Cultural Mix’, and D27 ‘Settled Minorities’, which contains mostly Caribbeans, 

Greek Cypriots and Turks.  However, to avoid mistakes in the assignment due to the 

ecological fallacy, this rule was best used in combination of rules A5, A6 and A7. 

Rule A.5 

Through spatial analysis of the top areas of potentially non-British surnames, groups 

of postal areas with much higher concentrations of non-British names were easily 

identified. Local knowledge of the postal geography of the UK, and specifically of 

London, allowed these groups of surnames to be provisionally assigned into CELs, 

for example Greek or Turkish names in postal area ‘N’, Jewish in ‘NW’, or South 

Asian in ‘LE’. However, the socioeconomic characteristics of the Mosaic 

classification were also taken into account and overrode the spatial considerations. 

For example, more affluent Mosaic Types are identified with certain ethnic groups 

(e.g. Japanese, Scandinavian, or Jewish), and some groups are mostly only present in 

cities, and thus their index of rurality would be expected to be very low (e.g. Jewish 

names are highly urban). 

Rule A.6 

International comparisons of the relative frequency of a name (rate per million 

names) allowed assignment of CELs to names with lower rates in the UK than in the 

US, Australia, Canada or New Zealand, based on the names distributions within 

these other countries. For example, East Asian names are much more common in 

Australia than in Britain, while in the US those of Scandinavian, East Asian, Jewish 

or Spanish origin are more prevalent, the last one much more common in the 

southern states than in the rest of the country. 
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Rule A.7 

The surnames pre-assigned to a CEL through rules 1-6 were processed using text 

mining techniques to find particular patterns in their name stems and endings or letter 

sequence (for example identifying Scandinavian surnames ending in ‘-STROM’ or 

South Asian ones ending in ‘-DHU’). These techniques were also used to subdivide 

the 12 CEL groups into much finer CEL types, by finding common endings 

particular of a CEL type (such as Spanish ‘-EZ’ or Greek Cypriot ‘-IDES’). Those 

same patterns were applied to the remaining unclassified surnames in both British 

and non-British groups in order to be able to allocate more surnames with a CEL. 

Finally, if an unclassified name had a concentration of entries in a placename 

gazetteer, this was used to assign the name to a particular CEL in the world. 

Rule A.8 

Finally, all the 25,630 surnames, each assigned to a CEL, were distributed amongst 

university students and friends with an expert knowledge in each of the British CELs 

and the non-British CEL groups, for them to check any classification mistakes and to 

attempt further subdivisions of the broad non-British CEL groups into finer CEL 

types, according to linguistic, religious and geographic criteria. This process of 

giving each expert a pre-classified list of circa 1,000 surnames proved to be much 

more efficient than having attempted to give each of these experts the whole list of 

25,630 unclassified surnames, avoiding the problem of substantial overlap between 

experts, and misclassifications due to fatigue and other human errors. 
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Outcome 

At the end of this process of eight rules in stage 1, of the 25,630 surnames in ‘Tier 1’, 

2,978 surnames (11.6%) were classified as ‘non-British’ and assigned to 12 CEL 

groups, while the rest of the surnames (88.4%), were allocated to the 7 British CEL 

types or the ‘unclassified’ category. This Tier 1 file classified into CELs, covers a 

total population of 37,250,875 electors and residents in 2004, of which 3,834,722 

have non-British surnames. 

 

5.3. Tier 2 Names: ‘Top’ Forenames 

5.3.1. Data preparation 

At this stage access to the GB 2004 file (Electoral Roll & Consumer Dynamics) from 

the company Experian was obtained, a dataset which included the forename, 

surname and unit postcode for each of 46.3 million electors/residents. The ‘Tier 2’ 

file was produced by aggregating the forenames in the ‘GB04’ file, and selecting 

those with at least 9 occurrences, which produced a file with 29,979 forenames.  

 

However, since no other forenames dataset was available for any other geography, a 

new strategy was required to provide sufficient variables to classify these forenames. 

Use of the Forename-Surname Clustering (FSC) method, based on Tucker’s (2005) 

CELG technique and described in Section 4.3.1 in the previous chapter, proved to be 

the most efficient option using the existing surnames classified in Tier 1. The key 

was then to use the existing CEL Group assigned to surnames in Tier 1, hereafter 

called SCEL Group (for Surname CEL Group), to cluster forenames into the same 

groups. For each forename in Tier 2, the proportion of its bearers by SCEL was 
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calculated. This was achieved by aggregating the individuals in the GB04 dataset by 

their forename, and then counting how many people there were for each SCEL 

Group according to their individual surnames and their corresponding SCEL Group 

in Tier 1. Finally the percentage of people per SCEL Group associated with each 

forename was calculated. In other words, the Tier 2 file contained a record for each 

of the 29,979 forenames, including a count and percentage of people with that 

forename whose surname was associated with an SCEL Group in Tier 1 file. For 

example, the entry for the forename Pedro in Tier 2 was as follows (numbers are 

surnames counts with their relative frequency given by a percentage in brackets): 

 Forename: Pedro  Total Frequency: 3,435 

SCEL Groups: British 245 (7.1%), Hispanic 2,410 (70.2%), European 35 (1.0%), ‘None’ 

745 (21.7%)  

The SCEL Group ‘None’ represented the percentage of surnames associated with 

that forename that were not found in Tier 1 file. At this stage, there was a small 

number of forenames with a high proportion of SCEL Group ‘None’ since only a few 

of their surnames are in Tier 1 file, although most forenames in Tier 2 file had 

surnames well represented in Tier 1. 

5.3.2. Classification rules applied to Tier 2 names 

As becomes obvious by now, the main method used to classify Tier 2 forenames into 

CELs was the FSC method, which was applied in a series of steps in combination 

with some of the other classification techniques described in Section 4.3. The 

decision tree of the eleven rules applied to classify the forenames in Tier 2 file is 

illustrated in Figure 5.2, and the explanation of each rule is offered in the next 

paragraphs. As a result of this process, 29,979 forenames were classified into CELs, 

which hereinafter will be termed FCELs (for Forename CELs). 
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Rule B.1 – Unclassified forenames 

Forenames with a frequency lower than 25 and a proportion of 80% or higher of their 

surnames not found in Tier 1 file (i.e. SCEL ‘None’) were classified as FCEL 

‘Unclassified_Rare’. Subsequent rules only were applied to forenames not of the 

FCEL Type ‘Unclassified_Rare’.  

Rule B.2 – Void forenames 

Forenames with entries that did not seem proper names were identified and coded as 

FCEL ‘Void’. Examples of these types of entries were: records where no entry of any 

sort was found, (182,457 people); titles or honorifics such as Mr (17,692 people), 

Mrs, Count, Countess etc.; single letters which appeared to be initials such as A, B, 

C, etc. (2.76 million people); or two letter combinations with no vowel which also 

appeared to be initials (eg JK, DL etc).  Note that some two digit combinations with 

a vowel, such as ‘Ho’ (as in Ho Chi Minh) and ‘Al’ were valid forenames.  These 

valid two character forenames were often identifiable from their greater frequency of 

occurrences than other two digit combinations, and because they might have a high 

number of unclassified surnames. 
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Figure 5.2: Classification Decision Tree for forenames Tier 2 
The circled codes refer to each rule in Tier 1, B.1 to B.11 as described in the text. 
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Subsequent rules (B.3 to B.10) only applied to forenames which were not of the 

FCEL ‘Unclassified’ or to the FCEL ‘Void’. However, it was appreciated that both 

Unclassified and Void entries were disproportionately more common in Mosaic 

types containing above average proportions of ethnic minorities, a fact that would 

require further analysis to reveal specific naming and recording practices in these 

minorities. 

Rule B.3 – non-British or Jewish FCEL Groups 

If a forename had at least 2 occurrences in one of the non-British SCEL Groups 

(excluding Jewish), and if this frequency represented 5% or more of the occurrences 

in the combined British and Jewish SCEL Groups, the FCEL Group was made equal 

to that of the SCEL Group. If more than one SCEL Group met this threshold 

criterion the FCEL Group was assigned to the SCEL Group with the largest number 

of occurrences.  If two SCEL Groups had an equal number of forename occurrences, 

the FCEL Group was then assigned to the SCEL Group with the smaller or smallest 

total number of occurrences on the entire Electoral Register file. In all of the above 

situations the SCEL Group ‘None’ was not taken into account. For example: 

Forename: Ourania  Total Frequency: 88 

SCEL Groups: British 10 (11.4%), ‘Greek or Greek Cypriot’ 24 (27.3%), ‘None’ 52 (61.4%) 

 

Given that the ‘Greek or Greek Cypriot’ frequency (24) was more than 5% of the 

number with a British of Jewish SCEL (10), the name ‘Ourania’ qualified as 

belonging to FCEL Group ‘Greek or Greek Cypriot’. 
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Rule B.4 – non-British FCEL Types 

Where on the basis of rule B.3 a forename had been assigned to a non-British FCEL 

Group, a further calculation was done to identify which SCEL Type, within the 

FCEL Group assigned in Rule B.3, had the highest number of occurrences of that 

forename, and then assigned it to the corresponding FCEL Type.  

 

Taking the example of the forename ‘Ourania’, the following calculation was 

performed: 

Forename: Ourania  Total Frequency: 88 

FCEL Group assigned in Rule B.3: ‘Greek or Greek Cypriot’ 24  

SCEL types: ‘Greek’ 15 (62.5%), ‘Greek Cypriot’ 9 (37.5%) 

After which the forename was finally assigned to the Greek FCEL Type. 

Rule B.5 – non-British Unclassified 

Where, on the basis of rules B.3 and B.4, a forename had not been assigned to a non-

British FCEL Type, the following rule was applied to distinguish non-British from 

British forenames: if the percentage of occurrences of the SCEL Group ‘non-British 

Unclassified’ for that forename was equal or greater than 50%, then both FCEL 

Group and Type were assigned to ‘non-British Unclassified’. This is illustrated 

through the following example: 

Forename: Joris  Total Frequency: 35 

SCEL Groups: British 2 (5.7%), ‘non-British Unclassified’ 28 (80.0%), ‘None’ 5 (14.3%) 

 

In all likelihood names such as ‘Joris’ that met this criteria were surnames from a 

CEL which were not included in the list of CELs used in the analysis.  In the case of 

‘Joris’ this name, according to the Oxford Dictionary of First Names (Hanks et al, 
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2003), originated from Frisia.  However, at this stage it was decided to leave these 

rather obscure non-British forenames in the ‘non-British Unclassified’ FCEL for 

further work on their surnames in Tier 3. 

Rule B.6 - British and Jewish FCEL Types 

Where on the basis of rules B.3, B.4, and B.5, a forename had not been assigned to a 

non-British or Jewish FCEL Type, it was assumed that the forename was likely to be 

of British or Jewish origin. The reason why the Jewish CEL Type was treated 

together with British CEL Types is because although Jewish surnames are quite 

distinct, they carry a high proportion of British forenames because of a long history 

of integration into British society, compared to the other non-British CELs (bearing 

in mind that, as stated before, the ‘British’ CEL includes all names originating in the 

British Isles or that immigrated up to around 1700). 

 

To determine which British or Jewish FCEL Type a forename should be assigned to, 

a series of calculations were involved. For the purpose of this rule, only British and 

Jewish CELs were considered and all other non-British CELs were ignored. Firstly, 

the proportion of the occurrences of each forename in each British or Jewish SCEL 

Type was calculated (variable ‘a’). Secondly, the same calculation was repeated as a 

summary of all forenames in Tier 2 file, giving the overall GB average proportions 

by SCEL Type (variable ‘b’). Thirdly, the proportions of each particular forename in 

each British or Jewish SCEL Type were divided by the overall average for all 

forenames (ratio ‘c’ =variable ‘a’ divided by ‘b’). Finally, in those cases where a 

forename has a proportion of occurrences in a British or Jewish SCEL Type equal or 

higher than twice the national average (a/b =>2), the SCEL type with the highest 
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value of ratio ‘c’ was assigned to that forename’s FCEL Type. This is illustrated in 

the following example: 

 

Forename: Lorcan  Frequency- Total: 90;, British & Jewish: 83 

 English Welsh Scottish  Irish  Jewish 

a) Lorcan SCEL Types 30% 8% 18% 41% 2.4%

b) GB Average SCEL Types 69.4% 11.4% 10.3% 6.9% 2%

c) Ratio c=a/b 0.43 0.74 1.75 5.94 1.20

     

Those forenames which did not reach a ratio c of a least 2, were deemed most likely 

to be English, since the average of 69.4% SCEL Types prevented their meeting rule 

B.6, and thus they were dealt with in the next rule B.7. Therefore B.6 identified Irish, 

Scottish, Welsh and Jewish FCEL Types. 

Rule B.7 – English FCEL Type 

A forename considered for rule B.6, and hence provisionally considered as 

potentially British or Jewish, but that did not meet the threshold of ‘ratio c’>= 2 

(and thus was not assigned to a FCEL Type) was likely to be an English name – 

since it cannot meet rule B.6 by definition. This is the default most common CEL in 

the UK. To confirm this, a test was applied to establish whether the combined 

proportions of the forename associated with non-British SCELs (excluding Jewish) 

was greater or less than one third of the total occurrences. If it was below one third 

the forename was then assigned to the FCEL ‘English’.  If it was equal to or above 

one third it was assigned to a temporary classification ‘For Later Review’, since 

assignment to the ‘non-British’ SCELs indicated that it may not be a British 

forename after all. 
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Rule B.8 – International FCEL Type 

Taking the set of forenames in the temporary classification ‘For Later Review’ from 

rule B.7, those with no occurrences or with only one occurrence in any single non-

British SCEL Type, other than ‘non-British Unclassified’, were assigned to the 

FCEL Type ‘International’. An example of these types of forenames is Marinda. 

Forename: Marinda  Total Frequency: 56 

SCEL Groups [SCEL Types]: 

British or Jewish 36 (64%) [English 29, Welsh 2, Scottish 3, Irish 2, Jewish 0] 

 non-British 20 (32%) [‘Polish’ 1, ‘Somali’ 1,‘non-British Unclassified’ 18] 

The FCEL Type International is comprised of names that either originated in several 

different countries or which are widely adopted in several of them so as to 

distinguish a unique origin. Another meaningful example of this FCEL Type is the 

forename Felix. 

Rule B.9 – Obscure non-British FCELs 

A further test was applied to the set of forenames that at this stage still remained 

unclassified, and with a minimum of two occurrences in any one non-British SCEL 

Type. At this stage, these forenames were subject to rules B.3 and B.4, except for the 

criterion of a having a non-British frequency of 5% or higher of the occurrences in 

the combined British and Jewish SCEL Groups. This is illustrated with the example 

Nelson: 

Forename: Nelson  Total Frequency: 1628 

SCEL Groups [SCEL Types]: 

British or Jewish 1,139 (69.96%) [English 756, Welsh 143, Scottish 135, Irish 95, Jewish 2] 

non-British 489 (30.04%): 

Hispanic 55,‘non-British Unclassified’ 387, Others 47 [Portuguese 42, Spanish 11, Others] 
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From these figures it can be seen that the largest ‘non-British’ SCEL Group was 

Hispanic, with 55 occurrences.  This number, as a proportion of those with a British 

or Jewish SCEL (1,139), was just under the 5% threshold, so Nelson did not qualify 

in the initial Rule B.3 as a non-British forename.  However, the proportion of non-

British SCELs (30.04%) was too low for the name to have been considered a ‘non-

British Unclassified’ in Rule B.5.  The name was not especially associated with Irish, 

Scottish, Welsh or Jewish SCEL Types in rule B.6, and, because the proportion of 

occurrences with an English SCEL was slightly below average and non-British 

SCELs just above 30%, the name did not qualify as English either.  However with 42 

of the 55 Hispanic SCEL occurrences classified as Portuguese, the name Nelson 

qualifies as Portuguese. This assignment was also corroborated by some anecdotal 

historic research. 

Rule B. 10 – Black British forenames 

Finally, those forenames which by this stage have been assigned a FCEL Type 

English, Irish, Scottish, Welsh or ‘International’ (but not Jewish) were selected. For 

each of these forenames, the proportion of people that were resident in postcodes 

classified by the Mosaic geodemographic classification as being predominantly Non-

White British based on Census data. These are Mosaic Type codes: A01 – Global 

Connections; C20 – Asian Enterprise; D26 – South Asian Industry; D27 – Settled 

Minorities; E28 – Counter Cultural Mix; F36 – Metro Multiculture, where overall, 

7.2% of British households lived in such types of neighbourhood at the time of the 

2001 Census. When the proportion of occurrences of a forename in such 

neighbourhoods exceeded four times the national average, i.e. exceeds 28.8% of all 
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occurrences,  and the proportion of occurrences with British or Jewish SCEL Types 

was equal to 80% or more, the name was assigned to the FCEL ‘Black British’. Note 

that there was no corresponding SCEL for ‘Black’ names, since most of these names 

are associated with Caribbean immigrants or their descendants, most of whom hold 

British surnames. However there are many forenames that are highly frequent 

amongst Blacks, a fact also found in the US by Levitt and Dubner (2005). 

The name Hyacinth is an example of a forename with has been assigned to the FCEL 

code ‘Black’ on the basis of rule B.10: 

Forename: Hyacinth Total Frequency: 1066 

SCEL Groups [SCEL Types]: 

-British or Jewish 865 (81.1%) [English 712, Welsh 42, Scottish 63, Irish 35, Jewish 13] 

-Non-British 201 (18.9%):Hispanic 7,‘Non-British Unclassified’ 169, Others [Lithuania 

5, Portuguese 4, Spanish 3, Others] 

Applying Rules B.1 to B.9 Hyacinth was assigned the FCEL Type ‘English’.  

However 40.8% of all occurrences of ‘Hyacinth’ are resident in one of the six 

disproportionately Non-White British Mosaic neighbourhood types, significantly 

above the threshold of 28.8% required under rule B.10.  The name ‘Hyacinth’ 

therefore is one example of many forenames found among people with British 

surnames but who live predominantly in residential neighbourhoods with a high 

proportion of Black British or Black Caribbean population in the Census. 

Outcome 

At the end of these 10 rules described for the Tier 2 file, the 29,979 forenames were 

classified into FCEL Groups and Types (13,600 British Group and 16,379 non-

British) including a small proportion of them being assigned to the ‘Unclassified’ 
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and ‘non-British Unclassified’ FCELs (434). These forenames covered 45.3 million 

people out of the 46.3 million in the GB04 file. 

5.4. Tier 3: Rest of Names 

At this stage the CEL classification system was comprised of two files; Tier 1 with 

25,630 surnames, and Tier 2 with 29,979 forenames, each of them assigned to a CEL 

Group and CEL Type. As mentioned before, the names in these two files respectively 

covered 37.2 and 45.3 million residents in the GB04 file. Since the purpose of this 

research was to classify the entire population into ethnic groups, an additional effort 

had to be made to classify the remaining surnames and forenames as to cover the 

46.3 million people in the GB04 file.  

 

Tier 3 was thus comprised of all the names with 3 or more occurrences in the GB04 

dataset and which were not included in either Tier 1 or Tier 2 files, comprising a total 

of 255,792 surnames and 84,192 forenames. As can be appreciated, the task of 

classifying Tier 3 involves a substantially higher number of names, but with very low 

frequencies. Most of these names suggested a non-British origin, requiring a different 

approach to the one previously used. While the rules applied to classify the names in 

Tiers 1 and 2 were performed in a single cycle, the processing of Tier 3 was done 

through a series of iterative cycles. 

5.4.1. Classification by Forename-Surname Clustering (FSC) 

There is a known difference in the frequency distribution of surnames and 

forenames, the latter with a higher average number of people than the former 

(Tucker, 2007b). This is explained by a relatively smaller pool of names from which 

a society selects children’s forenames, together with the temporal effects in their 
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naming fashions. This contrasts with the fixed nature of surnames, a proportion of 

which disappear due to a process of ‘natural selection’ (Manni et al, 2005). This 

feature of names has been noted in different countries, for example in the U.S. 

(Tucker, 2003) and Spain (Mateos, 2007). 
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Figure 5.3: Graph of cumulative number of surnames and forenames (log scale) against 
cumulative percentage of population in the GB 2004 Electoral Roll 

 

Figure 5.3 illustrates this difference in the frequency distribution of forenames and 

surnames for the UK Electoral Roll. The graph shows the cumulative number of 

surnames or forenames, on a logarithmic scale on the x-axis, against the percentage 

of population covered, in the y-axis. If the logarithmic scale is not used both curves 

are so highly positively skewed that no difference is appreciated. The vertical dotted 

lines represent the cut-off points of both Tier 1 surnames (25,630) and Tier 2 

forenames (29,979), and hence the area to the left of these dotted lines represent the 

total population classified by Tier 1 (89.8% of the total Electoral Register) and Tier 2 

(98.3%). The area between the two curves actually represents the number of people 
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in the Electoral Register for whom their forename is classified but the surname is not, 

although it must be stated that the forenames and surnames are not individually 

paired in this chart. 

 

This difference between the degree of skewness in the frequency distribution of 

surnames and that of forenames actually permitted the classification of names in Tier 

3 in a relatively effortless way, by using the Forname-Surname Clustering (FSC) 

technique described in Section 4.3.1. The 25,630 surnames in Tier 1 covered 37.2 

million residents, while the 29,979 forenames in Tier 2 covered 45.3 million 

residents, and there was obvious potential to find out more information about the 

surnames of the 8.1 million people whose forenames appeared in Tier 2 (known 

FCEL) but whose surnames remained unclassified and thus were present in Tier 3 

(unknown SCEL). These (several thousands) surnames were classified into SCELs 

using the FCEL distribution of those 8.1 million people, that is, the FSC technique 

using Tier 1 and Tier 2 SCELs and FCELs. Such classification was performed in a 

step-wise approach through a series of iterations of the same process that is 

summarised in Figure 5.4.  

 

Therefore, each iteration or cycle, which are termed ‘C.a.’ to ‘C.d’ in Figure 5.4, 

aimed to expand the number of names classified, leveraging upon the mentioned 

difference between the frequency of forenames and surnames, and using all of the 

names whose CEL were already known at each step (i.e. using Tier 1, Tier 2 and Tier 

3 files). Unlike the classification processes of Tier 1 and 2 previously described, in 

Tier 3, the cross-CEL distributions for the whole dataset of names (i.e. the count and 
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percentage of each SCEL and FCEL Group and Type associated with each name) 

were re-calculated at the end of each cycle, thus making the process a dynamic one. 

Forenames
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Surnames>100
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C.a
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Figure 5.4: Iterative processing of name classification cycles in Tier 3 
Cycles start at ‘C.a’ which runs from right to left producing set ‘Tier 3a’, then ‘C.b’ from left to right 
producing ‘Tier 3b’, etc. 
 

These cycles were run several times, as shown in Figure 5.4, and as the volume of 

both surnames and forenames classified grew, it shed new light on previously 

unclassified names in Tier 3. Finally, the process stopped when most of the names in 

Tier 3 were classified and a few remained unconnected with the rest of the names. 

This process could even have resulted in the change of a CEL allocation in Tier 1 or 

Tier 2, when the CEL distributions of the names in Tier 3 pointed to errors in the 

CEL allocations previously made.  
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Some of the residual unclassified names resulted from errors in the file such as non-

person names (business or building names), names in the wrong fields of the 

database, name initials or honorifics, parts of the name missing, or transcription 

errors. The number that genuinely comprised unknown names is certainly much 

lower, but this could only be demonstrated by testing the CEL classification against a 

good quality population register, currently non-existent in the UK. 

 

5.5. Name-to-CEL Tables 

At the end of the Tier 1, 2 and 3 processes, all the classified name files were merged 

into two separate tables: a surname-to-CEL table with 281,422 surnames, and a 

forename-to-CEL table with 114,169 forenames. For each name in these two tables 

the following fields were available: the name’s frequency in the GB04 file, the CEL 

Group, and the CEL Type. These two tables will hereinafter be referred to as Name-

to-CEL tables. See Table 5.2 for a summary of the classification results. 

 

These tables were then applied to classify the names on the patient register of 

Camden PCT, with approximately 212,000 records. This exercise proved useful to 

explore a real scenario of application and start to test the methodology to classify 

populations. In doing so, it became apparent that there was a need for a further 

algorithm to arbitrate in potential situations when there was a conflict between two 

CELs for the forename and surname (FCEL and SCEL) of the same person. As a 

result, a new phase was initiated to create the desired name-to-CEL strength scores to 

be used in such arbitration. These efforts came to fruition in the development of the 

automated approach, which is described in the next chapter. 
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CEL Type

Nr 
Fore-
names

Nr Sur-
names CEL Type

Nr Fore-
names

Nr Sur-
names

AFRICAN 1496 466 SLOVENIAN 0 86
BLACK SOUTHERN AFRICAN 258 319 SWISS 0 12
BURUNDIAN 0 6 UKRANIAN 53 1651
CAMEROONESE 0 12 GREEK 1139 1326
CONGOLESE 35 289 GREEK CYPRIOT 1281 5502
ETHIOPIAN 54 249 ANGOLAN 0 16
GAMBIAN 0 4 BASQUE 4 255
GHANAIAN 486 2725 BRAZILIAN 1 92
IVORIAN 0 15 CASTILLIAN 0 78
KENYAN 0 38 CATALAN 0 192
NIGERIAN 2365 4745 FILIPINO 12 167
RWANDAN 0 7 GALICIAN 0 19
SENEGALESE 0 3 GOAN 4 7
SIERRA LEONIAN 200 170 HISPANIC 269 1191
TANZANIAN 3 6 LATIN AMERICAN 11 226
UGANDAN 3 65 PORTUGUESE 1145 2147
ZAMBIAN 0 22 SPANISH 557 4514
ZIMBABWEAN 0 41 INTERNATIONAL 4104 259
CELTIC 1270 2599 JAPANESE 567 1536
IRISH 2493 8447 ARMENIAN 148 669
NORTHERN IRISH 0 257 JEWISH 1249 1417
SCOTTISH 2517 13176 JEWISH AND ARMENIAN 141 0
WELSH 3136 6466 SEPHARDIC JEWISH 0 6
BURMESE 61 144 AFGHANISTANI 0 59
CHINESE 831 411 ALGERIAN 49 164
EAST ASIAN & PACIFIC 456 32 BALKAN MUSLIM 0 3
HONG KONGESE 2048 915 BANGLADESHI 5831 2069
INDONESIAN 0 7 EGYPTIAN 0 32
MALAYSIAN 95 27 ERITREAN 59 120
MALAYSIAN CHINESE 3 50 IRANIAN 367 754
MAURITIAN 53 391 IRAQI 48 32
POLYNESIAN 6 3 JORDANIAN 0 5
SINGAPOREAN 40 11 KAZAKHSTANI 0 3
SOUTH KOREAN 78 43 LEBANESE 6 188
THAI 48 25 LIBYAN 0 7
VIETNAMESE 393 205 MALAYSIAN MUSLIM 0 12
BLACK CARIBBEAN 1243 364 MOROCCAN 0 58
CHANNEL ISLANDER 0 172 MUSLIM 12952 9634
CORNISH 1 413 MUSLIM INDIAN 1062 643
ENGLISH 12658 119086 MUSLIM MIDDLE EAST 133 0
AFRIKAANS 10 203 PAKISTANI 8381 5190
ALBANIAN 105 162 PAKISTANI KASHMIR 2001 1491
AZERBAIJANI 0 6 SAUDI ARABIAN 0 9
BALKAN 262 4611 SOMALIAN 1336 1052
BELGIAN 2 95 SUDANESE 0 29
BELGIAN FLEMISH 0 314 SYRIAN 0 8
BELGIAN WALLON 0 24 TUNISIAN 0 8

BOSNIAN AND HERZEGOVIAN 3 69 TURKISH 1437 2319
BRETON 12 0 TURKISH CYPRIOT 0 22
BULGARIAN 0 53 WEST AFRICAN MUSLIM 26 95
CANADIAN 0 4 DANISH 235 697
CROATIAN 59 89 FINNISH 209 1457
CZECH 89 247 ICELAND 5 25
DUTCH 159 1932 NORDIC 126 149
ESTONIAN 0 61 NORWEGIAN 13 835
EUROPEAN 1437 3382 SWEDISH 182 631
FRENCH 537 4734 SIKH 7288 3533
GEORGIAN 0 131 ASIAN CARIBBEAN 3 30
GERMAN 658 6690 BANGLADESHI HINDI 23 119
HUNGARIAN 116 560 GUYANESE 0 4
ITALIAN 1946 11001 HINDI NOT INDIAN 898 1543
LATVIAN 39 301 INDIA NORTH 2398 1939
LITHUANIAN 48 595 INDIAN HINDI 6251 2637
MACEDONIAN 16 84 INDIAN SOUTH 8 27
MALTESE 3 72 KENYAN ASIAN 0 17
MONTENEGRIN 0 6 NEPALESE 28 1
POLISH 838 8842 SEYCHELLOIS 2 4
ROMANIAN 10 287 SOUTH ASIAN 8578 1048
ROMANIAN DOBREGA 0 4 SRI LANKAN 3172 2149
ROMANIAN 
MANAMURESCRIANA 0 16 UNCLASSIFIED 310 8897
ROMANIAN MOLDOVA 0 10 VOID 238 541
ROMANIAN MUNTENIA 0 26 VOID - FORENAME 0 246
ROMANIAN TRANSILVANIA 0 21 VOID - SURNAME 185 0
RUSSIAN 233 2029 VOID INITIAL 444 18
SERBIAN 194 118 VOID OTHER 6 0
SLOVAKIAN 10 259 VOID TITLE 62 1   

Table 5.2 Summary of the heuristic classification’s results by CEL Type 
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5.6. Conclusion 

This chapter has offered an account of the exploratory processes developed to 

classify the names with a frequency of three or greater in the 2004 GB Electoral Roll 

(representing 281,422 surnames and 114,169 forenames). This heuristic approach has 

classified different groups of names into CELs following the techniques described in 

Chapter 4, through different stages and rules described here in the order in which 

they were first investigated. These techniques were specified through different rules 

and applied to different stages in a dynamic and iterative process. 

 

At the end of this process there was a double sentiment of achievement and 

pessimism. On the one hand, the fact that the objective to classify the most frequent 

names in Britain, had been achieved, brought with it a high degree of optimism in the 

potential applicability of the results. However, on the other hand, it was clear that the 

process to get there had been very convoluted, painstakingly long, and full of manual 

interventions which were difficult to recall and explain, hence opening up a long list 

of limitations with the heuristic approach taken. The main problem with this 

approach was that its results were not easily reproducible, due to the ad-hoc 

considerations that had accumulated through the classification process. In order to 

evaluate the experience gained through the heuristic approach, a thorough evaluation 

of its issues was carried out. This evaluation is presented in the next chapter, forming 

the basis for building a new automated and integrated approach, which aims to 

overcome this limitations and learn from the experience gained through this 

exploratory phase. 
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Chapter 6. An Automated and Integrated Approach to 

Name Classification 

The previous two chapters described the outcome of what in essence was a thorough 

learning exercise in building a new name-based ethnicity classification, identifying 

the most appropriate data and techniques (described in Chapter 4) and applying them 

through different steps and rules following a heuristic approach (described in Chapter 

5).  Through these steps, set in the context of the specialised literature (described in 

Chapter 3), valuable experience was acquired and a substantive body of knowledge 

was developed during this research. At the end of this first phase of the research, the 

objective of building a classification of most of the forenames and surnames present 

in Britain into the kinds of cultural, ethnic and linguistic groups described in Chapter 

4 was achieved. As such, this work established an important provisional ethnicity 

classification that successfully covered a high number of names.  

 

However, on reflection, the way this objective was achieved entailed work practices 

that were not always wholly systematic, and a resulting classification that could not 

be documented in a wholly transparent manner. This seriously limits the scientific 

reproducibility of the research, and hence some of its potential usefulness to the 

scientific and policy communities – particularly given that, as reviewed in Chapter 2, 

ethnicity classifications are a contested and sensitive process from the standpoint of 

government and policy. Although the outcome of this work was a functioning 

classification, its future adoption and improvements would be substantially hindered 

by the inability to explain in a systematic and transparent way how it was built, in 

order for others to evaluate it, reproduce it and enhance it.  
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This chapter begins by analysing the limitations recognised in the heuristic approach 

presented in the previous chapter, and sets out the requirement to develop a 

transparent and reproducible method. Both its limitations and achievements are taken 

into account in designing a new strategy to produce an enhanced methodology that 

builds upon the strengths identified in the previous chapters, while overcoming most 

of the previous limitations. This chapter will describe how such an enhanced 

methodology was developed in what constitutes an automated approach to 

classification of names into CELs. This automated approach has the objective of 

providing a simple and systematic method that can be easily explained and 

understood, and allows third parties to understand the explicit procedures that were 

used to develop the classification. 

 

The chapter is structured in five sections. Section 6.1 summarises the practical 

limitations of the heuristic classification in ten major points, evaluating it against the 

basic scientific test of reproducibility. Section 6.2 explores the possible routes to 

building a new an automated classification, using the strengths of the techniques 

developed in the heuristic approach and introducing enhancements to the CEL 

taxonomy and the forename-surname clustering (FSC) technique. Section 6.3 

describes the first part of the automated approach, specifically the development of a 

seed list of forenames that will form the input to the second part, while Section 6.4 

describes this second part, in which two main cycles of the FSC technique are used 

to assign surnames and forenames to CELs. Finally, Section 6.5 reflects upon the 

achievements and limitations of the automated approach presented here and points 

out avenues for further research in this area. 
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6.1. Practical Limitations of the Heuristic Approach 

The heuristic approach described in the previous chapter achieved the objective of 

classifying into cultural, ethnic and linguistic groups all forenames and surnames 

with a frequency of three or greater in Britain, subject to a series of obvious 

limitations. These will be discussed in this section with a view to informing the 

development of an automated and integrated approach in the rest of the chapter. 

6.1.1. Simplicity and reproducibility 

As described in the introduction to the previous chapter, the heuristic approach to 

classifying names was based on a collection of rules and practices that aimed 

progressively to proceed to a solution by trial and error as more data, knowledge and 

experience became available to the research. As such, it was at the same time both a 

learning and an exploratory exercise. It was a major classificatory effort, combining 

the investigation of techniques described in Chapter 4 with their application to 

different stages in a dynamic process. After completing and attempting to document 

the heuristic phase of the classification, it became obvious that the approach had a 

number of very serious flaws, and that the cumulative and ad hoc application of 

heuristics amounted to a failure in terms of a basic tenet of scientific inquiry; namely 

that the derivation of results should be independent of the experimenter and the 

method should be reproducible by other researchers (Longley and Goodchild, 2008). 

 

Kuhn (1977) identified the five characteristics of a good scientific theory; accuracy, 

consistency, scope, simplicity, and fruitfulness. Although this PhD thesis does not 

attempt to propose a new scientific theory, it does intend to propose a new ontology 

of ethnicity based on personal names for other researchers to use and expand, and 
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therefore its methodology should comply with the minimum standards of the 

scientific method. It is useful here to compare its achievements against Kunh’s 

(1977) five characteristics of good scientific theory: 

What, I ask to begin with, are the characteristics of a good scientific theory? 

(…) First, a theory should be accurate: within its domain, that is, 

consequences deducible from a theory should be in demonstrated agreement 

with the results of existing experiments and observations. Second, a theory 

should be consistent, not only internally or with itself, but also with other 

currently accepted theories applicable to related aspects of nature. Third, it 

should have broad scope: in particular, a theory's consequences should extend 

far beyond the particular observations, laws, or subtheories it was initially 

designed to explain. Fourth, and closely related, it should be simple, bringing 

order to phenomena that in its absence would be individually isolated and, as a 

set, confused. Fifth (…) a theory should be fruitful of new research findings: it 

should, that is, disclose new phenomena or previously unnoted relationships 

among those already known. These five characteristics - accuracy, consistency, 

scope, simplicity, and fruitfulness - are all standard criteria for evaluating the 

adequacy of a theory.  

(Kuhn, 1977: 321, emphasis not in original) 

 

Making the necessary translation from theory to methodology, the heuristic CEL 

name classification as a method to develop an ontology of ethnicity based on names, 

does not meet all of these characteristics. It seems to meet the requirements of 

fruitfulness and scope, and possibly of accuracy as well, within a rather narrow 
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domain, but it performs badly against the internal consistency aspects, and it 

definitely does not comply at all with the simplicity requirement. 

 

Furthermore, taken as a test or an experiment, the methodological approach 

described in the previous chapter does not comply with a commonly agreed principle 

in the scientific method of inquiry; an experiment’s ability to be accurately 

reproduced, or replicated, by someone else working independently. Therefore, lack 

of reproducibility, internal consistency and simplicity are the three main weaknesses 

of the heuristic approach described in the previous chapter.  

 

6.1.2. Ten major limitations of the heuristic approach 

The weaknesses pointed out above relate to a series of problems with the heuristic 

approach that are explained here, and summarised as ten apparent limitations. 

 

a) Moving target. The heuristic approach first aimed to classify the top 25,630 

surnames into CELs, before moving on to classify the top 30,000 forenames 

and finally the all other names with a frequency greater than three in the 

GB04 file, to reach a combined total of 281,422 surnames and 114,169 

forenames. As such, the objectives and methodological considerations 

changed during the process. Furthermore, as the number and type of names 

increased, so the number and detail of CELs was also expanded, from an 

initial 12 broad groups to around 50 CEL types which were then further split 

up into a total of 185 CEL types. Therefore the resulting method suffers from 

a moving target problem, closely linked to the following data availability 

limitation. 
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b) Progressive changes in data availability. As explained in the previous 

chapter, the detailed GB04 dataset including forenames, surnames and 

postcode unit at the individual level only became available half way through 

the research. Because of this, the top 25,630 surnames in Tier 1 had to be 

classified without any forename information, and thus without using the FSC 

technique, and without the fine geographic detail that allowed its linkage to 

Census data. Had the GB04 dataset been available from the start, and the 

research had, as a consequence, set the ambitious objective of classifying 

such a large number of surnames and forenames, other, simpler 

methodological paths would have been followed. Such paths will be pursued 

later in this chapter. 

c) Lack of pre-conceived notions on optimal name classification methods. The 

literature available to tackle similar problems is relatively small in size and 

rather obscure in character. Therefore, the heuristic approach was developed 

through a lengthy and cumulative learning process, in order to understand 

how to best approach the classification of names and to pre-evaluate the 

efficiency of the different techniques. This fact, together with the 

multidisciplinary nature of the topic, and the large sizes of datasets to be 

handled, made the process very slow and its learning curve very steep. After 

having used all the methods described in Section 4.3, it can be concluded 

with hindsight that the approach adopted was not necessarily the most 

effective. 

d) Arbitrariness in the sequencing of rules. The sequence in which the 

techniques and rules were implemented, as portrayed in the flow charts 

shown in figures 5.1, 5.2 and 5.4, was guided essentially by pragmatic 
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considerations, and not necessarily in the most logical order when taken as a 

whole. 

e) Ad-hoc variables, thresholds and decisions. The amount of ad-hoc 

information used (e.g. knowledge that Jewish names are more concentrated in 

postal area ‘NW’ in London, and the State of New York in the US, but if a 

particular name was concentrated in a rural area then it would not be Jewish), 

and the arbitrariness of decisions invoked and thresholds applied to classify 

certain names at each of the steps shown in figures 5.1, 5.2 and 5.4, was very 

difficult to systematise. This was in part because of the rather subjective and 

partial local knowledge of geographic concentrations in Britain and 

internationally that was gathered during the research process. Moreover, this 

was also because of the number of thresholds applied to filter names in each 

of the 23 rules described in Chapter 5 (A.1 to A.8, B.1 to B.11 and C.a to 

C.d). Such thresholds were introduced to select or reject a name for 

subsequent assignment to a CEL within a rule, for example to decide when a 

name was highly concentrated in an area, deemed to be British or non-British, 

or associated to a particular CEL. Furthermore, failure to adopt in an early 

stage a systematic approach to documenting each decision taken, made this 

ad-hoc knowledge even more obscure when it came to write-up the 

methodology.  

f) Ecological Fallacy. Many of the early decisions on surname to CEL 

assignment were based on geographic concentrations in Britain and 

internationally, and assumptions about the types of areas where they are most 

frequent, as explained in Section 4.3.2 and 4.3.3. This method could have led 

to the incorrect allocation of surnames to a certain CEL because of the 
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ecological fallacy, defined as ‘the false assumption that knowledge of the 

general characteristics of a neighbourhood will always yield accurate and 

precise information about specific individuals’ (Harris et al, 2005: 33). 

Furthermore, the decision to use the Mosaic geodemographic classification 

rather than just the raw Census ethnicity data at Output Area level, 

contributed to this ecological fallacy by confounding the association between 

ethnic groups and residential areas at finer postcode units with other socio-

economic profiling. 

g) Number of exceptions. A number of exceptions to the rules described in the 

previous chapter were found, but usually there were no general patterns and 

each of them was dealt with individually. As a result, they were too numerous 

and complex as to be explained as part of the methodology. Many of them 

arose when one rule contradicted a previous or posterior rule, or when the 

manual check performed by experts led to reallocation of a name to a 

different CEL.  

h) Variability of iterations. The classification of Tiers 2 and 3 made ample use 

of the Forename-Surname Clustering (FSC) technique, and different 

iterations of the technique were run as the number of forenames and 

surnames classified by CEL grew or name to CEL assignments changed. 

There are obvious circular implications in this procedure, that is, the same 

results would have not been obtained for the same names in two different 

iterations of FSC, since the cross-occurrences between forenames and 

surnames within a CEL would have changed at each step. 

i) CEL overlap and inconsistencies with the main classification. The numerous 

steps and rules applied through the heuristic process led to some names 
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having contradicting CELs depending on the sequence in which certain rules 

were applied or sets of names used within a rule. The text mining technique 

produced many of these potential CEL overlaps. A name was reallocated to a 

new CEL if after a quick check through the FSC technique or with manual 

expert knowledge, it was judged that the name would be better moved 

between CELs and that the CEL would also benefit over-all from the change. 

This involved many individual decisions that were not documented in the 

process. 

j) Manual check and reclassification. This problem is similar to the previous 

one, but relates to the process by which many different people with 

knowledge in each language culture were consulted at the end of each phase. 

Most of their ad-hoc decisions were taken as valid if the final results did not 

contradict the FSC technique outcomes. However, their re-allocations of 

names to a different CEL were not justified systematically, and no log of 

changes was kept for subsequent evaluation of the rule or step that might 

have created an incorrect classification in the first place. However, most of 

the manual reallocations occurred between similar CEL Types, always within 

the same CEL Groups, and in fact it was in this phase that many of the finer 

CEL Types were actually subdivided (such as, for example, the regional 

Romanian CEL Types). 

 

Together, these ten issues prevented the future reproducibility of the methodology, 

led to a lack of internal consistency in the approach and made it very difficult to 

explain the method in a straightforward and transparent way. Drawing on them, it 

was clear that in order to be able to publish the results of the new classification, and 
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promote its adoption amongst researchers, a new approach was required. In order to 

be accommodated within the research resources of a single Ph.D. thesis, it was 

recognised that such an approach would have to develop a much simpler, holistic and 

automated strategy, in a single major phase or step, with minimal manual 

intervention, and through the imposition of a simple set of rules. This was the 

objective of the automated approach described in the rest of this chapter. 

 

6.2. Exploring Alternative Automated Approaches 

‘Simpler is better’ (Popular saying) 

 

After going through the learning exercise of identifying the data and techniques 

described in Chapter 4 and applying them through different steps and rules in the 

heuristic approach described in Chapter 5, a great deal was learnt about the 

effectiveness of such classification techniques and their usefulness alongside name 

datasets. The limitations found in the heuristic approach were summarised in the 

previous section, in order to justify the need for a simpler and reproducible method. 

However, there were obviously a large number of benefits associated with the 

heuristic approach, and it did achieve the objective of classifying all of the most 

frequently occurring names in Britain. These benefits were implicit in the description 

of the techniques and rules given in the two previous chapters and will not be 

repeated here. Nevertheless, the overall positive conclusions about these techniques 

and rules will be summarised here to offer light and set a starting point in the 

investigations to tackle the problem of how to build a new automated and simpler 

approach to classify names into cultural, ethnic and linguistic groups of origin. 
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6.2.1. Coarser CEL Subgroups 

One of the problems with the heuristic approach was the proliferation of CEL Types, 

resulting in an unwieldy classification overall. The process of developing the CEL 

classification became a major taxonomic exercise requiring ever more specialised 

decisions, as part of a continuous effort to further subdivide CELs into smaller 

groups. New CEL Types were opened up after using text mining, receiving new data 

on new names or countries of birth, or through the manual revision of lists using the 

knowledge of students from different countries. At the end of the heuristic approach, 

there were 185 CEL Types, a complete list of which appears in the Appendix 3.  

 

It is worth remembering that the ontology of ethnicity proposed in this research was 

designed for Great Britain. This is an important point since it is relevant to the 

structure, size and composition of the CEL categories, and the 185 CEL Types 

exceeded the number of groups that were actually relevant for the GB context. As 

can be seen from the list of CEL Types in the Appendix 3, when the final heuristic 

classification was applied to the whole GB Electoral Register (GB 04 file) the reality 

was that a large number of these very small CEL Types, such as ‘Kyrgyzstan’, 

‘Namibia’, ‘Bhutan’ or ‘Madagascar’ had fewer than 10 individuals within them in 

Great Britain, according to the GB04 dataset. Such CEL Types often only had 

surnames associated with them (SCEL), and no forenames (FCEL). Consequently, 

when compiling the person’s overall CEL, they would be more likely to be assigned 

to the FCEL Type if it had a higher score than the SCEL (the way the personal 

allocation system works is explained in Chapter 7). Out of the 185 CEL Types, 21 

had fewer than 10 people, 49 less than 100 people, and 93 less than 1,000 people in 
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the GB04 Electoral Register. Therefore, when analysing the results of the 

classification, or devising the applications described in Chapter 8, the large number 

of very small groups was unwieldy (not least when mapping the CEL Types). 

Moreover, when trying to triangulate between forenames and surnames through FSC, 

in order to build the automated classification discussed here, these very small CEL 

types lead to a very large number of dead-ends, where insufficient forename-surname 

connexions were found within the same CEL Type, and indeed sometimes none at 

all. 

 

Therefore, it became obvious that a new set of coarser CELs would be needed for the 

FSC technique to be more effective when applied from scratch in the automated 

approach. The groupings of CEL Types that were used before in the heuristic 

approach were too coarse for this purpose, with only 16 CEL Groups. Hence the 

structure of the CEL taxonomy was rather imbalanced, with a top level in the 

hierarchy of 16 CEL Groups subdivided into 185 CEL Types at the bottom level. It 

was thus considered advisable to devise an intermediate level, grouping the CEL 

Types into more manageable units but still retaining sufficient variety as to retain the 

usefulness of the name analysis method.  

 

This could be easily done by merging smaller CEL Types until a minimum 

‘population threshold’ could be met, so that all CEL Types would all have a 

minimum size. This was of course only possible in a second phase, once the heuristic 

classification had been built and the whole Electoral Register could be classified. It 

was decided to build aggregations of CEL Types of a minimum population size of 

1,000 people, which initially reduced the taxonomy from 185 CEL Types to 92 
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aggregations. These aggregations were called CEL Subgroups, since they were in 

fact a subdivision of the top 16 CEL Groups. Further merging of CEL Types was 

required of CEL Types if, although having more than 1,000 people assigned to them, 

they were deemed culturally too close to others as to present a distinguishable pattern 

of forename-surname clustering. Examples of these CEL Types were the Spanish 

ones; Castilian, Galician, Catalan, Basque, Latin-American, Philippino and Spanish 

Other, which were all merged into a single Spanish CEL Subgroup. Other examples 

were the Romanian CEL Types, the Greek and Greek Cypriot, North African CEL 

Types, the different ‘Void’ names, and so on.  

 

A total of 66 CEL Subgroups were finally compiled, which all had sufficient internal 

consistency as to make the automated classification using FSC more successful and 

effective for the Great Britain application.  A list of these 66 CEL Subgroups is 

included in Table 6.1 alongside the CEL Group they belong to, and its total 

frequency in the GB 2004 Electoral Register, as a result of aggregating the individual 

counts per CEL Type. A full mapping between the original 185 CEL Types and the 

final 66 CEL Subgroups is offered in Appendix 3 within the complete list of CEL 

Types (CEL Subgroup column). Henceforth the term CEL Subgroup will refer to 

these 66 units as a middle layer between the 185 fine CEL Types and the 16 coarse 

CEL Groups. When the term CEL is used on its own it will usually refer to any of 

these three levels, but in the context of this chapter the terms CEL and CEL 

Subgroups are sometimes used interchangeably, for ease of reading. 

 

It is important at this stage to adopt a convention regarding the terms used to describe 

the number of names and their frequencies, in order to make the definitions more 
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explicit. A commonly accepted convention in the linguistics, metaphysics, statistics 

and infometrics literature, is the definition of the ‘type-token’ problem. This refers to 

a distinction, first proposed by the philosopher Charles Peirce (1839-1914), between 

signs considered as abstract things (types) or as particular instances (tokens), as that 

‘the class of all tokens of a given world is called a type’  (Hartshorne and Weiss, 

1931: 4537 cited in Burks, 1949: 681). Applications of the type-token problem 

usually refer to words, where one text will have a number of unique words (types) 

and a much larger number of instances of them (tokens). Applied to names, a unique 

instance of a name is a type (e.g. Pablo) of which there are a number of tokens in a 

given population or context (379 tokens of Pablo in GB04). Therefore, in the Great 

Britain Electoral Register (GB04) there are 46 million tokens of both forenames and 

surnames, but there are 437,639 forename types and 992,603 surname types. The 

type-token distinction is important especially when explaining the combinations 

between forenames and surnames and their cross-occurrences in the next sections. 
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CEL Group CEL Subgroup Frequency  CEL Group CEL Subgroup Frequency 

AFRICAN AFRICAN 7,842  GREEK  GREEK 109,370 

AFRICAN 
BLACK SOUTHERN 
AFRICA 5,198  HISPANIC PORTUGUESE 

90,327 

AFRICAN CONGOLESE 1,164  HISPANIC SPANISH 107,843 

AFRICAN ETHIOPIAN 1,238  INTERNATIONAL INTERNATIONAL 15,799 

AFRICAN GHANAIAN 46,095  JAPANESE JAPANESE 6,335 

AFRICAN NIGERIAN 88,243  
JEWISH AND 
ARMENIAN ARMENIAN 

4,353 

AFRICAN SIERRA LEONEAN 6,155  
JEWISH AND 
ARMENIAN JEWISH 

81,415 

AFRICAN UGANDAN 1,018  MUSLIM BANGLADESHI 179,401 

CELTIC IRISH 3,442,517  MUSLIM ERITREAN 1,397 

CELTIC SCOTTISH 4,749,864  MUSLIM IRANIAN 10,312 

CELTIC WELSH 3,065,041  MUSLIM LEBANESE 3,107 

EAST ASIAN CHINESE 24,423  MUSLIM MUSLIM 6,808 

EAST ASIAN EAST ASIAN 3,997  MUSLIM 
MUSLIM MIDDLE 
EAST

104,859 

EAST ASIAN HONG KONGESE 119,566  MUSLIM 
MUSLIM 
NORTHAFRICAN 

3,713 

EAST ASIAN KOREAN 2,315  MUSLIM 
MUSLIM SOUTH 
ASIAN

25,704 

EAST ASIAN MALAYSIA 2,092  MUSLIM PAKISTANI 508,699 

EAST ASIAN VIETNAMESE 15,723  MUSLIM PAKISTANI KASHMIR 91,472 

ENGLISH BLACK CARIBBEAN 23,665  MUSLIM SOMALIAN 33,260 

ENGLISH ENGLISH 31,258,100  MUSLIM TURKISH 51,911 

EUROPEAN AFRIKAANS 7,805  NORDIC DANISH 20,561 

EUROPEAN ALBANIAN 3,440  NORDIC FINNISH 5,685 

EUROPEAN BALKAN 24,721  NORDIC NORDIC 6,492 

EUROPEAN BALTIC 4,127  NORDIC NORWEGIAN 186,375 

EUROPEAN 
CZECH & 
SLOVAKIAN 4,881  NORDIC SWEDISH 

19,090 

EUROPEAN DUTCH 24,912  SIKH SIKH 283,657 

EUROPEAN EUROPEAN OTHER 31,341  SOUTH ASIAN HINDI INDIAN 319,979 

EUROPEAN FRENCH 128,129  SOUTH ASIAN HINDI NOT INDIAN 25,080 

EUROPEAN GERMAN 129,318  SOUTH ASIAN INDIA NORTH 75,282 

EUROPEAN HUNGARIAN 11,768  SOUTH ASIAN 
SOUTH ASIAN 
OTHER 

15,536 

EUROPEAN ITALIAN 229,931  SOUTH ASIAN SRI LANKAN 53,919 

EUROPEAN MUSLIM 1,034  VOID VOID 246,811 

EUROPEAN POLISH 155,743     

EUROPEAN ROMANIAN 2,531  TOTAL   43,639,2
EUROPEAN RUSSIAN 11,342     

EUROPEAN UKRANIAN 3,948     

 
Table 6.1: List of 66 CEL Subgroups 
The list includes the 66 CEL Subgroups as a result of aggregations of finer CEL Types. For each CEL 
Subgroup its overarching CEL Group is given alongside its total frequency in the GB 2004 Electoral 
Register, as a result of aggregating the individual counts per CEL Type. For a full list of 
correspondence between 185 CEL Types and 66 CEL Subgroups see full CEL Types list in Appendix 
3. 
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6.2.2. Positive aspects of the seven classification techniques used in the 

heuristic approach 

Of the seven classification techniques explained in Section 4.3 there was one whose 

efficiency stood out from the rest in terms of simplicity and classificatory power. 

This was the Forename - Surname Clustering (FSC) technique, based on Tucker’s 

(2003; 2005) CELG method. Because of this, the main focus of the exploratory phase 

of alternative methods discussed in this section will be the FSC technique and how to 

adapt it to contribute to an optimal automated classification. After reviewing the role 

of the other techniques the chapter will focus primarily on development and 

application of FSC. 

 

Despite the weight and importance of the FSC technique, its success would have not 

been possible without leveraging on the results of two other techniques, originally 

used to form the initial CEL clusters of surnames, and later exploited by FSC to 

triangulate between surname CEL to forename CELs and then back again to surname 

CEL (depicted as; SCEL=> FCEL => SCEL and so on). The two techniques that 

substantially contributed to initial sorting of surnames into CELs were 

spatiotemporal and geodemographic analyses.  

 

Aspects of spatiotemporal change, when comparing the different name distributions 

between 1881 and 1998, were crucial to determine whether the origin of a surname 

was British or non-British, and to identify regions of origin within Britain. Regarding 

spatial and geodemographic analysis aspects, geographical concentration of relative 

name frequency at different scales (locally, regionally, or internationally), helped to 

determine the most probable CEL of a surname’s origin, albeit while having to rely 
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on obscure local knowledge, as pointed out in the previous section under the 

limitations of this method. Furthermore, these two techniques were always useful, 

even after FSC was applied to Tier 2 and Tier 3, to distinguish British from non-

British name origins. This helped to improve FSC’s reliability since it made it 

possible to remove the substantial overlap occurring between British forenames and 

non-British surnames as cultures adopt the naming practices of the ‘host society’. 

This fact also led Tucker (2003, 2005) to ignore the percentage of ‘English’ 

forenames when applying his CELG technique to DAFN.  

 

The rest of the techniques described in Section 4.3 – text mining, name to ethnicity 

data, analysis of lists of international name frequencies and genealogical resources, 

and researching individual names – were most useful in seeding new CEL Types, 

splitting up coarse ones (such as Greek into Greek and Greek Cypriot), or classifying 

rarer names (typically with frequencies below 10). FSC does not work so well with 

rarer names since it does not pick up enough significant differences in the cross-

occurrences between FCELs and SCELs (i.e. most cross-occurrences were evenly 

spread between CELs or had just one or two occurrences per CEL), or because of 

small numbers it was easily influenced by exceptions in the population (e.g. a single 

family with a rare Italian surname that might have given all their children Greek 

forenames). These types of situations were picked up well by the other marginal 

techniques, complementing the FSC technique and spatiotemporal analysis. 

6.2.3. Benefits and limitations of Forename-Surname Clustering (FSC) 

As shown in the previous chapter, the FSC technique allowed the quasi-automatic 

classification of thousands of names in Tiers 2 and especially in Tier 3, in which 

255,792 surname types and 84,192 forename types were classified into CELs, 
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respectively representing 91% and 74% of the final total number of names classified. 

What is more, almost all of the 114,169 forename types were solely classified using 

FSC, once they were linked with previously classified surnames. The power of this 

technique demonstrates the vigour with which distinctive forename-surname 

practices are still unique within CELs in the contemporary population of Britain. 

 

The detailed explanation of the FSC technique was given in Section 4.3.1, and its 

application to classify names in Tier 2 and 3 was respectively described in sections 

5.3.2 and 5.4.1. Therefore, repetition of the ‘ins and outs’ of the FSC technique is 

avoided, and only the enhancements to the version already described and applied in 

previous chapters will be offered here. The objective of this subsection is therefore to 

explore potential enhancements to the FSC technique so that it may be used on its 

own to classify names from scratch in a new automated approach. 

 

As previously mentioned, FSC is based on two assumptions; (a) that most cultural, 

ethnic and linguistic (CEL) groups adopt distinct forename naming practices that are 

passed from one generation to the next, even if they are settled immigrants; and (b) 

that most people tend to marry or procreate with members of the same CEL group. If 

proved true, these two assumptions would preserve the unique cultural, ethnic and 

linguistic character of forenames within CEL groups, in the same way that surnames 

are more or less preserved intact by the strict rules that govern naming practices in 

civil registration of births in most countries. Therefore, two factors are key to the 

preservation of a cultural link between forenames and surnames; continuation of 

CEL group’s naming tradition and a high degree of within group marriages or 

procreation. Conversely, the forces eroding such assumed linkages are cultural and 
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linguistic integration in the ‘host society’, and intermarriage between ethnic groups, 

both of which are key indicators of the so called ‘assimilation’ of ethnic minorities. 

Both group-preserving and group-dispersion forces are highly shaped by spatial 

processes (Peach, 1980). 

 

Most of the misclassification problems found in the application of the FSC technique 

arose because of high overlap between a CEL’s and host society’s forenaming 

practices. This was especially acute for groups with a relatively long history of 

migration and which have now become culturally integrated; in Britain typically pre-

twentieth century migrants such as Jewish, Huguenots or Irish, but increasingly also 

early twentieth century migrants, such as Italians, Polish, and Indians. A second 

problem with FSC arose when considering names with very low frequencies of 

occurrence  in Britain (less than ten or even less than five), since their small numbers 

made them very sensitive to incorrect assignment of CEL based on the forenames of 

sometimes just one or two individuals or families. 

 

Despite these two potential misclassification problems, which will be dealt with later, 

the major limitation of the FSC technique, in its current form previously applied in 

Chapter 5 as well as by Tucker (2003) in the DAFN, is that it requires pre-

classification of a large list of names in order to initiate the triangulation between 

forenames and surnames. Tucker (2003) used a list of 80,000 forenames manually 

coded by CEL, gender and with a flag indicating whether they were deemed to be 

diagnostic of the CEL or not. This was only possible through the expert knowledge 

of the dictionary’s editor, Patrick Hanks, to code an initial set of 3,000 forenames 

and then expand it through manual revisions and FSC to 80,000 (Hanks and Tucker, 
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2000).  The application of FSC in the heuristic approach described in the previous 

chapter used a list of 25,630 surnames previously classified by CEL in Tier 1 using 

the techniques and rules described in Section 5.2. These two types of ‘ignition list’ of 

names will be termed here the ‘seed names list’.  

 

Furthermore, both the DAFN and the heuristic approach required a good starting 

knowledge of the ‘host society’s’ names in order to treat them separately in the FSC 

technique computations, and hence account for the observed overlaps in naming 

practices. Such ‘host society’ was considered here as ‘British Isles’s names’, which 

included English, Cornish, Welsh, Scottish, and Irish names found in the Great 

Britain 2004 Electoral Register. In the DAFN example, a similar definition of 

‘Anglo-saxon names’ was taken as the ‘default CEL’ for the US population. This list 

will be called here ‘host names list’.  

 

Taken together the main obstacles to automated classification are: FSC 

misclassifications arising out of overlaps in naming practices, intermarriage between 

CEL groups and low frequencies of occurrence; and the need to provide seed and 

host names lists to initiate the triangulation. If most of the effects of these issues can 

be overcome, the FSC technique offers great potential to classify all of the names 

using an automated approach, and can be observed to be based on a single set of 

simple and transparent rules rather than the longwinded version of the heuristic 

approach. In achieving such an objective, FSC would play the core role, the details of 

which will be described in the next section. 

 



 
Chapter 6- An Automated and Integrated Approach to Name Classification  222 

 

6.3. Building a Forename Seed List 

6.3.1. Alternative options to the ‘seed’ and ‘host’ name lists 

Having a good quality set of ‘seed’ and ‘host’ names lists is an inherent requirement 

for the successful classification of names into CELs using FSC, as pointed out in 

Section 6.2.3. Alternative approaches to eliminate the need for such seed and host 

names lists in the application of the FSC technique were initially explored but 

discarded in this research because of technical constraints, as will be explained later 

in Section 6.5 when describing enhancements that were attempted but subsequently 

abandoned. Therefore, at this stage, the objective was to develop a new set of seed 

and host lists in the most automated way possible in order to facilitate the initiation a 

new classification and its reproducibility by third parties. 

 

It was decided to develop a seed names list based on forenames rather than surnames, 

following the DAFN example. This is because, as suggested above, the frequency 

distribution of forenames in most countries has been proven more positively skewed 

than that of surnames (see Figure 5.3), or in other words, that a substantially smaller 

number of forenames than surnames is required to classify the same population (e.g. 

95% of the population –tokens– in the US are covered by just 14% of surname types, 

while only 1% of forename types suffice to cover the same population. See Section 

5.4.1 for more detail). Examples of this asymmetry have been found in the UK 

(Tucker, 2004a), Ireland (Tucker, 2006), US, (Tucker, 2001), Canada (Tucker, 

2002), and Spain (Mateos, 2007; Mateos and Tucker, 2008). Therefore, using the 

information gathered through the heuristic approach and Great Britain’s Electoral 

Register (GB04) it was estimated that with an initial seed list of say the most 
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frequent 20,000 non-British forename types one could classify at least 90,000 non-

British surname types in Britain. 

 

Several ideas were initially followed up to develop a comprehensive initial seed list 

of forenames. One first idea was to collect lists of forenames from different 

publications or the increasingly popular government statistics on forenames, 

available in Belgium (Statbel, 2006), Denmark (Danmarks Statistik, 2006), Iceland 

(Statistics Iceland, 2006), Madrid and Catalonia in Spain (IDESCAT, 2006; Instituto 

de Estadística de la Comunidad de Madrid, 2006) and Germany (Gesellschaft für 

deutsche Sprache, 2006). However the worldwide coverage of these lists was not 

large enough for the purpose stated here, and even when available their length and 

quality tend to vary significantly. Another idea was to set up a major survey to 

international students at UCL asking them to manually classify lists of forenames, 

picking up the forenames associated with their mother language. Preliminary 

exercises in this respect resulted in a high degree of overlap between similar CELs 

(e.g. Portuguese, Spanish and Italian forenames), the task was very tiring and time 

consuming, and only a sub-set of languages and nationalities that could be covered. 

A third approach was to build such a list from existing dictionaries of forenames (see 

for example, Parekh and Parekh (2003) for South Asian forenames), which might 

have infringed copyright as well as have taken a long time to select and digitize 

thousands of names from at least 50 languages. Furthermore, none of the above 

approaches provided a direct way of assigning a probability of a forename belonging 

to a CEL, or even a method of external validation of the quality of the assignment. 

This probability or strength of association between a name and a CEL was an 

important requirement, making it possible to discriminate between highly diagnostic 
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and low diagnostic forenames, making the FSC technique more efficient, as 

demonstrated by Tucker (2005). 

 

Lacking any other feasible alternative, it was finally decided to build a seed list of 

forenames based on the pre-existing information gathered through the heuristic 

classification. This option was not ideal in that it did not meet the independence 

requirement set at the beginning of this chapter, viz. to build a new automated 

classification from scratch. However, it was recognised that this was the best 

resource available for the task, and that the subsequent list of seed forenames derived 

through this process might be made available to any researcher interested in 

validating this approach or developing a new one, hence meeting the requirement for 

reproducibility of scientific inquiry mentioned before. The construction of a 

forename seed list following this approach will be described in Section 6.3.2. 

 

A straightforward approach to creating the ‘host’ names list was adopted, by using 

the spatiotemporal analysis technique and comparing the GB 1881 and GB04 

registers as explained in Section 4.3.3. This entailed identifying names present today 

in Britain that did not appear in 1881 and which are therefore likely to be of foreign 

origin (or of more recent creation). Furthermore, some foreign names that were 

present in 1881 have experienced dramatic growth relative to the rest of the 

population, and hence were also identified as ‘foreign’ when comparing the two 

datasets (using a threshold of growth of over 2,000% in relative terms). Through this 

technique a list of 22,078 British-Irish forename types was compiled, including the 

following CEL Types: English, Cornish, Welsh, Scottish, Irish, Northern Irish, and 

‘Channel Islands’. 
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6.3.2. Steps to build a forenames seed list 

The seed list of non-British forenames was built using the information already 

gathered through the heuristic approach, as justified above. The objective of this 

phase was to extract the most representative non-British forenames, re-classify them 

using a the coarser taxonomy of CEL Subgroups, and rate each forename-to-CEL 

assignment with a probability rate optimised for the FSC technique. 

 

This was achieved through the series of steps summarised below. The full set of 

structured query language (SQL) queries built in the Oracle database to automate and 

replicate this process is included in Appendix 4. This illustrates an important feature 

that differentiates the automated approach presented here from the heuristic 

approach. These SQL queries could be applied to any other set of names and 

ethnicity datasets, such as patient registers with country of birth, in order to 

automatically build other possible forename seed lists for different populations. 

 

What follows is a sequence of the ten steps taken to obtain a forename seed list, 

which is itself the main ingredient in the Forename-Surname Clustering carried out 

in the following section. 

1) Compiling a forename type frequency list. Using the GB04 register, a list of 

the frequencies of British forename types was produced, initially including 

437,639 forename types. However, of that figure 280,214 forename types 

occur only once while the remaining 157,424 forename types have a 

frequency greater than one. 

2) Selecting the most frequent non-British forename types. The above list was 

reduced by subtracting the 22,078 British forename types compiled in Section 
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6.3.1, as well as any other forename type with a frequency (tokens) of 10 or 

lower. After this filtering, the size of the seed list at this stage is 24,200 

forename types. 

3) Removing highly popular forenames. A further group of forenames was 

removed at the other end of the frequency distribution, this time the most 

frequent, in order to reduce the risk of misclassifications by highly popular 

forenames usually found in a number of CELs, such as Maria, Ana, Natasha, 

Mohammed, Ahmed, etc. After a few tests of cross-occurrences of these 

highly popular forenames in the database, a threshold was adopted to exclude 

those forename types with a frequency of 4,000 tokens or more, which 

removed 273 forename types from the list. At this stage the size of the seed 

list was 23,927 forename types. 

4) Removing short character forenames. Another potential source of 

misclassification experienced in the heuristic approach was derived from 

short forenames or surnames, such as Lee, Jay, Bob, Van, Isa, Che, etc that 

can be assigned to different CELs. Therefore, forenames with a character 

length of three or less were removed from the seed list, including a total of 

1,194 forename types of which a high proportion were also initials or 

honorifics (eg. Mr.). The forename seed list at stage had 22,733 types. 

5) Forename-Surname-CEL linkage. The interim forename seed list was linked 

to the complete 2004 Electoral Register (GB04), through the forename of 

each individual. Those same individuals were further linked to the surname-

to-CEL table classified in the heuristic approach through the individual’s 

surname. Therefore, at this stage the linkage of the three tables had the 

following schema:  
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 (A) non-British forename list => (B) GB04 Electoral Register <= (C) 

Surname-to-CEL  

 This is read as three tables labelled (A), (B) and (C) linked by ‘one-to-many’ 

database relationships of the type ‘left join’ ( =>) and ‘right join’ (<=) 

6) Computation of CEL percentages by forename. For each forename in table 

(A) above was calculated the count of people (tokens) in table (B) that had a 

surname associated with a particular CEL Subgroup in table (C). British CEL 

Subgroups were ignored for the purpose of this calculation. This resulted in a 

summary table, as per the example given in Table 6.2, in which the rows were 

any combination of a forename type with a CEL Subgroup, reporting the 

count of surname tokens and the percentage of the total forename tokens. 

This table will be referred here as table (D). 

 

Forename CEL Subgroup Surname 
tokens 

% of total 
tokens 

AAMIR BANGLADESHI 7 2.8% 
AAMIR HINDI INDIAN 5 2.0% 
AAMIR INDIA NORTH 1 0.4% 
AAMIR MUSLIM MIDDLE EAST 6 2.4% 
AAMIR MUSLIM NORTHAFRICAN 1 0.4% 
AAMIR MUSLIM SOUTH ASIAN 6 2.4% 
AAMIR PAKISTANI 198 79.8% 
AAMIR PAKISTANI KASHMIR 19 7.7% 
AAMIR SIKH 3 1.2% 
AAMIR SPANISH 1 0.4% 
AAMIR VOID 1 0.4% 
 TOTAL 248 100.0% 

 
Table 6.2: Example of calculation of CEL percentage per forename (excluding British CEL 

Subgroups) 
 

7) Selection of the CEL Subgroup with the highest percentage. For each 

forename in table (D) above, the CEL Subgroup with the highest percentage 

of surname tokens was selected as the most representative CEL of that 
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forename. In the example given in Table 6.2 this resulted in the classification 

of the forename ‘Aamir’ in the ‘Pakistani’ CEL Subgroup with 79.8% of the 

surname tokens for that forename type. In instances where the highest 

percentage was shared by more than one CEL Subgroup, it was decided to 

eliminate the forename from the forename seed list (1,794 forename types), 

since this situation would lead into potential further misclassifications when 

using the FSC technique. This resulted in a forename seed list size of 20,939 

forename types, with their assigned CEL Subgroup and the corresponding 

highest percentage. This list is termed here table (E), an example of which is 

given in Table 6.3. 

 

Forename CEL Subgroup % of total surname 
tokens within the 

selected CEL Subgroup 
AAMIR PAKISTANI 79.8% 

 
Table 6.3: Example of the final selected CEL Subgroup for a forename and percentage of 

surname tokens 
 

 

At the end of these seven steps a new forename seed list was available including 

20,939 forename types. However, even when the raw percentages of surname 

tokens within the selected CEL Subgroup associated with each forename were a 

good indicator of how well the forename represents its allocated CEL Subgroup 

(literally the percentage of surname tokens that are also from the same CEL 

Subgroup), they could not be compared on equal terms across CEL Subgroups. 

This is because in some CEL Subgroups which are more integrated into the host 

society or whose forenames overlap with another CEL Subgroup, a low value of 

the percentage for a forename, for example 34%, might nevertheless present a 

strong indicator that the forename belongs to that CEL Subgroup. On the 
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contrary, in more isolated groups, such as the Japanese CEL, a higher value, for 

example 50%, might mean a low association with the CEL Subgroup. Therefore, 

these percentages needed to be standardised into a common scale that takes into 

account the context of the CEL Subgroup’s percentage values distribution, in 

order to facilitate direct comparison of values across CEL Subgroups. 

 

8) Standardization of percentage values. Several methods of standardisation 

were tested, and z-scores were finally selected since they were the most 

commonly used and were appropriate for this context. z-scores measure how 

many standard deviations an observed value is away from the mean of a full 

range of values, giving a positive figure if it is above the mean and a negative 

below it (Robinson, 1998). Calculation of z-scores is based upon the mean 

and the standard deviation of the full range of values. In this calculation the 

range of values is given by the distribution of percentages for each forename 

within a CEL Subgroup that appear in table (E) above. The calculation of 

those percentages was explained in the previous step an example of which 

appears in Table 6.3 (79.8% for the forename ‘AAMIR’).  The z-score is 

calculated individually for each  forename in Table (E), as per the following 

calculation: 

σ
μ−

=
Xz   

Where z is the z-score, X is the percentage associated with a forename type 

(in the example of the forename ‘AAMIR’ given above this percentage is 

79.8% of surnames associated with the Pakistani CEL Subgroup); μ  and σ  

are respectively the mean and the standard deviation of the distribution of 
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percentages within the same CEL Subgroup (‘Pakistani’ in the example of 

‘AAMIR‘ above). This is calculated for all forenames relative to their 

allocated CEL Subgroup. 

 

The resulting z-scores for each CEL Subgroup are normally distributed about 

the mean value of zero with a range determined by the maximum number of 

standard deviations recorded by the most extreme values. When all the z-

scores for all the 20,939 forename types – each forename being z-standarised 

within their CEL Subgroup- are aggregated, the distribution of the combined 

z-scores is not normally distributed, although it is near-normal, with extreme 

values of -3.28 to 6.86 and a mean of zero. The histogram of the frequency 

distributions of the z-scores for the 20,939 forename types is shown in Figure 

6.1, showing the advantage of the standardisation between CEL Subgroups. 

 

If only surname tokens were taken into account to ascribe a forename to a CEL, one 

surname type with five tokens, for example, would have the same weight as five 

surname types with one token each all associated with the same CEL, when it is 

intuitively known that the latter shows a stronger correlation with a CEL than the 

former. Therefore, a surname token–only approach to build the automated CEL 

classification is discouraged, because of its high sensitivity to potential incorrect 

CEL allocations of surname types with large numbers of tokens.  
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Figure 6.1: Histogram of forename z-scores distribution (based on surname tokens) 
This histogram shows the forename type frequency distribution of the z-score value for each forename 
type (n=20,939). Those z-scores standardised by CEL Subgroup the percentage of surname tokens per 
forename type (see steps 6, 7 and 8 in the text and Table 6.3). The Normal curve is also shown for 
comparison with the histogram which  shows a slight negative skewness. 
 

Even so, surname tokens cannot be discarded altogether. It could be argued that the 

objects being classified are populations of individuals, and thus the CEL system is 

classifying people or tokens of names. Furthermore, if a surname type-only approach 

is followed, the number of objects to cluster in FSC would be significantly reduced, 

removing its classificatory power. For example, in some instances for one forename 

there would just be three surname types with no weight information and three CEL 

Subgroups to choose from. But if it is known that one of the surname types has ten 

times as many tokens as the other two the decision on the CEL Subgroup is much 
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clearer. Therefore, a mixed approach using both surname tokens and types is advised 

and is used here. 

 

9) Average of surname token and type-derived z-scores. Steps 6, 7 and 8 were 

repeated once again, but this time taking into account the number of surname 

types associated with each forename, rather than surname tokens, previously 

described in steps 6, 7 and 8 above. At the end of this second round, a second 

z-score value based on percentages of surname types (z_typ) was computed. 

Therefore two z-scores were obtained for each of the 20,939 forename types, 

one calculated using the percentage of surname tokens (z_tok) and another 

one using surname types (z_typ). Finally, a mixed approach was taken, by 

taking the average of these two z-scores (z_tok and z_typ), since the interest 

here was in deriving a synthetic indicator of how well a forename represents a 

CEL Subgroup and there is not a good reason to give one more weight over 

the other. 

2
z_type z_tok )_( +

=scorezAvg  

The advantage of using the average of the z-scores is that it smoothes out any 

major bias introduced by large or rare surnames used in the calculation, as 

clearly suggested by Figure 6.2. The graph shows the z-score values of each 

of the 20,939 forenames in the seed list, calculated for surname types (z_typ) 

and surname tokens (z_tok) with their arithmetic average superimposed 

(avg(z-scores)), ordered by the latter along the x-axis. 
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Figure 6.2: Distribution of forename z-score values based on surname tokens, types and their 
average 
This graph shows the z-score values on the y-axis and the sequence of each of the 20,939 forename 
types on the x-axis ordered by ascending average z-score. The three lines show; z-score values based 
on surname tokens (‘z_tok’ in red), based on surname types (‘z_typ’ in green), and the average 
between the two (‘avg (z-score)’ in dark blue). 
 

10) Selection of higher z-scores and transformation to a final scale. Finally, after 

an exploratory analysis of the distribution of z-scores obtained for all seed 

forenames, it became obvious that the forenames with the lowest z-scores 

were not at all representative of any CEL Subgroup. These were forenames 

that had a low percentage across all CEL Subgroups in step 6 above, of which 

the highest was picked up in step 7, but not necessarily meaning that the 

forename represented that CEL Subgroup. This was common amongst the 

rarer forenames. A visual evaluation of some CEL Subgroups by expert 

collaborators familiar with the names in those CELs, suggested that the 

forenames with z-score values below -1 were either wrongly assigned to one 

of the CEL Subgroups or that they were bad indicators of such Subgroups. 

This made sense because they were more than one standard deviation below 
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the average percentage of the CEL Subgroup. Therefore it was decided to 

eliminate all forenames with z-scores below -1 from the seed list. This further 

removed 2,814 forename types leaving the final list size in 18,125 forename 

types. 

 

Figure 6.3: Histograms of average z-score+1 (left) and truncated final forename score (right) 
Theses two histograms show the effect of the transformation introduced in step 10. In the histogram 
on the left, the effect of adding a value of one in the whole distribution being shifted to the right can 
be clearly seen (the mean value now becomes 1, while z-scores have always a mean of 0). The 
histogram on the right, built to match the same scale and bin size as the previous one, shows the effect 
of truncating any negative values, resulting in 18,125 positive scores.  
 

In order to make all the scores positive, and since the distribution was now 

truncated in the negative values side, and thus ranging from -1 to 6.86, a very 

simple transformation was applied by adding a value of 1 to all z-scores, 

resulting in a positive scale starting at 0 and in this case a maximum value of 

7.86. This final transformed and truncated z-score will be termed hereinafter 

the forename score. Figure 6.3 shows this process in the reverse order, so that 

the effect of adding a value of one in the whole distribution being shifted to 

the right can be clearly seen first (left histogram, with mean of 1) and then the 
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effect of truncating any negative values after that transformation (right 

histogram). 

 

Through the ten steps process described here, a final forename seed list was 

produced, comprised of 18,125 non-British forename types classified by CEL 

Subgroup and each with an assigned score. A total of 62 CEL Subgroups were 

represented in the list. A summary of its contents is provided in Table 6.4, where the 

number of forename types, the average forename score and standard deviation is 

shown for each of the CEL Subgroups arranged by CEL Group.   

 

These same ten steps were then repeated for the list of ‘British Isles’ CEL Subgroups 

forenames (English, Cornish, Welsh, Scottish and Irish), initially removed in step 2 

above as to facilitate the FSC technique for non-British forenames. This second run 

of the ten steps produced an additional list of 23,419 British and Irish forename 

types, which after appending to the non-British CEL seed list, produced a final 

forename seed list of 41,544 forename types. This list will be hereinafter called the 

‘seed list’, and it had three fields; ‘forename’, ‘CEL Subgroup’, and ‘score’. The full 

detailed forename seed list of 41,544 forename types and their attributes is available 

on request to bona-fide academic researchers for further evaluation and 

enhancement. A sample of forename types from this list is provided in Appendix 5. 
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CEL Group CEL Subgroup 
Forname 

types 

Avg of 
final 

score 

Std. dev 
of final 
score  CEL Group CEL Subgroup 

Forname 
types 

Avg of 
final 

score 

Std. dev 
of final 
score 

AFRICAN AFRICAN 19 1.08 0.87 HISPANIC PORTUGUESE 221 1.30 0.85 
AFRICAN BLACK SOUTHERN 

AFRICA
45 1.31 0.79 HISPANIC SPANISH 469 1.25 0.89 

AFRICAN CONGOLESE 20 1.30 0.84 INTERNATIONAL INTERNATIONAL 10 1.00 0.96 
AFRICAN ETHIOPIAN 17 1.25 0.91 JAPANESE JAPANESE 148 1.20 0.89 
AFRICAN GHANAIAN 114 1.32 0.86 JEWISH & ARMENIAN ARMENIAN 53 1.24 0.90 
AFRICAN NIGERIAN 776 1.38 0.58 JEWISH & ARMENIAN JEWISH 244 1.21 0.92 
AFRICAN SIERRA LEONIAN 75 1.29 0.84 MUSLIM BANGLADESHI 1351 1.31 0.75 
AFRICAN UGANDAN 1 1.00 0.00 MUSLIM ERITREAN 18 1.24 0.88 
EAST ASIAN CHINESE 49 1.24 0.82 MUSLIM IRANIAN 101 1.14 0.94 
EAST ASIAN EAST ASIAN 15 1.32 0.75 MUSLIM LEBANESE 2 1.58 0.00 
EAST ASIAN HONG KONGESE 307 1.33 0.78 MUSLIM MUSLIM 12 1.00 0.99 
EAST ASIAN KOREAN 9 1.27 0.45 MUSLIM MUSLIM MIDDLE EAST 676 1.17 0.90 
EAST ASIAN MALAYSIA 4 1.00 1.00 MUSLIM MUSLIM NORTHAFRICAN 7 1.00 0.97 
EAST ASIAN VIETNAMESE 114 1.29 0.66 MUSLIM MUSLIM SOUTH ASIAN 15 1.09 0.87 
ENGLISH BLACK CARIBBEAN 1 1.00 0.00 MUSLIM PAKISTANI 3326 1.33 0.72 
EUROPEAN AFRIKAANS 41 1.18 0.90 MUSLIM PAKISTANI KASHMIR 165 1.16 0.80 
EUROPEAN ALBANIA 6 1.23 0.91 MUSLIM SOMALIAN 45 1.31 0.80 
EUROPEAN BALKAN 301 1.33 0.75 MUSLIM TURKISH 757 1.26 0.83 
EUROPEAN BALTIC 80 1.18 0.96 NORDIC DANISH 86 1.09 0.96 
EUROPEAN CZECH & SLOVAKIAN 24 1.21 0.85 NORDIC FINNISH 112 1.32 0.83 
EUROPEAN DUTCH 104 1.16 0.95 NORDIC NORDIC 3 1.00 1.00 
EUROPEAN EUROPEAN OTHER 12 1.14 0.54 NORDIC NORWEGIAN 23 1.12 0.93 
EUROPEAN FRENCH 186 1.26 0.88 NORDIC SWEDISH 72 1.13 0.95 
EUROPEAN GERMAN 282 1.20 0.93 SIKH SIKH 1445 1.39 0.48 
EUROPEAN HUNGARIAN 61 1.28 0.82 SOUTH ASIAN HINDI INDIAN 2385 1.41 0.65 
EUROPEAN ITALIAN 699 1.34 0.83 SOUTH ASIAN HINDI NOT INDIAN 34 1.13 0.92 
EUROPEAN POLISH 347 1.26 0.89 SOUTH ASIAN INDIA NORTH 324 1.22 0.91 
EUROPEAN ROMANIAN 39 1.06 0.99 SOUTH ASIAN SOUTH ASIAN OTHER 4 1.34 0.35 
EUROPEAN RUSSIAN 93 1.31 0.82 SOUTH ASIAN SRI LANKAN 807 1.30 0.79 
EUROPEAN UKRANIAN 49 1.38 0.53 UNCLASSIFIED VOID 334 1.19 0.90 
GREEK GREEK 653 1.37 0.78      
     TOTAL   18125 1.28 0.79 

Table 6.4: Summary of the contents of the final non-British forename seed list.  
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Attempts were made to externally validate this seed list with onomastic experts who 

could judge its completeness and accuracy, but they were not successful. Automatic 

validation  using the 80,000 diagnostic forenames list from the DAFN seemed to be 

the best way of achieving this, but because of copyright issues with Oxford 

University Press, the publisher of the dictionary, this was not possible. The 

evaluation of the seed list will become part of the evaluation of the whole 

methodology described in the next chapter. 

6.4. Forename-Surname-Clustering (FSC) 

The process of building an automated classification of names in CELs had two 

phases. The first phase entailed building a forenames seed list, which was used in a 

second phase to classify the surnames and a larger number of forenames into CELs. 

The previous section dealt with the first phase, while this section will describe the 

processes involved in the second phase. This second phase started with a forename 

seed list that served as the main input to ‘fuel’ the FSC triangulation engine 

described in this section. The triangulation was performed in a series of repetitive 

cycles, of which only the first two are described in this section. 

 

6.4.1. Cycle 1; forename seed list and surname clustering 

Cycle 1 of the FSC triangulation started with the forename seed list of 41,544 

forename types, which as stated above, contained the forename, CEL Subgroup, and 

score. This forename seed list was used to search in the Electoral Register for 

surnames associated with them, and thus calculate the CEL Subgroup composition of 

each surname. This was achieved in a series of steps. 
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1) Table linking. The GB Electoral Register (GB04 file) was linked to two 

tables: to the forename seed list through the forename field; and to a new 

forename-to-gender table also through the forename field. Figure 6.4 shows 

the relationships between these tables. The forename-to-gender table was 

created associating each forename in the GB Electoral Register with a gender 

by aggregating the gender field for each elector in the Electoral Register by 

forename. As a result, each forename ended up with one of four possible 

‘gender values’; Female, Male, Both, or Unknown. ‘Both’ referred to 

forename types where both sexes represented at least 10% of the total 

forename tokens, while ‘unknown’ were cases of forename types with no 

gender reported in the Electoral Roll. 

Forename 
seed list 

-Forename

-Surname

n= 41,544

n= 46 million

Elect. Roll 

-Forename

-CEL Subgroup

-Score

-Forename

-Gender

Forename-to-
Gender 

n=437,639

-Gender

-Weight

Gender 
weight 

n=4

 
Figure 6.4: Tables relationships in cycle 1 step 1 
Diagram of the relational database structure between the tables in cycle 1 step 1. The direction of the 
arrows represent a ‘many to one’ type of relationship between the tables (from arrow stem to arrow 
pointer). n=number of records in each table. The ‘gender weight’ table has 4 records (Male, Female, 
Both, Unknown). 
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2) Gender weighting. In order to improve the effectiveness of the FSC 

technique, Tucker (2005) proposed to weight down those forenames known 

to be of female gender to reduce the adverse impact of multicultural 

marriages in which the woman takes the husband’s surname, thereby 

introducing what he describes as an ‘artificial relationship’ (perhaps more 

correctly an ‘ambiguous relationship’) between a forename’s and a surname’s 

CEL. When applying his version of FSC, Tucker (2007a) used a weight of 

0.8 for every female forename in the database, while male or unisex 

forenames were assigned a weigh of 1. It was decided to adopt the same 

successful strategy in this automated classification. A new table of gender 

weightings (Female = 0.8, Male = 1, Both/Unknown = 1) was created and 

linked to the forename-to-gender table as shown in Figure 6.4. A summary of 

the gender distribution of the GB 04 Electoral Register in terms of the 

number of forename tokens and types is shown in Table 6.5 

 

Gender Forename Tokens Forename Types 

Female 24,702,133 53.3% 180,497 41.2% 

Male 21,446,125 46.3% 152,736 34.9% 

Both or Unknown 158,064 0.3% 104,406 23.9% 

Total 46,306,322 100.0% 437,639 100.0% 
 
 
Table 6.5: Summary of the total number of forename tokens and types per gender in GB 04 
Electoral Register 
  

3) Calculation of personal weight score. A query was performed on the tables 

shown in Figure 6.4, for every person whose forename was found in the 

forename seed list, producing a record including; forename, surname, 
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forename CEL Subgroup, forename score, gender weight, and a ‘weighted 

personal score’ (calculated by multiplying the forename score by the gender 

weighting). These records were stored in an interim table termed here table 

(A). 

4) Calculation of surname to CEL Subgroup frequencies and cumulative score. 

For every surname type and CEL Subgroup combination in table (A), a 

calculation was made summing up the weighted personal scores (creating a 

‘cumulative personal score’), and counting the frequency of forename tokens 

and forename types, calculating the relative frequency (in percentage) of both 

forename tokens and types over the total for that surname. If the percentage 

of forename tokens of the British and Irish CEL Subgroups was below 95%, 

then these CEL Subgroups and their associated frequencies were removed 

from the calculation. This threshold was selected as a result of the 

classificatory experience in the heuristic approach, and it is related to the 

overall size of the non-British or Irish minorities in the UK. The percentage 

of non-‘White British/White Irish’ groups in the 2001 UK Census is 10.8%. 

However, because of the abundance of British forenames amongst second 

generation ethnic minorities, and the number of multicultural marriages 

involving surname change, when calculating the expected percentage of non-

British forename tokens in the population, the final figure should be much 

lower than 10.8%. The exploratory analysis developed in the heuristic 

approach indicated that the real threshold should be 5% of the overall 

forename tokens. This is the threshold used here, assuming any surname with 

less than 95% of its forename tokens as British or Irish should be taken as 

most likely of ‘foreign’ origin. The results of the calculation described in this 
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step were stored in an interim table (B), an example of which is provided in 

Table 6.6.  

    
Cumulative personal 

score 

Surname CEL Subgroup 
Forename 

Tokens 
Forename 

Types Value Percentage

CARVALHO SPANISH 61 22 62.47 38.89% 
CARVALHO GHANAIAN 1 1 0.13 0.08% 

CARVALHO NIGERIAN 1 1 1.14 0.71% 

CARVALHO HINDI INDIAN 1 1 0.05 0.03% 

CARVALHO PORTUGUESE 50 32 76.92 47.88% 
CARVALHO ITALIAN 20 14 19.94 12.41% 

TOTAL  134 71 160.65 100.00% 
 
Table 6.6: Example of the different CEL Subgroups associated with a surname type as 
calculated in step 4 

 

5) Selection of the CEL Subgroup with the highest cumulative personal score. 

For each surname type in table (B) (see the example given in Table 6.6), the 

CEL Subgroup with the highest cumulative personal score was selected as the 

most representative CEL Subgroup of that surname. In the example given in 

Table 6.6 this resulted in the classification of the forename ‘Carvalho’ to the 

‘Portuguese’ CEL Subgroup, with a total cumulative score of 76.92. This 

example is very interesting to demonstrate the value of using the highest 

cumulative score as opposed to just the highest counts of forename tokens or 

types. ‘Carvalho’ actually had more forename tokens associated with the 

‘Spanish’ CEL Subgroup, but the Portuguese ones had much higher scores 

and were weighted more in the final allocation (see figures highlighted in 

bold in Table 6.6). This is because of a historic overlap between Portuguese 

and Spanish forenames (which are derived from the same catholic religious 

figures written exactly in the same way in both languages), an example of a 
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problem that can be overcome by using the scores in the forename seed list as 

described in Section 6.3.2. 

6) Creation of a new surname-to-CEL table. A new interim table (C) was 

created using the result of the previous step. It was then filtered to remove 

any surname types with a total frequency of less than 10 tokens, in order to 

avoid potential future misallocations of CELs through further iterations of 

FSC because of rare surnames. This final table was termed the ‘surname-to-

CEL table’ and included the following fields: 

− Surname type 

− CEL Subgroup (selected in step 5) 

− Average personal score (see below) 

 

The ‘average personal score’ was calculated by dividing the ‘cumulative 

personal score’ of the selected CEL Subgroup by the number of forename 

tokens of that CEL Subgroup. In the example given in Table 6.6 this was 

76.92 / 50 = 1.54, meaning that the surname ‘Carvalho’ is associated with 

Portuguese forenames in the seed list that taken together have a gender and 

population weighted average score of 1.54. At this stage the new ‘surname-

to-CEL table’ had 90,729 surname types. 

 

7) z-score standardisation and final score selection. The average personal score 

calculated above for the ‘surname-to-CEL table’ was standardised using z-

scores, using the mean and the standard deviation of the average personal 

score values within each CEL Subgroup. The z-scores were calculated in 

exactly the same way as shown in Section 6.3.2 (step 8) above. As pointed 
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out in that section, the result of this standardisation was a positive or negative 

value distributed around zero and with a range determined by the number of 

standard deviations away from the mean that bounded the most extreme 

values. Those surnames with an average z-score of less than -1 were deleted 

from the surname-to-CEL table, since they were deemed to not be 

representative of the CEL Subgroup in this first cycle. Finally, the average z-

score was transformed by adding to it a value of ‘1’ resulting in a final 

‘surname score’. The range of surname scores in this case was between 0 and 

0.83. The resulting surname score was added to the final version of the 

‘surname-to-CEL’ table which at this stage had 72,884 surname types. 

 

As a result of these seven steps in cycle 1 a new ‘surname-to-CEL’ table with 72,884 

surname types was created, with just three fields; ‘surname’, ‘CEL Subgroup’, and 

‘score’. This is the first version of this table, which after subsequent iterations of 

cycles 1 and 2 was expanded with more surnames as will be explained at the end of 

this section. 

6.4.2. Cycle 2: surname-to-CEL table and forename clustering 

Cycle 2 of the automated approach used the surnames-to-CEL table to classify 

further forenames by CEL Subgroup. Repetition of the descriptions of calculations 

performed which were identical to cycle 1 will be avoided here, and reference will be 

made to the detailed explanation in subsection 6.4.1. The purpose of this subsection 

will be to highlight any differences in the approach. The terminology of SCEL and 

FCEL used in Chapter 5 will be used here again. SCEL refers to the CEL Subgroup 

assigned to a surname and FCEL to that assigned to a forename. 
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Therefore, the objective of cycle 2 was to classify a large number of forename types 

into CEL Subgroups, beyond the original 18,125 forename types included in the 

forename seed list. This was achieved through the following steps, mirroring those 

described in cycle 1. 

1) Table linking. The GB Electoral Register (GB04 file) was linked to three 

tables; to the surname-to-CEL table, developed in the previous subsection, 

through the surname field, to the forename-to-gender tables through the 

forename field, and through the latter to the gender weighting table. Figure 

6.5 shows the relationships between these three tables, which is very similar 

to Figure 6.4, differing only in bottom-middle table. 

Surname-to-
CEL 

-Forename

-Surname

n= 72,884

n= 46 million

Elect. Roll 

-Surname

-CEL Subgroup

-Score

-Forename

-Gender

Forename-to-
Gender 

n=437,639

-Gender

-Weight

Gender 
weight 

n=4

 
Figure 6.5: Tables relationships in cycle 2 step 1 
Diagram of the relational database structure between the tables in cycle 2 step 1. The direction of the 
arrows represent a ‘many to one’ type of relationship between the tables (from arrow stem to arrow 
pointer). n=number of records in each table. The ‘gender weight’ table has 4 records (Male, Female, 
Both, Unknown). 
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2) Gender weighting. The same type of gender weighting was applied in this 

iteration as in step 2 of cycle 1. 

3) Calculation of personal weight score. A query was performed on the tables 

shown in Figure 6.5, for every person whose surname was found in the 

surname-to-CEL table, producing a record including;  

− Forename 

− Surname 

− SCEL (the CEL Subgroup from the surname-to-CEL table) 

− Surname score (from the surname-to-CEL table) 

− Gender weight 

− ‘Weighted personal score’ (calculated by multiplying the surname 

score by the gender weighting). 

All of these records were stored in an interim table termed here table (A). 

4) Calculation of forename to CEL Subgroup frequencies and cumulative 

scores. For every forename type in table (A) and CEL Subgroup combination, 

the same calculation applied in cycle 1 step 4 was performed here, including 

the removal of British and Irish CELs if the percentage of surname tokens 

was below the 95% threshold. The results of this calculation were stored in 

table (B).  

5) Selection of the CEL Subgroup with the highest cumulative personal score. 

For each surname type in table (B) above, the CEL Subgroup with the highest 

cumulative personal score was selected as the most representative CEL 

Subgroup of that forename type.  

6) Creation of a new forename-to-CEL table. A new interim table (C) was 

created with the result of the previous step. It was then filtered to remove any 
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forename types with a total frequency of less than 5 tokens, in order to avoid 

potential future misallocations of CELs through further iterations of FSC 

because of rare surnames. This final table was termed the ‘forename-to-CEL 

table’ and included the following fields: 

− Forename type 

− CEL Subgroup (selected in step 5) 

− Average personal score (as per cycle 1 step 6) 

At this stage the new ‘forename-to-CEL table’ had 89,211 forename types 

8) z-score standardisation and final score selection. The average personal score 

calculated above for the ‘forename-to-CEL table’ was standardised using z-

scores, in exactly the same way as shown in cycle 2, step 8 above, including 

the truncation of values below -1 and the transformation by adding to it a 

value of ‘1’. This resulted in the final ‘forename score’. The range of surname 

scores in this case was between 0 and 0.72. The resulting forename score was 

added to the final version of the ‘forename-to-CEL’ table which at this stage 

had 81,653 forename types. 

9) CEL Subgroup consistency check. A final check was performed on this new 

‘forename-to-CEL table’ for those forename types that already existed in the 

‘forename seed list’ comparing the attributes of both tables. If there was a 

mismatch between the two CEL Subgroups independently assigned in each of 

these two tables, the forename was finally allocated to the CEL Subgroup 

with the highest score. 
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6.4.3. Subsequent cycles of forename-surname clustering (FSC)  

Cycles 1 and 2 described in this section were essentially two iterations of the same 

process. Subsequent iterations of these cycles were further continued into cycles 3, 4 

and beyond, comprising a true automated approach. This increased the number of 

surnames and forenames that were classified with a CEL bringing it as close as 

possible to the objective of classifying all forename types and surname types with a 

frequency of 3 tokens or more in the GB Electoral Register. Figure 6.6 shows this 

iteration of cycles diagrammatically, with cycle 1 starting with a forename seed list 

to produce a surname-to-CEL table which is in turn used to produce a forename-to-

CEL table in cycle 2 and both expanded through subsequent cycles 3 and beyond. 

etc...

etc...

Forename-to-CEL

Surname-to-CEL

Forenames
seed list Cycle 1

Cycle 2

Cycle 3

check

 

 
Figure 6.6: Cycles in the automated classification 
This diagram shows the process flow described in Section 6.4, starting with a forenames seed list used 
in cycle 1 to produce a surname-to-CEL table, which is then in turn used in cycle 2 to produce a 
forename-to-CEL table, and so on. Only cycles 1, 2 and 3 are shown in the diagram. 
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The final surname-to-CEL table had 225,576 surname types, and the final forename-

to-CEL table had 98,624 forename types. These tables are available on request to 

bona-fide academic researchers for further evaluation and enhancement. 

6.5. Enhancements to the Automated Approach 

The automated approach described in this chapter presents a significant enhancement 

over the heuristic approach described in the previous chapter, whose limitations were 

listed in Section 6.1. However, the automated approach has two shortcomings. The 

total number of names classified is lower than in the heuristic approach, because of 

the high number of rarer names that the FSC technique could not classify. 

Furthermore, the methodology still depends on an external input; the forename seed 

list, pre-classified by CEL Subgroup and with accurate scores. This PhD developed 

such a seed list based on the previous heuristic classification, so the automated 

approach is still not completely independent of the previous approach. Although 

other researchers could also use this forenames seed list, it nevertheless remains a 

UK-based list and might not work as well in other contexts. Some ideas to overcome 

this second problem were explored and will be discussed in this section. 

6.5.1. Potential enhancements that were abandoned 

In order to find an alternative to the dependency on an externally and non-

automatically produced forename seed list, several alternatives were explored during 

this PhD, but their results were deemed not sufficiently successful as to be 

implemented as part of the automated approach. However, there are some promising 

aspects that are worth mentioning here, identifying promising future research 

avenues in this area. 
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The automated approach described in this chapter relies primarily on the forename-

surname clustering (FSC) technique, adapted from Tucker (2003; 2005), the 

assumptions of which are fully described in Chapter 4 Section 4.3.1. In this PhD and 

in Tucker (2003; 2005), the clustering of forenames and surnames is initially induced 

by a previously manually classified forename seed list that ‘ignites’ the FSC cycles. 

However, the requirement for such a seed list is an important shortcoming since it 

relies on the use of other less systematic techniques and subjective decisions, such as 

spatiotemporal analysis or text mining, or on the manual classification by experts. 

 

In essence the FSC technique measures the correspondence between certain groups 

of forenames and certain groups of surnames through the identification of the highest 

frequencies of common bearers between the two. This problem could be represented 

as a matrix of m number of forenames as columns by n number of surnames as rows 

(m x n), and each cell would contain the counts of people that have a particular 

forename and surname combination. In this way the cell for column ‘John’ and row 

‘Smith’ would have a count of 11,920 people in GB Electoral Register, the 

combination ‘Pedro’ and ‘Garcia’ 16 people, and ‘Pedro’ and ‘Smith’ none. Most of 

the cells in this matrix would therefore be empty, while the ones with higher 

frequencies would be concentrated around a few forename-surname combinations. 

Essentially this is a classic clustering problem in statistics, biology and social 

science; ‘to look for systematic groups in data’ (Kaufman and Rousseeuw, 2005: vii). 

 

It is not the purpose of this thesis to describe the many different clustering techniques 

available, but it will suffice to mention the two main algorithms that represent the 

two broad types of clustering techniques: hierarchical agglomerative and iterative 
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relocation (Harris et al, 2005). For a comprehensive description of clustering 

methods see Gordon (1999). The most commonly used hierarchical agglomerative 

algorithm is that of Ward (1963), in which through an agglomerative or stepwise 

approach n groups each containing one object are merged together in a number of 

steps, using a measure of similarity or distance. At each of these steps the number of 

groups diminishes until all of them are finally merged into a single group containing 

n objects. The result of this classification is typically represented graphically by a 

dendrogram. Amongst the iterative relocation algorithms, one of the most commonly 

used is k-means. This is a non-parametric clustering method that creates a number of 

clusters (k) defined by the user. Its objective is to minimize the variability within the 

cluster by a series of iterations through which objects are moved  between clusters to 

evaluate if the move improves the sum of squared deviations within each cluster 

(Aldenderfer and Blashfield, 1984). 

 

Both hierarchical agglomerative and iterative relocation algorithms require as an 

input a matrix of ‘distances’ or (inversely) ‘similarities’ between the objects to be 

clustered, typically respectively termed the ‘distance matrix’ or ‘similarity matrix’ 

(Gordon, 1999). In the case discussed here, the clustering of forenames and 

surnames, two possible interpretations of the ‘similarity matrix’ could be adopted. In 

the first instance, a matrix can be built as the one mentioned above (an m x n matrix), 

measuring the frequencies of cross-occurrences between forenames (m columns) and 

surnames (n rows). The most ‘similar’ forenames and surnames will be the ones with 

highest cross-occurrences in the population.  
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A second option would entail taking just one of the two elements, for example 

forename types, and build a matrix of cross-occurrences between all of the different 

forename types (n forename types by n forename types, or n x n), their similarity 

being measured by the number of surname tokens that each pair of forenames types 

have in common. For example, the forename type pair ‘Pablo – Pedro’ had 204 

surname tokens in common in the GB 2004 Electoral Register, while the pair ‘Pablo 

– Maurizio’ only had 7 surname tokens. The pair counts would be transformed into 

relative frequencies of surname tokens per forename (in percentage) for the similarity 

matrix. Such a matrix would be symmetrical and would have the highest measure of 

similarity along the principal diagonal, but this will simply measure all surname 

tokens associated with a single forename type - since, for example, ‘Pablo’ would be 

both the row and the column entry. Therefore, the useful part of the matrix lies on 

either side of the principal diagonal, indicating ‘how close’ is one forename to all the 

others in terms of their common surname tokens. Clustering just one element, such 

us forenames using their ‘surname similarity’, would produce the desired groupings 

of forenames as a preliminary version of the forename seed list being sought after. At 

that stage, the clusters will be still anonymous, that is with no CEL associated with 

them. The final assignment of a CEL to a cluster would have to be done by checking 

the possible origin of just a few names from each cluster, by using one of the non-

FSC classification techniques, for example spatiotemporal analysis, text mining, or 

manual search. 

 

Both of these types of matrices (m x n and n x n) and the two clustering algorithms 

mentioned above (Ward’s hierarchical and k-means), were explored using the name 

datasets described in this chapter. However, the task proved to be overwhelming, 
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especially in technical terms because of demanding computer processing power and 

memory requirements and software limitations. Furthermore, it was also because of 

the intense efforts required to decide the number of clusters or the optimal level in 

the clustering hierarchy, the difficulty inherent in assigning the clusters to a specific 

CEL, and problems in evaluating the accuracy of such assignments. 

 

The main problem was the technical limitations in dealing with such enormous 

datasets. Both types of similarity matrices contemplated here, m x n and n x n, had a 

dimensionality that grew exponentially with the number of name types to be 

clustered. For example, just using the most frequent surnames, those with a 

frequency of 100 or more (n= 28,623), and forenames, of 25 or more (m= 19,138), 

we would have a matrix of 28,623 x 19,138, that is = 5.48*108 possible 

combinations. If all the names in the Electoral Register are put in such a matrix it 

would be of 983,598 x 437,639 or 4.3*1011 combinations. To put these sizes into 

context, the Office for National Statistics Output Area Classification (OAC) (Vickers 

and Rees, 2007) was clustered using k-means from a matrix of  223,060 output areas 

by 41 columns (census variables) or 9.14*106, that is between 102  and 105 times 

simpler than the two different name matrices proposed here. The implementation of 

most clustering algorithms are designed to read in a similarity matrix based on just a 

small number of columns, since these are typically a few attributes describing the 

objects (rows), as in the OAC example just mentioned. These implementations 

cannot work with matrices of several thousands columns. Moreover, even if it were 

possible to process them, there are problems in preparing such matrices in the 

required format given that most database management software has quite stringent 
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restrictions on the number of columns that can be created, or the size of the total file 

(seeTable 6.7). 

Software package Columns limit Rows limit 

MS Excel 256 columns 65,536 rows 
MS Access 256 columns Up to 2 Gb file size 

SPSS Up to 2 Gb file size (only 8bit 
character names) 

Up to 2 Gb file size 

Oracle 10g 1,024 columns No limit 
 
Table 6.7: Limitations on the maximum number of columns and rows in standard software 
(Sources: Microsoft.com, Oracle.com, SPSS.com) 
 

One option to overcome this problem is to build the matrices in ‘row format’, which 

means that each pair combination is listed as a row with their similarity measure. In 

the example above, this would be: in the m x n matrix, ‘forename, surname, 

frequency’; or in the n x n matrix, ‘forename1, forename2, surname tokens’. The 

latter example produces a file of three columns and n2 rows. The problem with this 

format applied to these names matrices is that the majority of the name combinations 

would have zero frequencies. This is a case in what are known as ‘sparse matrices’, 

or matrices primarily populated with zeros (Pissanetzky, 1984). A further 

improvement to the row matrix format when most values are zero is the compressed 

sparse row format (CSR), that only stores the non-zero values but requires two 

supporting files to indicate the row-column combination to which each value belongs 

(Karypis, 2003). An example of how the amount of data stored can be made much 

simpler with CSR is shown in Figure 6.7. 
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Figure 6.7: Converting a matrix to the compressed storage row format (CSR) 
The matrix on the left is stored in compressed row format (CSR) by creating three files; rowptr, 
rowind and rowval. rowval stores the non-zero values in the matrix, starting from the top-left of the 
matrix and reading values within a row from left to right and moving from row to row from top to 
bottom. rowind, stores the column id corresponding to the value stored in the same position in rowval. 
rowptr, stores the position in rowind in which a change of row in the matrix is produced. Source: 
(Karypis, 2003: 38) 
 

Compressed sparse row format solves the storage problem of handling the name 

matrices required by the clustering algorithm, but the computational requirement to 

populate such matrices is still very large. In order to produce an n x n matrix, a 

programme was built in PL/SQL (the programming language of Oracle) to compute 

the number of cross-occurrences between any two pairs of forenames. This required 

that for every pair of forename types, a full search through the whole database 

containing the 46 million records of the Electoral Register would be performed in 

order to count how many surname tokens had the two forenames in common. The 

number of records could be slightly reduced if the individual occurrences were 

aggregated to counts of forename-surname combinations, but this only brought the 

database down to 31,217,358 records. The programme crashed after seven days 

running when the temporary file created by Oracle reached a size of 52 Gb and there 

was no more free disk space. Several changes were done to the programme to 

increase its efficiency and a test was run on a sample of 100,000 people, which took 

7 hours to compute. Because the time taken to process more names grows 

exponentially with the number of names, it was calculated that even if unlimited hard 

disk space were provided and the best computer available at UCL Geography was 
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used, this programme would still take 326 days to run on the whole Electoral 

Register. It was therefore decided to abandon this exploratory analysis at this point, 

but there are obvious room for future enhancement of computing algorithms to 

produce these matrices of cross-occurrences between the same type of names (i.e. 

forenames x forenames or surname x surnames). 

 

Despite this problem, the n x m matrices of names are much more straightforward to 

produce than n x n matrices. The former just require an aggregation of the rows in 

the Electoral Register counting the number of forename-surname combinations, 

while the latter requires a lengthy computation to be carried out for every name type 

and all other names in the Electoral Roll. The former n x m table was produced, with 

31,217,358 rows and three columns; forename, surname, and frequency. The 

frequency field was standardised into percentages per surname, that is, for each 

surname, the number of forename tokens divided by the total number of surname 

tokens. The resulting similarity matrix was finally stored in the CSR matrix format. 

Several clustering programs were tested to process this matrix, such as using k-

means in SAS (SAS, 2006), partitioning methods in CLUTO (Karypis, 2003), or 

Self-Organising Maps (SOM) in Koh.exe (Kleiweg, 2001), but none of them was 

able to cluster so many rows and columns. After reducing the number of columns to 

just the 18,125 non-British forename types in the original seed list, the programs 

crashed at various stages, or provided inconsistent results when smaller samples were 

tested. The main causes of these inconsistencies were the high number of zeros in the 

matrix, since the k-means algorithm in particular is not designed to deal with a large 

proportion of zero values that it deems to be ‘missing values’. This was also because 

the differences between a zero value and a very low percentage were very small, and 
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the k-means algorithm did not manage to detect the necessary clusters, since the 

technique operated more as in a binary problem (presence/absence) than as a distance 

measurement one (closer/further). 

 

A new avenue for future research that would avoid the problem of sparseness in the 

similarity matrix is a research area known as high-dimensionality clustering. These 

clustering algorithms were originally designed to cluster highly dimensional gene 

frequency matrices in genetics studies. They differ from traditional clustering 

approaches in that the clustering space is divided into subspaces, and only those that 

are deemed ‘more interesting’ for clustering are used, thereby providing a better 

solution in terms of efficiency and clustering quality (Baumgartner et al, 2004). 

Degree of ‘interest’ is defined here as subspaces of the matrix where the greatest 

concentrations of similar values occur. These algorithms were not systematically 

tested in the context of this PhD, but exploratory work with the program SURFING 

(SUbspaces Relevant For clusterING) (Baumgartner et al, 2004) produced promising 

results which will be further analysed in the near future. 

 

6.6. Conclusion 

This chapter has evaluated the results of the names classification previously created 

through a heuristic approach. The initial heuristic classification presented a series of 

limitations that have been summarised in this chapter under ten major groups: the 

moving target problem; different data availability; lack of pre-conceived notions on 

optimal name classification methods; rather arbitrary rules sequencing; use of ad-hoc 

variables, thresholds and decisions; the effect of the ecological fallacy arising from 
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use of areally averaged datasets; the number of exceptions; the variability between 

iterations; CEL overlap and classification overriding; and the inconsistency inherent 

in manual checking and reclassification. As a consequence, the heuristic 

classification failed to pass a basic test of scientific reproducibility and presented a 

lack of internal consistency and simplicity.  

 

Distilling the accumulated positive and negative experience of the exploratory phase 

in a robust and transparent manner, an automated and integrated approach was 

developed in the rest of the chapter. This automated approach has overcome most of 

the previous limitations, presenting a classification model that first builds a seed list 

of forenames that is very indicative of CEL Subgroups (using knowledge previously 

gained through the heuristic approach), and then uses it to classify surnames and 

forenames through a series of identical cycles. There are no exceptions in the 

automated model, the rules applied are much simpler, only two thresholds are used, 

and the whole model is clearly specified and built into a database programme 

through a series of SQL query statements that perform these processes in an 

automated way without manual intervention. These features mean that the 

methodology is much more consistent and much easier to explain and reproduce that 

the previous heuristic approach. 

 

The next chapter will focus on the evaluation of the automated approach, in which it 

will be tested against other sources of ethnicity data. However, at this stage there is a 

further enhancement that could have been introduced in the automated classification; 

removing the requirement of a forenames seed list externally classified (in this case 

derived from knowledge gained through the heuristic approach). Several alternatives 
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were explored in this research exploiting clustering methods but because of the size 

and complexity of the names datasets and its relationships, these investigations did 

not progress to the implementation phase. These attempts were nevertheless 

described at the end of the chapter with the aim of informing future research in this 

area. 
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Chapter 7. Validating the CEL Name Classification 

In the previous two chapters a classification of names into cultural, ethnic and 

linguistic groups (CEL) has been developed, first through a set of experimental rules 

and techniques which provided the experience upon which the final automated 

classification of names described in the previous chapter was based. This final 

automated classification constitutes a single, self-contained and robust classification 

of forenames and surnames and forms the main output of this PhD research. 

However, in order to demonstrate the usefulness of this CEL classification for 

applications to classify a population into cultural, ethnic and linguistic groups, and to 

measure its classificatory effectiveness, it first needs to be validated against some 

populations for which ethnicity is already known through an independent source (i.e. 

not based on names). Thus the objective of the present chapter is to provide more 

than one way to validate the effectiveness of the CEL classification proposed in this 

thesis. Hereinafter ‘CEL classification’ will be used as a shorthand name for the 

automated classification of names into CEL Subgroups presented in the previous 

chapter. When the term CEL is used, it will refer to any or all levels in the CEL 

taxonomy presented in Appendix 3, although it will usually refer to the CEL 

Subgroups developed in the automated phase. 

 

In order to evaluate the CEL classification a preliminary step is to apply the separate 

forename-to-CEL and surname-to-CEL lists developed in the previous chapter in 

order to classify individuals into a single CEL. If both FCEL and SCEL are identical 

the solution is straightforward, but some type of arbitration is required when there is 

a conflict between the two. This is where the scores developed in Chapter 6 prove 
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very useful. The first section of this chapter will deal with the rules developed to 

assign a person with a CEL, using what will be termed the PCEL (Person Cultural, 

Ethnic and Linguistic group). Once a PCEL has been assigned to an individual, 

validation of the classification can take place. 

 

A selection of the best-practice examples of evaluations of name classifications 

found in the literature has been reviewed in Chapter 3. In that review thirteen studies 

were analysed, most of them from the public health literature, in which their name 

classifications were validated using lists of individuals where reported ethnicity, 

country of birth or nationality was already known, typically using patient registers. In 

this research two types of validation of the CEL classification have been performed, 

aimed at two different fields of application; classifying individuals and classifying 

neighbourhoods, the two aspects that have driven the justification for the research 

presented in this thesis. The first type, in line with the public health literature 

tradition, mentioned before, used a large list of individual hospital admissions in an 

area of London (the Boroughs of Camden and Islington) where the name and 

ethnicity of patients is known. The second type of validation, following a ‘geography 

tradition’, used the ethnicity data reported in the UK Census of Population at small 

area (Census Output Area), compared against the CEL classification of the same 

areas using the names in the GB Electoral Register.  

 

The chapter is structured in four sections. Section 7.1 provides a justification and 

description of the algorithm used to assign a CEL at a person level, in order to move 

from two forename-to-CEL and surname-to-CEL tables to a classified list of full 

names into CELs. Section 7.2 discusses the difficulties of validating the CEL names 
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classification, relating to issues of differences in the ontological constructions of self-

reported and names-based ethnicities. Section 7.3 presents the results of the first 

validation carried out using a large database of hospital admissions in the London 

Boroughs of Camden and Islington.  Section 7.4 includes a similar validation using 

the ethnicity data reported in the UK Census at Output Area compared against the 

CEL classification of the same areas using the names in the GB 2004 Electoral 

Register. Finally some concluding comments on both validations are offered. 

 

7.1. Person Level CEL Allocation Algorithm 

This section explains the process by which the CEL classification can be applied to a 

list of names in a target population, in order to classify people with their most likely 

CEL. This person level CEL will be termed PCEL (for Person CEL), as opposed to 

the two separate FCEL and SCEL of its name components.  

 

The classification process described in chapters 5 and 6 assigns a categorical SCEL 

classification to each surname and an FCEL to each forename. Such a categorical 

assignment is necessary in order to maximise the accuracy of the FSC technique in 

the assignment of a CEL Subgroup to forenames and surnames. However, once the 

process of FSC assignment has been finalised resulting in the categorical assignment 

of names to SCELs and FCELs, the use of a proportional assignment for each person 

CEL (PCEL) was also developed. 

 

This proportional assignment is useful for understanding the large number of names 

that are associated with more than one cultural, ethnic or linguistic origin. For 
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example, this is the case with the name ‘Gill’, which has dual origins in Britain and 

in the Indian Subcontinent and can introduce a bias if assigned only to a single CEL.  

Proportional assignment is also useful in instances where the actual boundary 

between different CEL categories is imprecise, whether geographical, linguistic, 

religious, or cultural. An example of geographical boundary imprecision is for 

instance between the Netherlands and Germany where many names are common in 

both cultures.  Proportional assignment will also be useful in the future in situations 

where other multiple sources of information could be used in combination with a 

name’s ethnicity, such as for example the postcode of a person’s residence or his or 

her place of birth. These aspects of the application of proportional assignment to the 

classification of actual people by CEL (as opposed to the classification of particular 

name types) are described in this section. 

 

In order to facilitate the process of proportional assignment of CELs to a person, the 

name-to-CEL scores created in Chapter 6 will be used. These scores represent the 

degree to which a CEL allocated to a name type is actually representative of that 

name’s origin. Going back to the example of ‘Gill’, ideally this surname should be 

accompanied by a low score of a South Asian SCEL, so that if the FCEL of the 

person is not of South Asian origin, it can easily override the SCEL and the person 

be finally assigned with the FCEL. 

 

The two name-to-CEL tables explained in the Chapter 6 are used as ‘dictionaries’ 

against which a person’s full name can be assigned to a PCEL, taking into account 

both the person’s FCEL and SCEL. An individual’s full name is evaluated as per the 

following algorithm of 6 cases evaluated in order from 1 to 6: 
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(The algorithm is presented as pseudo-code, with comments tagged as ‘##’ and in 

italics) 

 

## Evaluate if both CEL Subgroups are the same 

CASE1 SCEL Subgroup = FCEL Subgroup, then: 

 ## Assign PCEL 

 PCEL = SCEL Subgroup = FCEL Subgroup 

## Evaluate if CEL Groups are the same and if so assign that CEL Group 

CASE2 SCEL Group = FCEL Group, then 

 PCEL= SCEL Group= FCEL Group 

## If the absolute difference between scores is small then assign PCEL to the CEL 

Group with the highest score 

CASE3 |SCEL Subgroup score - FCEL Subgroup score| < 0.05, then 

 PCEL= MAX(SCEL or FCEL Group score) 

## Evaluate if both SCEL and FCEL exist for that person and assign PCEL to the 

CEL Subgroup with the highest score 

CASE4 SCEL AND FCEL exist, then 

 PCEL= MAX(SCEL or FCEL Subgroup score) 

## If only one CEL component is present, then assign at the CEL Group Level 

CASE5 SCEL or FCEL = ‘UNCLASSIFIED’ then 

 PCEL= SCEL Group or FCEL Group 

## Else, set the PCEL as unclassified 

ELSE PCEL= ‘UNCLASSIFIED’ 
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At the end of this process each person’s full name will have an overall PCEL 

assigned to it, at the CEL Subgroup or CEL Group level, or remains unclassified. 

Furthermore, apart from selecting the most likely CEL for a person, the classification 

also provides a final CEL score for the person. This will be useful when analysing 

the final results since the future user of this classification can set a minimum 

threshold from which to choose people-to-CEL assignments depending on the 

sensitivity of each specific application of this methodology. In other words, one can 

choose to aim for precision in the classification and to select a small group of 

individuals that have a very high PCEL score, and thus with a high probability of 

belonging to a specific CEL, or to aim to maximise coverage and include lower score 

names, but classifying more individuals. A similar approach is proposed by Word 

and Perkins (1996) for a Spanish surnames list and by Lauderdale and Kestenbaum 

(2000)  for an Asian surnames list. 

 

The PCEL score for the person is calculated as follows, depending on which case in 

the previous algorithm the PCEL was assigned: 

## For coincident SCEL and FCEL the scores are added

PCEL under CASE1, CASE2 and CASE5 

 PCEL score = SCEL score + FCEL score (either Type or Group as used 

above) 

## For divergent SCEL and FCEL the scores are subtracted

PCEL under CASE3 and CASE4 

 PCEL score = |SCEL Subgroup score - FCEL Subgroup score| 

## Else assign a score of 0 

ELSE PCEL score= 0 



 
Chapter 7 - Validating the CEL Name Classification 265 

 

At the end of the individuals’ classification process, the list of people’s full names in 

the target population is classified with a PCEL and a ‘PCEL score’. 

7.2. Inherent Difficulties of External Validation of the Classification 

The evaluation of the power of name classifications to stratify a population of 

individuals into ethnic groups has been a recurrent theme in the public health 

literature for over the last half a century. A full review of this history and the features 

of the main studies is offered in Chapter 3 and will not be repeated here. The general 

pattern of these studies is that they first develop a name-to-ethnicity reference list, 

based on a reference population, which is later applied to classify a second 

independent names list, termed target population, for which its ethnicity is previously 

known through an independent method (i.e. not based on names). As it was discussed 

in Chapters 3 and 4, this PhD research did not follow this route because the objective 

of classifying the entire population of Great Britain into all of the possible ethnic 

groups present was at odds with the possibility of obtaining such reference and target 

populations with ethnicity information for the whole country. Therefore, because of 

this lack of availability of extensive ethnicity data, the validation of the classification 

for the entire population cannot be done in the same way in these studies. However, 

appropriate ethnicity and name data were obtained for a fraction of the population in 

London, and it is using these data that one aspect of the validation will be based. 

 

Furthermore, another major issue with validation of name-based ethnicity 

classifications is related to the difference in the ontological nature of the qualities to 

be compared and evaluated. This is linked to problems of defining and measuring 

ethnicity, reviewed in Chapter 2. As discussed in that chapter, ethnicity is a socially 
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constructed concept and ethnic self-identification is a subjective decision of the 

individual that can change through time, with the method of data collection, type of 

question asked and the group categorization offered. On the other hand, the concept 

of cultural, ethnic and linguistic groups developed in this PhD extending from the 

previous onomastics literature, and discussed in Chapter 4, relate to the independent 

measurement of differences in the naming practices, geographies and histories of 

human groups. As such, self-reported ethnicity and automatically assigned name-

based cultural, ethnic and linguistic groups are two constructs that differ substantially 

in nature and definition and hence the validation of the latter using the former 

presents inherent difficulties.  

 

One example of the ontological problems found in the research reported in this 

chapter, is the high mismatch between the proportion of persons with Irish names in 

Britain and the proportion of persons who define themselves as of ‘White Irish’ 

ethnicity in the UK 2001 Census, the latter being usually much smaller than the 

former. This is of course because of the long history of Irish migration in Britain, the 

different perceptions of Irish identity that people in Britain with names originating in 

Ireland have, the time that has elapsed since migration and number of generations 

passed, as well as engagement with aspects of identity politics, religion and 

nationalism of a very subjective nature. On the other hand, rule-based name to 

ethnicity classifications are blind to these aspects and as expected classify all people 

with identical names in the same way.  

 

This difference of nature between self-identified ethnicity and name-based cultural, 

ethnic and linguistic groups should not be seen as inherently disadvantageous. Indeed 
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the blindness of name-based CEL classification can be used to identify the heavy 

baggage that is sometimes attached to self-assigned ethnicity classifications and to 

present a picture that is unaffected by the design of the data collection method and or 

changing public perceptions of identity. Therefore, such ontological distinctions 

should be taken as potential caveats when interpreting or validating name-based 

ethnicity classifications using self-reported ethnicity data, since they can never be 

identical.  

 

Other ways of validating the CEL classification might have entailed manual checking 

of two types. One option would have been to check the CEL classification of the 

individual names against the onomastic or linguistic origin of a name using several 

name dictionaries. Clearly, this would have been very time consuming since several 

dictionaries would need to be used, sometimes there are several entries for each 

name to choose from, and the coverage of surname dictionaries is very poor. A 

second option would have been to ask volunteers from different countries to evaluate 

their opinions of the CEL classifications, but this would have been very subjective 

and prone to error. Preliminary manual checks performed as part of the heuristic 

phase of the classification indicated that there is a tendency towards high overlap 

between different people classifying names from close cultures or languages - such 

as Portuguese, Spanish and Italian names, or Bangladeshi and Pakistani -  who tend 

to classify a large number of names as from ‘their own’ culture. This problem of high 

overlap between manual coders has also been reported in the literature (Martineau 

and White, 1998). 
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As a result, self-reported ethnicity is by far the best data source available for the 

purpose of validating the CEL classification, and hence it will be used in this chapter 

in two different types of validation. The results nevertheless need to be interpreted in 

the light of the necessary caveats discussed in this section. 

 

7.3. Validation Against Hospital Admission Ethnicity Data 

This section describes the first phase in the process of validation of the CEL 

classification, in which, following a Public Health tradition in name-based ethnicity 

studies, the CEL name classification was validated against self-reported ethnicity 

recorded in hospital admissions data. As part of the Knowledge Transfer Partnership 

between University College London and Camden Primary Care Trust that funded this 

PhD research, access to an extensive list of individuals admitted to hospital was 

obtained from Camden and Islington Primary Care Trusts (PCT) for research 

purposes. Permission for access to this dataset was requested by the author and 

approved by Camden PCT Research Ethics Committee, Islington PCT Caldicott 

Guardian, and North Central London NHS Research Consortium, full details of 

which are provided in Appendix 6.  

 

The ethnic composition of the population of Camden and Islington is very diverse, as 

it can be seen in Figure 7.1, which lists the percentage of the total population that 

each ethnic minority represents in the London Boroughs of Camden and Islington, 

compared with the equivalent shares for London and England. From those relative 

differences it can be clearly appreciated that the Bangladeshi group is the largest 

minority group, followed by individual ethnicities that comprise the ‘White Other’ 
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and ‘Black African’ categories (such as Somalis, Greeks, Kosovans, or Congolese). 

In Camden schools alone, there are 3,100 speakers of Bengali/Sylheti, over 1,100 of 

Somali, and more than 200 speakers of each of the following languages; Albanian, 

Arabic, French, Spanish, Portuguese and Lingala (London Borough of Camden, 

2007). 
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Figure 7.1: Population by ethnic minority in the London Boroughs of Camden and Islington 
The chart shows the percentage of the total population that each ethnic minority represents in the 
London Boroughs of Camden and Islington (dark yellow), compared with the percentages for London 
(green) and England (dark orange). Source: ONS 2001 Census. 
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7.3.1. Hospital Episode Statistics data description 

The dataset accessed is termed Hospital Episode Statistics (HES) within the NHS, 

and hereinafter is referred to as ‘HES’. It includes an entry for every hospital 

admission of both inpatients and outpatients, although only inpatients are used for 

this study. For every admission, a set of general information about the person 

admitted, the medical condition and various other hospital administrative 

transactions is recorded. For the purposes of this validation only the information 

about the person admitted was obtained. The relevant fields of patient general 

information actually used are the following: 

- NHS Number (a unique ID for every patient in the National Health Service) 

- Patient Forename 

- Patient Surname 

- Patient Sex 

- Patient Unit Postcode 

- Patient Date of Birth 

- Patient ethnic group 

 

The time period available was 8 years worth of data, from April 1998 to March 2006, 

for patients registered in the London Boroughs of Camden or Islington, which gave a 

total number of 835,144 hospital admissions, belonging to an approximate number of 

343,068 unique patients. For reference purposes, the total population of these two 

London Boroughs was 373,817 people in the 2001 Census, although, being situated 

in inner London they have a high population turnover estimated in 20% a year 

(London Borough of Camden, 2007). Assuming this turnover rate is of people who 

move in and out these two Boroughs (rather than within), and never come back 
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during the 8 years of HES data, this would produce total number of  523,343 people 

moving out of the area (373,817 x 20% x 7 interannual periods), which in addition to 

the permanent ‘stock of residents’ would give a total 897,160 Camden and Islington 

‘accumulated residents’ over the 8 year period (523,343+373,817). This means that 

the HES data represents the 38% of the likely total potential population that was 

admitted to hospital during that period. This comprises a large proportion of the total 

population, although it may be biased in its characteristics in terms of age and 

ethnicity. It is widely known that elderly people are much more likely to be admitted 

to hospital than younger cohorts, and in London it has also been proved that hospital 

admission rates are associated with the general prevalence of chronic illness and 

deprivation in a local population (Majeed et al, 2000). Therefore, the population 

represented by the HES dataset is expected to be more weighted towards older 

groups and socio-economically deprived groups. 

 

However, the completeness and quality of the HES dataset is very poor, especially 

regarding patient ethnicity data. Frequent problems include: inconsistent ethnic 

group coding, sometimes even for the same patient; mixing of the  1991 and 2001 

Census ethnicity classifications; or use of the catch all ‘Unknown Ethnicity’ 

category. Ethnicity coding in Hospital Admissions has been mandatory in the UK 

since 1994 (NHS Executive, 1994), but it has taken a long time to reach nearly full 

coverage and a consistent coding framework. This poor quality has been widely 

denounced in the literature (Aspinall and Jacobson, 2004; Association of Public 

Health Observatories, 2005), and although specific nationwide guidelines have been 

issued to improve the situation (Department of Health, 2005a) the percentage of 

hospital admissions being correctly coded by ethnicity has been estimated to be 75% 
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in 2005 (London Health Observatory, 2005). This makes a strong case for the use of 

name-based ethnicity classifications to audit and complete routinely collected self-

reported ethnicity data. 

 

Moreover, another problem with the dataset was missing information, crucially the 

NHS number with a high proportion of patient admissions having missing (27%), or 

incomplete or wrong NHS numbers (2% for the two errors combined). This had 

important implications since the HES dataset is a register of hospital transactions, 

and not a register of people. That is, when the same person is admitted several times 

to hospital, a new independent record is generated. In order to be able to study 

individuals in a ‘hospital population’, independently of how many times they have 

been admitted, aggregation of all admissions of each individual person is required. 

When the same NHS number is not correctly recorded in repeated admissions, there 

is a high risk of the same person being included several times in the population 

register. 

7.3.2. Data preparation: Hospital Episode Statistics 

As a result of these important problems of data quality, it was necessary to cleanse 

the HES data before actually performing the analysis.  The steps taken are 

summarised as follows: 

a) Individual admissions in HES are aggregated by person: 

In this step individual admissions to hospital throughout the 8 years were 

aggregated by person to create a unique person entry. There were two 

possible cases followed by a specific action: 

Case1: The NHS number is present and complete (71% of HES), and records 

were aggregated by person through their NHS number. 
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Case 2: Where no NHS number was present, or it was incorrect, the admissions 

were aggregated in two steps:  

 - Firstly, aggregation by date of birth and postcode (which is deemed in the 

literature to represent unique patients in HES) 

 - Secondly, aggregation of the above again by date of birth and surname (to 

avoid duplications of people who have had different addresses) 

 A final unique ID number was assigned to every person (343,068 people), 

and traced back to every HES admission. 

b) Ethnic group codes are cleansed 

 A range of 220 different ethnic group codes were found in the dataset. 

However, most admissions had been assigned to the 40 most common codes. 

A mapping exercise was performed between these 220 codes and the official 

ethnic group classifications valid during the 8 year period, the 1991 Census 

ethnicity classification and its 2001 successor, with the help of published 

references on how hospital admissions should be coded in NHS systems 

(Department of Health, 2005a; NHS Information Authority, 2001). 

 

 Finally, in order to be able to compare all HES admissions using the same 

ethnic group categories, a further lookup table was created, mapping the 2001 

Census ethnic groups to the 1991 ones, according to criteria proposed by Platt 

et al (2005). 

c) Individual person ethnicity is assigned 

 The aggregated data by person created in step a) were linked to the ethnic 

group code of each patient, using the 1991 Census categories for all patients, 

and computed as follows:  
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- If all HES admissions for the same person contained a unique ethnic 

group code, the person was assigned with that code (89.8% of the 

patients). 

- For the rest of cases, if after removing the ethnic group categories 

‘other’ or ‘unknown’ (‘8’ and ‘9’ in the 1991 Census) the rest of 

admissions included a consistent code, then the person was assigned 

with that code (9.8%). 

- Otherwise, the person was assigned with a special code for a 

‘conflicting ethnic group flag’ and left outside the analysis (0.4%).  

 The same process was repeated for the 2001 Census categories, but only for 

those patients for whom this information was available (178,623 patients or 

52% of the total), with the three previous steps results being respectively; 

70.1% (unique code), 27.3% (unique after ‘S-Other’ and ‘Z-Unclassified’), 

and 2.6% (conflicting). 

d) Creation of a final table of individual patients (HES_Person) 

 A final table of 343,068 people was generated including the following fields: 

- Person ID Number (internally generated) 

- NHS Number (if known) 

- Person Forename 

- Person Surname 

- Person Sex 

- Person Date of Birth 

- Person 1991 ethnic group 

- Person 2001 ethnic group (if reported) 

 

This last table, termed HES_Person, then formed the basis to subsequent analysis 
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7.3.3. Data preparation: CEL name classification 

In order to be able to compare the ethnic group categories reported in HES, that is, 

the 1991 and 2001 Census ones (10 and 16 groups respectively), with the 66 CEL 

taxonomy described in Chapter 6, a lookup table between the two needs to be 

created. This was done by analysing the characteristics of each of the 66 CEL 

Subgroups and the metadata gathered about them which are presented in Appendix 3. 

These follow the guidelines established by  the Office of National Statistics (ONS) 

when ascribing individual responses in the Census to one of the pre-set ethnic groups 

(Office for National Statistics, 2003). These decisions were taken based on the 

strongest component describing the CEL, be it geographic location, religion or 

language, and its corresponding allocation in the ONS categorization. As a result, a 

lookup table between each CEL Subgroup and both a 1991 and a 2001 Census 

category was established as presented in Appendix 3. 

 

7.3.4. Data analysis: comparing CEL with HES ethnicity 

The 343,068 people in HES_Person table were assigned to CEL Subgroups using 

their forenames and surnames and applying the name-to-CEL tables and the personal 

allocation algorithms described in Section 7.1.  A summary of the results obtained at 

CEL Group level is presented in Table 7.1, although the individual allocations were 

made at the CEL Subgroup level. The coverage of names classified was 96.4%, 

meeting already one of the primary aims of this research: to classify populations into 

all of the potential ethnic groups present in a society, recognising the majority of 

names in the local population of Camden and Islington. 
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CEL SUBGROUP PEOPLE % 
ENGLISH 144,875 42.2% 
CELTIC 68,682 20.0% 
MUSLIM 47,602 13.9% 
EUROPEAN 23,692 6.9% 
HISPANIC 10,691 3.1% 
AFRICAN 8,862 2.6% 
SOUTH ASIAN 7,158 2.1% 
GREEK 6,763 2.0% 
EAST ASIAN 4,481 1.3% 
JEWISH& ARMENIAN 3,022 0.9% 
NORDIC 2,938 0.9% 
SIKH 1,215 0.4% 
JAPANESE 622 0.2% 
INTERNATIONAL 50 0.0% 
VOID 10,367 3.0% 
UNCLASSIFIED 2,048 0.6% 
TOTAL 343,068 100.0% 
Total valid CELs 330,603 96.4% 
Total non-valid CELs 12,465 3.6% 

 
Table 7.1: Results of classifying the HES_Person table using the CEL name classification 
summarised at CEL Group level 
 

The CEL Subgroup assigned to each person, was then re-computed into their 

corresponding 1991 and 2001 Census ethnic group code, using the lookup table 

described in section 7.3.3. At this stage a database query was created to compare the 

ethnic code in HES_Person table with that derived using the CEL name classification 

(converted to Census categories).  The query generated a matrix comparing the 

results of both classifications over the same people in HES_Person, using the 1991 

Census categories for all persons, and a separate matrix with the 2001 Census 

categories only for those patients for which they had been originally reported at this 

level (52% of the total patients).  
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  Actual Ethnicity from HES data 
Predicted by CEL 0 1 2 3 4 5 6 7 8 9 Total 

0 White 150,574 7,971 4,468 2,535 595 68 160 488 17,383 73,920 258,162
1 Black - Caribbean 92 226 21 32 3    69 197 640
2 Black - African 857 283 5,996 698 53 14 41 23 1,695 4,716 14,376
3 Black - Other             0
4 Indian 1,066 96 562 125 2,184 85 171 30 1,679 3,503 9,501
5 Pakistani 856 60 1,736 306 690 861 2,390 17 2,507 4,625 14,048
6 Bangladeshi 284 30 373 122 687 194 6,086 5 1,174 3,777 12,732
7 Chinese 227 39 72 21 11 2 7 1,473 531 1,088 3,471

8 Other ethnic group 3,811 111 990 228 202 112 280 358 5,858 5,747 17,697

9 
Not Given 
/Unclassified 3,364 328 1,706 322 164 32 107 47 2,199 4,079 12,348

  Total 161,131 9,144 15,924 4,389 4,589 1,368 9,242 2,441 33,095 101,652 342,975
 
Table 7.2: Matrix comparing number of persons by CEL vs. HES Ethnicity using 1991 Census 
ethnic groups 
 

Table 7.2 shows an example of the results based on the 1991 Census classification, 

as a 9 rows x 9 columns matrix, including the ethnicity predicted by the CEL name 

classification, as rows, against the actual ethnicity reported in the HES data for that 

same people, as columns. The over-all prediction success was 51.7%, calculated by 

summing the elements on the principal diagonal divided by the total number of 

persons. 

 

As can be appreciated in Table 7.2, ethnic group ‘3- Black Other’ cannot be 

estimated using name analysis and hence the line is blank. Furthermore, the ethnic 

group ‘9-Unclassified’ includes all void and unclassified names in the CEL 

prediction, whereas the HES data include people who did not report their ethnicity or 

for whom recording was subject to the data errors discussed above. Therefore, both 

classifications cannot be considered on a like for like basis, because they measure 

different things. Thus the column ‘9- Not Stated’ from the HES data was removed 

from further analyses, since it did not provide sufficient relevant information. 

However, row ‘9-Unclassified’ was left in the analyses, since it was an output from 
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the CEL classification. Despite this, it is interesting to see that out of the total 

101,652 patients with an ‘9-Unclassified’ code in HES the CEL classification is able 

to identify 96% of them with a likely CEL, most of them as ‘White’ (73%), which in 

itself provides another advantage of the CEL classification method in improving poor 

quality HES data. 

 

In order to evaluate these results, the aim of the name classification should be to 

maximise the number of cases along the principal diagonal of the matrix in Table 

7.2, and minimise the cases elsewhere in the matrix.  In the public health literature, 

binary classifications of individuals, represented in similar ‘confusion matrices’, are 

evaluated according to a set of four widely accepted measures, which are also used in 

computer science to evaluate any binary classifier. These four measures are known as 

sensitivity, specificity, positive predictive value (PPV), and negative predicted value 

(NPV), and they were described in Chapter 3 (see Table 3.6). When applied to the 

validation carried out in this research, Table 3.6 should be read as follows; Sensitivity 

refers to the proportion of members of ‘ethnic group X’ (gold standard) who were 

correctly classified as such; specificity to the proportion of members of the ‘rest of 

ethnic groups’(gold standard) who were correctly classified as such; Positive 

Predictive Value (PPV) is the proportion of persons classified as ‘ethnic group X’ 

(predicted) who were actually from ‘ethnic group X’; Negative Predictive Value 

(NPV), is the proportion of persons classified as the ‘Rest of ethnic groups’ 

(predicted) who were actually from the ‘Rest of ethnic groups’. These measures are 

all usually represented as proportions between 0 and 1, and calculated as explained in 

Table 3.6, in a more visual fashion.  
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These classification evaluation measures were calculated for the matrix shown in 

Table 7.2, removing the column ‘9- Not Stated’ for the reasons explained above. 

This offered the base values for sensitivity, specificity, PPV and NPV, which are 

shown as the minimum values in each range reported in Table 7.3 (the value on the 

left of each pair). However, in order to obtain a full range of possible values under 

different assumptions, further calculations were carried out to assess the effect in the 

overall measures. The same calculation for the four measures was repeated but now 

removing the column ‘8 - Other ethnic groups’ from the HES dataset, since this is a 

‘catch-all’ category and is also deemed to contain a lot of data entry errors in the 

hospital admission process (London Health Observatory, 2005). This result is not 

shown here but lies within the range of values shown in Table 7.3, and its overall 

prediction success is 85.4%. 

 

1991 Census Categories Sensitivity Specificity PPV NPV 

0 White 0.93 - 0.98 0.58 - 0.62 0.82 - 0.90 0.82 - 0.89

1 Black - Caribbean 0.02 - 0.03 1.00 - 1.00 0.51 - 0.62 0.96 - 0.96

2 Black - African 0.38 - 0.45 0.98 - 0.99 0.62 - 0.76 0.96 - 0.96

3 Black - Other n/a n/a n/a n/a

4 Indian 0.48 - 0.52 0.98 - 0.99 0.36 - 0.50 0.99 - 0.99

5 Pakistani 0.63 - 0.70 0.96 - 0.97 0.09 - 0.12 1.00 - 1.00

6 Bangladeshi 0.66 - 0.69 0.99 - 0.99 0.68 - 0.79 0.99 - 0.98

7 Chinese 0.60 - 0.73 1.00 - 1.00 0.62 - 0.80 1.00 - 1.00

8 Any other ethnic group 0.18 0.97 0.49  0.88 

9 Not Given n/a n/a n/a n/a

 
Table 7.3: Sensitivity, Specificity, PPV and NPV of the CEL classification based on 1991 Census 
Categories 
Ranges represent the minimum values, taking into account all the HES_person records, and the 
maximum one, removing cases with conflicting ethnicities including ‘8- Other’ or ‘9-Not Stated’. 
Values highlighted in bold are ≥0.7, and represent stronger classificatory power. 
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In a third scenario, a new matrix similar to Table 7.2 was generated but in this case 

removing those patients whose ethnic codes in HES did not originally match, but for 

whom the conflicting codes disappear after removing the codes as ‘8- Other’ or ‘9-

Not Stated’ (as pointed out in Section 7.3.1 paragraph c). This subset of patients 

accounts for 9.8% of the total, and is also deemed to have an assigned ethnic group 

of dubious quality in HES. Therefore, the new matrix only includes patients for 

whom 100% of the ethnic codes through various admissions matched, that is, 

207,538 patients (60.5% of the total). The four evaluation measures were calculated 

again for this new matrix, offering improved results. Finally, an additional 

calculation was re-run by removing from this second matrix columns ‘8’ and ‘9’ (not 

rows) as done with the previous matrix, which left a population of 177,419 patients 

(51.7%), whose ethnic group codes in HES matched and who were not coded ‘8’ or 

‘9’, hence only ‘0’ to ‘7’. Therefore, this is the dataset with the highest quality in 

HES, and will provide the maximum value of the evaluation measures, which are 

reported as the top of the ranges in Table 7.3. The results of this table as well as of 

the next tables are discussed in Section 7.3.6. 

 

As mentioned before, although hospitals have been required to code the ethnicity of 

patients following the 2001 Census classification into 16 ethnic groups since April 

2001 (NHS Information Authority, 2001), this has actually taken several years to 

implement (London Health Observatory, 2005). During this time a combination of 

both the 1991 and 2001 Censuses ethnicity classifications have been used. However, 

in the case of the Camden and Islington HES dataset, where a 2001 Census ethnic 

category was available (178,623 patients or 52% of the total), the process described 

in this section of generating two binary classification matrices and calculating the 
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four evaluation measures was repeated. As a result, a new set of value ranges of 

sensitivity, specificity, PPV and NPV was calculated for the 16 ethnic groups and is 

summarised in Table 7.4. 

 

2001 Census Categories Sensitivity Specificity PPV NPV 

A White - British 0.77 0.71 0.70 - 0.74 0.75 - 0.78

B White - Irish 0.60 - 0.61 0.92 0.22 - 0.23 0.98

C White - Any other White  0.43 0.91 - 0.93 0.41 - 0.51 0.91

D 
Mixed - White and Black 
Caribbean n/a n/a n/a  n/a 

E 
Mixed- White and Black 
African n/a n/a n/a  n/a 

F Mixed- White and Asian n/a n/a n/a  n/a 

G Mixed- Other Mixed n/a n/a n/a  n/a 

H Asian - Indian 0.53 0.98 - 0.99 0.39 - 0.46 0.99

J Asian - Pakistani 0.65 0.96 0.09 - 0.11 1.00

K Asian - Bangladeshi 0.66 0.99 0.72 - 0.77 0.98

L Asian - Any other Asian  0.0004 1.00 1.00 0.98

M Black - Caribbean 0.03 1.00 0.52 - 0.56 0.96

N Black - African 0.38 0.98 - 0.99 0.66 - 0.74 0.94 - 0.95

P Black - Any other Black  n/a n/a n/a  n/a 

R Chinese 0.63 1.00 0.63 - 0.72 1.00

S Any other ethnic group 0.20 0.96 0.36  0.92 

Z Not Stated n/a n/a n/a  n/a 
 
Table 7.4: Sensitivity, Specificity, PPV and NPV of the CEL classification based on 2001 Census 
Categories 
Ranges represent the minimum values, taking into account all the HES_person records, and the 
maximum one, removing cases with conflicting ethnicities including ‘8- Other’ or ‘9-Not Stated’. 
Values highlighted in bold are ≥0.7, and represent stronger classificatory power. 
 

7.3.5. Data Analysis: evaluating differences in the CEL classification by gender 

Another aspect of the CEL name classification that was evaluated was the degree to 

which its classificatory power diminished when applied to names of females, since 
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many women change their surname after marriage and this is one of the critiques 

often made of name origin techniques. In a study of Chinese names, Quan et al 

(2006) found that the overall population PPV of 80.5%, decreased to 78.9% for 

married women. In order to assess the differential ability of the CEL name 

classification to correctly identify ethnicity by gender, the same exercise described in 

the previous Section 7.3.4 was repeated separately but only for the male population. 

 

The hypothesis to test is that if the CEL classification is very sensitive to the gender 

of the population classified, then if it is only applied to the male population the 

classification ability to correctly assign ethnicity should significantly improve 

compared with the total population. However, the results proved that when only 

applied to men the classification showed similar values of sensitivity, specificity, 

PPV and NPV than for the overall population, especially using the 1991 Census 

classification, with small differences between -0.03 to 0.03 absolute points (in the 0 

to 1 scale) and showing no particular direction. In the case of the 2001 Census 

classification, differences in the four measures were between -0.05 and 0.05 absolute 

points, except for PPV where they were between 0 and 0.11 positive points. 

 

However, a differential performance of the CEL classification by ethnic group is also 

observed in the 2001 male dataset, with the three White groups (A, B, C), Indian (H), 

and Chinese (R) groups, showing substantially higher values of increase in PPV for 

males between 0.06 to 0.11 absolute points, when compared with the overall 

population. The causes that might explain these differences include: a differential 

behaviour of ethnicity reporting by gender in HES; the problem of small numbers 

when taking only 2001 Census male patients in HES subdivided by ethnic groups 
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(giving sizes between 200 and 3,000 people per group); the specific gender and 

ethnic group composition of the population in Camden and Islington; and a 

component of classification errors with names of women in mixed ethnicity 

marriages, which are deemed to be higher amongst the five ethnic groups 

aforementioned. 

7.3.6. Discussion of results 

Sections 7.3.4 and 7.3.5 have described the process carried out to validate the CEL 

name classification by applying it to a population of 343,068 people admitted to 

hospital over 8 years in Camden and Islington, and comparing it with the patient 

reported ethnicity. The results of this validation are summarised in Table 7.3 and 

Table 7.4, where the CEL classification is compared with the actual reported 

ethnicity using either the nine 1991 Census categories for all the patients, or the 

sixteen 2001 Census categories for a subset of them (52%), giving a range of values 

obtained for the measures of sensitivity, specificity, PPV and NPV under different 

scenarios. 

 

Sensitivity and positive predictive value (PPV) are two statistical measures of how 

well a binary classification test correctly classifies (sensitivity) or predicts (PPV) 

cases belonging to their class, in this case an ethnic group, while specificity and 

negative predictive value (NPV) measure its inverse, that is, cases not belonging to 

that class (Altman and Bland, 1994a; Altman and Bland, 1994b).  Table 7.3 and 

Table 7.4 show that the validation of the CEL name classification achieves very high 

values of specificity and NPV (most of the ethnic groups with values above 0.90), 

while its sensitivity and PPV present varied results by ethnic group (between 0.50 

and 0.90). This result is a direct consequence of one of the main aims of this PhD 
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research: ‘to classify entire populations into all of the potential ethnic groups present 

in a society’, that imposes an objective of maximising population coverage at the 

cost of increasing errors in the classification. An alternative would have been to just 

classify the few thousand names that most accurately represent a cultural ethnic or 

linguistic group, leaving all the other names unclassified. This would have 

maximised precision at the cost of a low coverage. 

 

However, reflecting on the results shown on Table 7.3 and Table 7.4, it can be 

noticed that the CEL classification achieves an overall high accuracy in the ‘White-

British’, ‘Pakistani’, ‘Bangladeshi’, ‘Black African’ and ‘Chinese’ groups, with 

values over 0.7 or 70%, which are all groups well represented in the study area. On 

the other hand, the ethnic groups where the CEL classification proves less effective 

are ‘Black Caribbean’ (because the majority of the names are of British origin), ‘Any 

other ethnic group’ (a ‘catch-all’ category of dubious value) and ‘White-Other’ (a 

mix-match category embracing half of the world: (Connolly and Gardener, 2005). 

Furthermore, as is obvious from the conception of the CEL classification, the name 

approach is not able to identify persons who assign themselves to one of the four 

mixed ethnicity groups (D-G) of the 2001 Census categories, or the vague ‘Any other 

Black background’ (P). 

 

Amongst the main factors that explain the results obtained, the following can be 

mentioned: 

- The gold standard for ethnicity used, the ‘self-reported’ ethnicity of hospital 

admission records, is of very low quality (Aspinall and Jacobson, 2004), and 

even after the efforts made here to remove the more dubious cases (i.e. 
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conflicting ethnic groups for the same person), there are known cases of 

ethnicity being assigned by nurses or administrative staff without direct 

patient consultation. 

- The CEL name classification does not identify ‘mixed ethnicity’ through 

names, and hence the CEL allocation of persons who have reported mixed 

ethnicity, as well as the ‘Other’ categories using the Census classification in 

HES, cannot be compared with the gold standard like with like. However, 

the CEL classification does provide much finer detail by cultural, ethnic and 

linguistic group not present in the Census categories, as shown in Table 7.2, 

column ‘9’, where it improves the ‘Not Given’ responses in the HES 

dataset, identifying 96% of them. 

- The mapping between the 66 CEL Subgroups and the 9 or 16 Census ethnic 

groups is not perfect, since the essence of each of the classes is radically 

different and hence leads to different ontologies of ethnicity. This in turn has 

an impact in the evaluation comparing the two. 

- The CEL name classification has been built to maximise population 

coverage at a UK National level, while the HES dataset represents a very 

specific spatio-temporal section of the UK population; people admitted to 

hospital in Camden and Islington between 1998 and 2006. The opposite 

problem has been reported in the Nam Pechan name classification, which 

was built for an area in Bradford and when applied to other areas in the 

country proved less effective (Cummins et al, 1999). In the validation 

presented here, the situation is the opposite, a nationally designed 

classification that although having been just validated on the particular 
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hospital population of Camden and Islington, ought to perform well when 

applied to other regions. 

- Finally, errors that remain after controlling for the above would have to be 

explained by the differential ability of people’s names origins to manifest 

current conceptions of ethnic groups, as applied through the methodology 

presented in this thesis. 

 

7.4. Validation Against Census Small Area Ethnicity Data  

The second type of validation of the CEL name classification follows a ‘geography 

tradition’ and seeks to evaluate the ability of the CEL classification to correctly 

identify ethnicity at the level of the small area aggregation (as opposed to unique 

human individuals). The validation attempted here uses the ethnicity data reported in 

the UK Census of Population for small areas (Census Output Area), which are 

compared against the CEL classification of the same areas using the names in the GB 

2004 Electoral Register. 

7.4.1. Data preparation 

This validation requires the use of two datasets to be compared: Census 2001 Key 

Statistics KS06 table (ethnic group), and a new dataset to be prepared by coding the 

GB 2004 Electoral Register by CEL Subgroup, which is then aggregated by the 

Census Output Area geography, and by the Census 16 ethnic groups. 

 

Each of the 46.3 million adults in the GB 2004 Electoral Register file, described in 

Chapter 4, was classified by CEL Subgroup, using the name-to-CEL tables of the 

automated approached described in Chapter 6, and the person allocation algorithms 
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explained in Section 7.1 of the current chapter. This comprises, to the author’s 

knowledge, the first attempt ever to classify the whole population of Great Britain 

according to the cultural, ethnic and linguistic origin of names, and the results 

presented in Table 7.5 are summarized by CEL Group. The individual records were 

then aggregated by unit postcode, calculating the number of people per CEL 

Subgroup in each unit postcode, yielding a table of 1.4 million records (postcodes) 

and 66 columns (CEL Subgroups). 

CEL Group People % 
ENGLISH 29,455,761 67.6% 
CELTIC 10,485,126 24.1% 
MUSLIM 987,422 2.3% 
EUROPEAN 735,105 1.7% 
SOUTH ASIAN 475,834 1.1% 
SIKH 275,939 0.6% 
NORDIC 222,859 0.5% 
HISPANIC 186,381 0.4% 
EAST ASIAN 159,668 0.4% 
AFRICAN 149,076 0.3% 
GREEK 102,646 0.2% 
JEWISH AND ARMENIAN 80,650 0.2% 
JAPANESE 5,829 0.0% 
INTERNATIONAL 35,763 0.1% 
VOID 210,803 0.5% 
UNCLASSIFIED 20,942 0.0% 

TOTAL 43,589,804 100.0% 

Total valid CELs 43,322,296 99.4% 
Total non-valid CELs 267,508 0.6% 

 
Table 7.5: Summary of number of people per CEL Group in the GB 2004 Electoral Register 

 

Two further steps are required in order to make the Electoral Register dataset 

comparable with the Census; the aggregation of the 66 CEL Subgroups to 16 Census 

ethnic groups, and of the unit postcode geography to Census Output Areas. The first 

step is achieved through the CEL Subgroup lookup table previously used that relates 
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the 66 CEL Subgroups to various attributes, one of them being the sixteen 2001 

Census ethnic groups, and which appears in  Appendix 3. Therefore, the 66 columns 

are now aggregated into the 2001 Census 16 ethnic groups. 

 

The second step requires the use of an additional dataset, the postcode directory 

maintained by Office of National Statistics, named the National Statistics Postcode 

Directory (NSPD) (formerly known as the All Fields Postcode Directory (AFPD) and 

previously the Gridlink Postcode Directory: (Office for National Statistics, 2006b).  

The NSPD provides a lookup table between every unit postcode in the UK to a set of 

higher level geographies to which it belongs. Those that are of interest to this 

validation exercise are; Census Output Area (OA), Lower level Super Output Area 

(LSOAs), Ward, and Local Authority (LA). Therefore, the 1.4 million records were 

separately aggregated by each of these four geographic levels, generating four tables 

of different spatial resolutions: 218,037 OAs, 40,883 LSOAs, 10,072 Wards, and 408 

Local Authorities in Great Britain (i.e. excluding Northern Ireland). Each of these 

tables contains counts of persons in the Electoral Register by ethnic group based on 

the CEL Subgroup classification but expressed as their 2001 Census ethnic group 

equivalent. To avoid confusion, these four tables will be generally referred to as the 

CEL-GB04 datasets. 

7.4.2. Data analysis: validation of CEL vs. Census ethnicity at small area 

Comparison of the CEL-GB04 datasets and the Census ethnic groups by small area 

(2001 Census Key Statistics KS06 table) was effected by linking both datasets at 

each of the geographical levels for which the validation was to be performed: OA, 

LSOA, Ward and LA. The idea of performing the validation at four different 

geographical scales was to assess the sensitivity of the CEL classification to changes 
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in scale, as a precursor to determining the optimum geographical level of its 

applications. 

 

This analysis entailed calculating correlation coefficients between the CEL-GB04 

dataset and the Census ethnicity responses at the four different levels of geography. 

Since the two datasets do not use the same denominator (the CEL file only includes 

adults entitled to vote while the Census enumerates all of the resident population), 

the comparison was performed using the proportion of people in each ethnic group 

for each geographical unit. A correlation matrix was calculated for these figures 

using Pearson’s correlation coefficient (Robinson, 1998). A summary of the results is 

offered in Table 7.6, which summarises the correlation coefficients at the different 

levels of geography for which they were calculated (OA, LSOA, Ward and LA), and 

also for 11 Census ethnic groups after removing the four ‘Mixed’ and the ‘Not 

Stated’ categories. The number of geographical units at each level and their 

population sizes are indicated at the bottom of the table. 
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  Geographical Unit of Comparison 

Ethnic Group OA LSOA WARD LA

A) White - British 0.88 0.93 0.93 0.95

B) White - Irish 0.32 0.37 0.42 0.46

C) White - Any other White background 0.74 0.85 0.88 0.93

H) Asian or Asian British - Indian 0.92 0.95 0.96 0.98

J) Asian or Asian British - Pakistani 0.90 0.93 0.93 0.91

K) Asian or Asian British - Bangladeshi 0.91 0.93 0.95 0.98

L) Asian or Asian British - Any other Asian 

background -0.06 0.11 0.24 0.62

M) Black or Black British - Caribbean 0.32 0.77 0.91 0.98

N) Black or Black British - African 0.83 0.95 0.97 0.99

R) Other ethnic groups - Chinese 0.65 0.79 0.84 0.97

S) Other ethnic groups - Any other ethnic 

group 0.38 0.66 0.77 0.88

          

Number of Units valid for analysis 218,037 40,883 10,072 408

 
Table 7.6: Summary of Pearson’s correlation coefficients between the CEL-GB04 and 2001 
Census datasets 
All correlations are significant at the 0.01 level (2-tailed). Correlations ≥ 0.7 are highlighted in bold 
OA = Output Area, LSOA= Lower Super Output Area, LA= Local Authority 
 

7.4.3. Discussion of results 

Most of the ethnic group categories present a high degree of correlation between the 

two datasets, which generally increase with area size, although correlations are not as 

strong at OA level. The former effect is to be expected according to the modifiable 

areal unit problem (MAUP) (Openshaw, 1984). There are however some groups for 

which anomalies occur: the ‘White-Irish’ (B), ‘Any other Asian background’ (L), 
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and ‘Any Other ethnic group’ (S) categories, and to a lesser extent the ‘Black-

Caribbean’ (M) group, which each present over-all low correlations. The main 

reasons for this divergence are, on the one hand, the inherent vagueness of some 

Census categories (Mixed, Other) together with their lack of exact correspondence to 

the CEL Subgroups, and on the other hand, some problems detected in the distinction 

of Irish and Caribbean names, that are due to historic differences and a high degree 

of assimilation with the White-British majority. Nevertheless, the correlation 

coefficient of all the categories is significant at the 0.01 level (2-tailed). The stronger 

correlations (≥ 0.7) are highlighted in bold in Table 7.6, including 6 out of 11 

categories at OA level, and especially at the LSOA level (1,500 persons in average) 

and coarser geographies. Some groups perform extraordinarily well across all scales; 

‘White British’ (A), ‘White-Other’ (C), ‘Indian’ (H), ‘Pakistani’ (J), ‘Bangladeshi’ 

(K), ‘Black African’ (N) and to a lesser extent Chinese (R), probably indicating the 

robustness of their Census ethnic categories as well as a strong linkage between 

current self-perception of ethnic identity and name origins for those groups. With the 

exception of ‘White-Other’ and ‘Indian’, these are also the ethnic groups which 

performed best in the validation using the HES dataset in Camden and Islington 

presented in Section 7.3, an area of London with fewer residents from the ‘Indian’ 

ethnic group. Even more, at LSOA and higher geographies, all groups except for the 

‘Other’ mentioned (L & S) perform very well when compared with the Census 

geographical distribution, with correlations above 0.80, many of them above 0.90 

(see right columns of Table 7.6 for details). 
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7.5. Conclusion 

The main aim set at the outset of this chapter, to provide more than one way to 

validate the effectiveness of the CEL classification proposed in this thesis, has been 

achieved through two different validation exercises, one following a public health 

literature tradition, using patient registers, and a separate one following a ‘geography 

tradition’ comparing Census small area statistics. 

 

The first section in this chapter has presented a methodology that draws upon the two 

forename-to-CEL and surname-to-CEL tables created in Chapter 6 to create a person 

level CEL allocation algorithm to assign individuals with their most probable CEL 

(PCEL). The scores used in this process have been very useful to arbitrate in 

conflicts between the FCEL and SCEL of a person. This has also allowed assignment 

of individuals based on a final score that indicates the strength of the final allocation.  

 

Once the person level CEL allocation method was explained, the chapter moved on 

to applying it to two different datasets in which the self-reported ethnicity was 

already known. The first of these validation exercises used a list of people admitted 

to hospital in London Boroughs of Camden and Islington containing forename, 

surname and self-reported ethnicity data. The second type of validation used a 

nationwide dataset, the GB 2004 Electoral Register, which was coded by CEL and 

aggregated by Census Output Area in order to compare the results with the Census 

small area statistics on ethnicity. 

 

The results of both of the validation exercises have been very consistent, even though 

the nature of the two datasets was very different. The CEL names classification 
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achieved an overall high precision in the following ethnic groups (reported as 2001 

Census categories):  ‘White British’ (A), ‘Indian’ (H), ‘Pakistani’ (J), ‘Bangladeshi’ 

(K), ‘Black African’ (N) and Chinese (R). It achieved a medium precision in the 

‘White-Other’ (C) group (high in the Census but low in the HES validation). On the 

other hand, the ethnic groups where the CEL classification proved less effective 

were: ‘White-Irish’ (B), ‘Black-Caribbean’ (M), ‘Any other Asian background’ (L), 

and ‘Any Other ethnic group’ (S) categories. Finally, the name approach by 

definition was not able to identify persons which in the 2001 Census categories 

identify themselves with one of the four mixed ethnicity groups (D-G), or the vague 

‘Any other Black background’ (P) since they cannot be matched to any name group.  

 

Excluding the problematic catch-all ‘other’ categories that are of dubious worth in 

the self-reported ethnicity data, the only two groups in which the classification is less 

effective are thus the ‘White-Irish’ (B) and ‘Black-Caribbean’ (M) groups. The 

reasons behind the high number of misallocations for these groups has been 

extensively justified in Sections 7.3 and 7.4, and relate to a high degree of 

assimilation with the White-British majority in the former group, and the British-

origin of Caribbean names for the latter group. The rest of the six main ethnic 

groups, as reported by the census, achieve a high degree of accuracy, both measured 

by the measures of sensitivity, specificity, positive predictive value (PPV), and 

negative predicted value (NPV), using hospital admissions data, as well as by the 

correlation coefficient with the Census small area data. Moreover, these results are 

affected by the present PhD research’s objective of building a name classification 

that maximises population coverage, as opposed to classification accuracy. That is, 
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when the weakest name assignments are dropped the accuracy of the classification 

increases and vice-versa. 

 

Finally, these validation results should be interpreted in the light of the caveats 

mentioned in Section 7.2, relating to the problem of comparing constructs of 

different ontological nature. Hence, onomastic classifications based on cultural, 

ethnic and linguistic origin of names, cannot be easily compared with self-reported 

ethnicity. The comparisons carried out in this chapter, therefore assume that the 

differences between the two ontologies of ethnicity can be ignored when there is no 

other alternative information source. As a result, the fact that the only two ethnic 

groups that present major issues in the CEL classification  are Irish and Caribbean 

ones comes as no surprise. After all, these are precisely the two groups in Britain that 

better reflect the ontological difference between the two constructs compared; 

names-based origin and self-reported identity, or Irish names and White-Irish 

identity, and Caribbean-British names and Black-Caribbean identity. 

 

After the CEL classification had been evaluated a series of applications were tested 

in the public sector, to test its actual usefulness in the ‘real world’. It can be claimed 

that proving that such applications work in reality is also part of the validation of the 

CEL methodology developed in this PhD research. One of these applications will be 

presented in depth in the next chapter, while others will be briefly mentioned. 
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Chapter 8. Applications: Residential Segregation and 

Ethnic Inequalities 

What could be more inherently geographical than segregation? 

 (Brown and Chung, 2006: 125) 

 

The literature on name-based ethnicity classifications that was reviewed in Chapter 3 

is very rich in studies that have developed, validated and applied name-based 

methods to ascribe population ethnic origins, especially since the 1950s in the fields 

of public health, genetics, and demography. The search strategy used in that chapter 

identified 186 unique publications that either directly developed name-based 

methodologies or used externally available methodologies. The majority of these 

studies were originally conceived with a particular application in mind, using name 

analysis to segment a population into a few ethnic groups for further analysis of 

suspected differences between groups. Therefore, the primary focus of most studies 

in the name-based ethnicity classifications literature has been on applications, and 

the studies analysed in Chapter 3 have all demonstrated their value and sufficient 

accuracy in classifying ethnicity in the context for which they were designed. The 

types of applications of name-based classifications are therefore closely intertwined 

with the methodological developments in this field, probably because of the majority 

of them have been developed by strongly empirically-led health and genetics 

researchers. 

 

The primary aim of this PhD research is a methodological one; to develop a new 

ontology of ethnicity based on personal names, leading to an alternative name-based 
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ethnicity classification system covering the whole population and maximising the 

number of ethnic groups. As a consequence, the methodology has not been 

developed with any one particular application in mind, nor has a specific line of 

examples been developed through the previous methodological chapters. However, 

as the second part of this thesis title suggests – ‘implications for neighbourhood 

profiling’ – the area of applications finally envisaged for the new methodology 

presented in the previous chapters is primarily one of geographical nature. 

 

It is believed that one of the areas in which name-based ethnicity classifications have 

greatest potential is in geographical analysis of small areas, i.e. neighbourhoods, 

where the intersection of the majority of the factors influencing ethnic inequalities, 

described in Chapter 2, actually takes place and acquires an interpretable meaning in 

everyday practices and encounters (Amin, 2002). Moreover, there is a recognised 

need to differentiate the identity of neighbourhoods in the delivery of public services. 

‘We need to be better able to differentiate between locations, not just on 

account of their physical attributes but also by virtue of their identification 

with specific identities’  

 (Longley, 2003: 116) 

 

Therefore, this chapter will illustrate one thread of many potential fields of 

applications of the CEL name to ethnicity methodology developed in this PhD. It is 

included here as an illustrative example of a geographical application of the 

methodology at the small area scale, particularly in ethnicity profiling of 

neighbourhoods. 
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The application presented here focuses upon London, which is the most ethnically 

diverse region of the UK, and one of the few global cities with a significant 

proportion of its population originally coming from all over the world. In 2001 

London Non-White British population comprised 40.2% of the total population of 

7.1 million people (ONS 2001 Census Key Statistics KS06 table). However, and as 

discussed in Chapter 1, ethnic group categories in the 2001 Census are sometimes 

too broad to understand the causes for residential segregation, especially in London. 

 
 
Table 8.1 shows the population of each ethnic group as a share of the total population 

of London alongside its national average for the UK. The groups highlighted in 

italics are considered ‘poorly studied’ groups (the ‘other’ groups plus ‘Black 

African’) since they lump together very diverse ethnicities into meaningless ‘other’ 

‘left-overs’, lost between the major ethnic groups. However, in London these poorly 

studied groups comprise a total population of 1.35 million people, or 18.8% of the 

total population and 46.7% of the ethnic minority population. It is envisaged that the 

CEL methodology will be specially valuable to break down these ethnic groups into 

finer and meaningful groups that can be further analysed. The study of the residential 

segregation of such groups is the main purpose of the analysis presented here. 

 

The main application presented here intends to illustrate the potential applications of 

the CEL name classification to issues surrounding neighbourhood profiling and 

residential segregation debates. As exposed in the literature review presented in 

Section 2.2, these issues are of most relevance in public policy debate in Britain, and 

in the developed world in general. 
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UK London 

White 
  British 87.5% 59.8% 
  Irish 1.2% 3.1% 
  Other White 2.6% 8.3% 
Mixed 
  White & Black Caribbean 0.5% 1.0% 
  White & Black African 0.2% 0.5% 
  White & Asian 0.4% 0.8% 
  Other Mixed 0.3% 0.9% 
Black or Black-British
  Black-Caribbean 1.1% 4.8% 
  Black-African 0.9% 5.3% 
  Black-Other  0.2% 0.8% 
Asian or Asian-British
  Indian 2.0% 6.1% 
  Pakistani 1.4% 2.0% 
  Bangladeshi 0.5% 2.1% 
  Any other Asian background 0.5% 1.9% 
Chinese or other group
  Chinese 0.4% 1.1% 
  Any other ethnic group 0.4% 1.6% 

Total Non-White British 12.5% 40.2% 
Poorly Studied Groups 4.9% 18.8% 

 
Table 8.1: Proportion of the population by ethnic group; London vs. UK (2001 UK Census) 

‘Poorly studied’ groups comprise the ‘other’ categories plus ‘Black African’ and are highlighted in 
italics. Source: Office for National Statistics 2001 Census, Key Statistics KS06 table (Crown 

Copyright). 
 

Other examples of actual applications of the methodology developed in this PhD 

research are briefly mentioned at the end of the chapter in order to illustrate avenues 

for future applied research in this area. These include applications in public health, to 

segmenting populations by ethnic group to tackle ethnic inequalities in health at local 

level, and in demographic planning at local and central government, complementing 

current methodologies to estimate population composition by ethnic group, 
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especially at local level. The applications presented here do not purport to provide a 

comprehensive account of the specific applications for the CEL classification, but 

rather present a reasonably representative range of examples of potential 

implementations of the methodology to common problems identified in the 

geographical ethnic inequalities literature.  

 

Section 8.1 presents the justification of the analysis of residential segregation in 

London and introduces the methods used. Section 8.2 analyses in detail four of the 

five traditional dimensions of residential segregation, drawn from the sociological 

literature, while Section 8.3 expands on additional dimensions and approaches from a 

geographical perspective. Section 8.4  summarises the overall results found and 

discusses the issues identified. Finally, Section 8.5 briefly mentions other 

applications of the CEL methodology in the area of ethnic inequalities in health and 

population studies in local government, with the purpose to illustrate some of the 

potential future applications of the methodology developed in this PhD research. 

8.1. Residential Segregation in London. Introduction and Methods 

8.1.1. Introduction 

The main application presented in this chapter seeks to illustrate the relevance of the 

CEL methodology to the issues identified in the literature review and highlighted in 

Section 2.2. In particular, it intends to show how name analysis can be a feasible 

alternative to self-reported ethnicity information, when analysing apparent 

segregation of neighbourhoods. This pertains to the criticised persistence of a skin 

colour criterion when defining segregation, around a White / Non-White divide, 

which usually ascribes Non-White residential concentrations with negative 
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connotations (Simpson, 2004). However, as justified in Chapter 2, the reality of 

neighbourhood segregation is more likely to be based upon a complex spectrum of 

‘skin tones’ or culturally diverse neighbourhoods, and it is believed that name 

analysis can be useful to reveal its complex geography. 

 

This section will not go deeper into the issue of the meaning of a ‘segregated’ or an 

‘integrated’ neighbourhood or city. However, it intends to show how the spatial 

distribution of an alternative ontology of ethnicity based on name origins, can change 

established perceptions of the nature of the most segregated ethnic groups and the 

level of segregation of particular neighbourhoods. Therefore, the focus of this 

example will be on ethnic group categorisations at much finer levels than the ethnic 

minority aggregations typically studied in Britain;– viz. South Asian (Indian, 

Pakistani and Bangladeshi) (Peach, 1998), Black (Phillips, 1998), or Muslim (Peach, 

2006; Peach and Owen, 2004). As such, this contribution seeks to provide new 

evidence about the  ethnic groups categorised as ‘Other’ in official statistics 

(Connolly and Gardener, 2005). More contributions of this kind, which might stem 

from future applications of the CEL name classification, should help to advance the 

debate about the ontology of ethnicity and segregation, and how it may affect the 

results of geographical analysis at the neighbourhood level. 

 

The example presented here entails classification of the names of London’s 

population, as per the 2004 Electoral Register, into 66 CEL Subgroups, in order to 

analyse the level of segregation of ethnic groups and neighbourhoods at very fine 

scales (CEL Subgroup and Census Output Area). Segregation is measured using 
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traditional indices of segregation, taken from the sociological and geographical 

literatures, as well as using spatial autocorrelation measures. 

8.1.2. Data preparation and methods 

The dataset used in this analysis is the ‘CEL-classified’ 2004 Electoral Register for 

Greater London, which contained 5 million electors, individually classified into 66 

CEL Subgroups as per the process described in Section 7.1. As a result, 99.79% of 

the individuals could be allocated with a CEL Subgroup, what constitutes a 

remarkable achievement in terms of population coverage.  A summary table of the 

sizes of each of these CEL Subgroups is listed in Table 8.2. Individuals were then 

aggregated into the 131,721 unit postcodes of the Capital, computing counts of 

people per CEL Subgroup and postcode unit. Finally this table was further 

aggregated into Output Areas (OAs), a geographical unit that is apt for London-wide 

analysis since its average size is 285 people in London and there is a total of 24,100 

OAs. The linkage between postcode units and OAs was made using the National 

Statistics Postcode Directory (NSPD) (Office for National Statistics, 2006b)  as 

previously described in Section 7.4.1. The NSPD directory was also used to 

aggregate both postcode units and OAs up to higher level geographies (ordered in 

increasing size; Lower Super Output Areas -LSOA-, Wards, and London Borough). 

Each of these geographies was mapped through a GIS using OS CodePoint 

boundaries for the postcode units and the Census administrative geographies for the 

OAs and their higher level administrative aggregations. 

 

The analysis involved the calculation of a set of well-established residential 

segregation indices at each of the different levels of geography described above. A 

software application called Segregation Analyser, developed by Apparicio et al 



 
Cha
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(2005), was used to compute the residential segregation indices for all of the CEL 

Subgroups at a range of different geographical scales. This tool significantly 

simplified this task, since it computes over 40 different segregation indices using as 

an input a geographical boundary file of the area with the population headcounts per 

areal unit and ethnic group. This software application is available from the Centre 

Urbanisation, Culture et Societé in Quebec City part of the Institut National de la 

Recherche Scientifique (INRS), available as follows: 

http://www.inrs-ucs.uquebec.ca/inc/Groupes/LASER/Segregation.zip (last accessed 

07/09/2006) 

However, because of computer memory limitations the segregation indices at 

postcode unit level for London (n=131,721) could not be calculated using the 

Segregation Analysis tool, because of the intensive process of dealing with very 

small geographical units. Therefore, the calculations were applied to Output Areas 

(n=24,100) and higher order aggregations. 

 

http://www.inrs-ucs.uquebec.ca/inc/Groupes/LASER/Segregation.zip
http://www.inrs-ucs.uquebec.ca/inc/Groupes/LASER/Segregation.zip
http://www.inrs-ucs.uquebec.ca/inc/Groupes/LASER/Segregation.zip
http://www.inrs-ucs.uquebec.ca/inc/Groupes/LASER/Segregation.zip
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CEL Subgroup 
Total 
Pop. %   CEL Subgroup 

Total 
Pop. %   CEL Subgroup 

Total 
Pop. %  

ENGLISH 2,876,980 57.47%  SOMALIAN 20,376 0.41%  MUSLIM NORTHAFRICAN 2,044 0.04% 
IRISH 414,038 8.27%  HINDI NOT INDIAN 12,643 0.25%  ALBANIA 1,908 0.04% 
SCOTTISH 323,847 6.47%  BLACK CARIBBEAN 11,554 0.23%  CZECH & SLOVAKIAN 1,660 0.03% 
WELSH 222,429 4.44%  MUSLIM SOUTH ASIAN 11,380 0.23%  UKRANIAN 1,629 0.03% 
HINDI INDIAN 156,269 3.12%  EUROPEAN OTHER 9,091 0.18%  LEBANESE 1,404 0.03% 
PAKISTANI 140,548 2.81%  BALKAN 9,035 0.18%  NORDIC 1,174 0.02% 
SIKH 83,968 1.68%  CHINESE 8,874 0.18%  MUSLIM STANS 1,155 0.02% 
BANGLADESHI 72,829 1.45%  SOUTH ASIAN OTHER 8,484 0.17%  KOREAN 1,139 0.02% 
ITALIAN 71,967 1.44%  VIETNAM 8,415 0.17%  ROMANIAN 1,085 0.02% 
NIGERIAN 68,596 1.37%  INTERNATIONAL 6,214 0.12%  BALTIC 1,061 0.02% 
GREEK 61,296 1.22%  RUSSIAN 5,539 0.11%  ERITREAN 1,053 0.02% 
MUSLIM MIDDLE EAST 48,114 0.96%  DUTCH 5,477 0.11%  ETHIOPIAN 918 0.02% 
PORTUGUESE 44,780 0.89%  SWEDISH 5,155 0.10%  MALAYSIA 891 0.02% 
SPANISH 44,679 0.89%  AFRICAN 4,879 0.10%  UGANDAN 812 0.02% 
FRENCH 40,264 0.80%  IRANIAN 4,761 0.10%  CONGOLESE 598 0.01% 
SRI LANKAN 39,269 0.78%  DANISH 4,592 0.09%     
JEWISH 35,984 0.72%  SIERRA LEONIAN 3,854 0.08%     
HONG KONGESE 35,609 0.71%  JAPANESE 3,469 0.07%  UNKNOWN NAME 10,546 0.21% 
GHANAIAN 35,255 0.70%  AFRIKAANS 3,036 0.06%  VOID NAME 90,715 1.81% 
TURKISH 34,359 0.69%  EAST ASIAN 2,645 0.05%     

POLISH 33,270 0.66%  HUNGARIAN 2,603 0.05%     

GERMAN 33,264 0.66%  ARMENIAN 2,436 0.05%  GRAND TOTAL 5,006,490 100.00% 
PAKISTANI KASHMIR 32,061 0.64%  MUSLIM 2,335 0.05%     
INDIA NORTH 31,888 0.64%  BLACK SOUTH AFRICA 2,161 0.04%     
NORWEGIAN 24,927 0.50%  FINNISH 2,099 0.04%     

 
Table 8.2: List of the 66 CEL Subgroups and their total and relative population sizes in London (2004) 
The table is ordered by decreasing population size. The category ‘unknown name’ has been added, although it does not constitute a CEL Subgroup per se.
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8.2. The Traditional Dimensions of Residential Segregation 

8.2.1. Selection of segregation indices 

Drawing upon Massey and Denton’s (1988) famous ‘five dimensions of residential 

segregation’, a selection of indices was made, one for each dimension of evenness, 

exposure, concentration, and clustering. No index of centralisation was used because 

of the multiplicity of historic town centres in London. The dimension of 

centralisation was devised for American cities where ethnic minorities typically 

occupy the inner city area, which comprises a well defined core, and gradually move 

out to the suburbs as they become more integrated (Peach et al, 1981). This process 

does not follow a similar pattern in Europe, and in London the multiplicity of historic 

town centres complicates the role of the functional city centre as an area of 

immigration settlement. Since centralisation indices are based on a single centre, and 

calculate a distance to the centre function, it was deemed irrelevant to the London 

case. 

 

An exploratory analysis of residential segregation indices was carried out, including 

all of the indices reviewed by Massey and Denton (1988), spatial indices proposed in 

the subsequent literature (Wong, 2003; 2004), segregation classifications based on 

thresholds (Brimicombe, 2007; Johnston, Voas et al, 2003), and recent reviews of the 

adequacy of each of the most common residential indices (Simpson, 2004; 2007). 

The indices proposed by  Massey and Denton (1988) as the best representative for 

each of the five dimensions, were those with higher loadings in the factor analysis 

carried out by these authors. Using these indices and comparing them with more 

complex indices such us those including spatial features by Wong (2003; 2004) 
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produced very similar results, and therefore simpler indices were preferred. As a 

result of this selection process four indices were finally adopted for further analysis, 

as per the following list: 

 

• Evenness 
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• Concentration 

 ACO; Relative Concentration Index  
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 (spatial units are sorted by area size in ascending order) 

  

• Clustering 

 ACL; Absolute Clustering Index 
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 (Massey and Denton, 1988) 

Key to the formulas: 

 
 X = Total population of group X in the whole area/city 
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 xi = Total population of group X in spatial unit i 

 xj = Total population of group X in spatial unit j 

 T= Total population in the whole area/city 

 ti= Total population in spatial unit i 

 tj= Total population in spatial unit j 

 T1 = The sum of all ti in areal unit 1 to areal unit n1

 T2 = The sum of all ti in areal unit n2 to areal unit n 

 cij = cell value of the binary connectivity matrix (1 where i and j are 

contiguous and 0 otherwise)  

 Ai = Area of spatial unit i 

xPx
* =  Probability of a member of ethnic group X entering into contact 

with a member of the same group within an area of residence 

 

For a review of these indices, equations and their theoretical justification, see Massey 

and Denton (1988) and the original sources (Bell, 1954; Duncan and Duncan, 1955; 

Lieberson, 1981); for their implementation in Segregation Analyser, which 

correspond to the formulas presented here, see Apparicio et al (2005). 

 

These four indices represent four of the five dimensions of residential segregation, 

and their meaning will be described in subsequent sections devoted to each 

dimension. Additional dimensions are dealt with in the next section. These indices 

were calculated for every CEL Subgroup at the Output Area level. The results of all 

of the calculations described here are presented in the next subsections. As a result of 

these calculations, a series of measures of residential segregation were produced for 

each of the 66 CEL Subgroups in Greater London. Those individuals who could not 

be classified by CEL Subgroup in the personal allocation algorithm (only 0.21%), 

were assigned with an additional code ‘Unknown Name’, bringing the total number 

of categories to 67. This ‘Unknown Name’ category has been treated as a separate 
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CEL Subgroup and indices were calculated for it to double check that it did not 

present any particular pattern and hence that their distribution is completely random. 

Two other CEL Subgroups that are included in the list of 67 are termed 

‘International’ and ‘Void’ names. International names are those names, primarily 

forenames, that are widely adopted across CELs and are deemed to be of an 

‘international’ nature, as opposed to any particular CEL. ‘Void’ names are those that 

have been identified as names but in a different category, for example surnames 

recorded as forenames, or those common mistakes in data quality assurance, such us 

honorifics (i.e. Mr., Ms, Dr. etc). 

 

Unless otherwise specified, most of the figures that follow only take into account the 

most frequent 46 CEL Subgroups, for reasons of ease of representation and 

discussion. These correspond to the CEL Subgroups with a total population size in 

London greater than 3,000 people, which in the list shown in Table 8.2 corresponds 

to the 46 subgroups that are more numerous than the ‘East Asian’ category.  

 

8.2.2. Evenness 

Evenness was measured through the classic index of dissimilarity (ID) (Duncan and 

Duncan, 1955), which is portrayed by many as the segregation index (Simpson, 

2007). The index of dissimilarity represents the proportion of the group’s population 

that would have to move between areas in order for the group to become distributed 

in the same way as the rest of the population (evenly distributed, hence the name of 

this dimension).  
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  (See Section 8.2.1 for explanation of variables) 

 

The ID index was calculated for the CEL Subgroups in London, and the results for 

the most frequent 46 CEL Subgroups are listed in Table 8.3. In this table the CEL 

Subgroups are ordered by descending index of dissimilarity (ID), noted by the rank, 

alongside their absolute population size in London. The most segregated CEL 

Subgroups in London according to the ID index are; Afrikaans, Sierra Leonean, 

Japanese, Iranian and African (a category encompassing other Black African names 

not included in the rest of CEL Subgroups). This is an interesting result, since these 

are not precisely the groups that come up at the top on the segregation literature on 

London (Johnston et al, 2002a; Peach, 1996a; Peach, 1999a). This demonstrates the 

value of the CEL methodology in uncovering the residential patterns of carefully 

defined disaggregate ethnic groups. The least segregated CEL Subgroups (out of the 

most frequent 46 CEL Subgroups) are Irish, Scottish, Welsh, English, and ‘Void 

Names’ (a category including invalid entries in the Electoral Register). This is likely 

to arise because of the ubiquity of these groups across the Capital, as a result of the 

long-established nature of these groups in London. 

 

However, Table 8.3 suggests that there is a relationship between the size of the CEL 

Subgroup and the level of the segregation index. In order to corroborate this, Figure 

8.1 shows the scatterplot of both items; the index of dissimilarity (ID) on the vertical 

axis and the total population size on the horizontal axis for the 46 CEL Subgroups, 

both represented in logarithmic scale. The plot shows a clear negative relationship 

 



 
Chapter 8 - Applications: Residential Segregation and Ethnic Inequalities 309 

 

between the ID index and population size, which is confirmed by a regression line 

plotted between the points using a linear fit, whose R2 is 0.805.  

Rank  CEL Subgroup 
Total 
Pop. ID  Rank  CEL Subgroup 

Total 
Pop. ID 

1 AFRIKAANS 3,036 0.909  24 JEWISH 35,984 0.620

2 SIERRA LEONEAN 3,854 0.908  25 GHANAIAN 35,255 0.611

3 JAPANESE 3,469 0.905  26 SOMALIAN 20,376 0.585

4 IRANIAN 4,761 0.875  27 NIGERIAN 68,596 0.580

5 AFRICAN 4,879 0.868  28 INDIA NORTH 31,888 0.574

6 DANISH 4,592 0.864  29 HINDI INDIAN 156,269 0.573

7 VIETNAM 8,415 0.862  30 GREEK 61,296 0.557

8 SWEDISH 5,155 0.854  31 HONG KONGESE 35,609 0.549

9 RUSSIAN 5,539 0.843  32 PAKISTANI KASHMIR 32,061 0.537

10 DUTCH 5,477 0.840  33 NORWEGIAN 24,927 0.516

11 INTERNATIONAL 6,214 0.789  34 GERMAN 33,264 0.499

12 SOUTH ASIAN OTHER 8,484 0.788  35 PAKISTANI 140,548 0.495

13 CHINESE 8,874 0.787  36 POLISH 33,270 0.478

14 BALKAN 9,035 0.774  37 MUSLIM MIDDLE EAST 48,114 0.469

15 EUROPEAN OTHER 9,091 0.761  38 PORTUGUESE 44,780 0.464

16 HINDI NOT INDIAN 12,643 0.754  39 SPANISH 44,679 0.459

17 BLACK CARIBBEAN 11,554 0.739  40 FRENCH 40,264 0.445

18 MUSLIM SOUTH ASIAN 11,380 0.734  41 ITALIAN 71,967 0.386

19 UNKNOWN NAME 10,546 0.695  42 VOID 90,715 0.341

20 SIKH 83,968 0.670  43 ENGLISH 2,876,980 0.249

21 SRI LANKAN 39,269 0.665  44 WELSH 222,429 0.206

22 BANGLADESHI 72,829 0.644  45 SCOTTISH 323,847 0.188

23 TURKISH 34,359 0.620  46 IRISH 414,038 0.180
 
Table 8.3: Index of Dissimilarity (ID) by CEL Subgroups in London at Output Area level 
ID; Index of Dissimilarity (Duncan and Duncan, 1955), Rank; Rank ordered by ID in descending 
order. The table only lists the most frequent 46 CEL Subgroups (those with a total population size in 
London greater than 3,000 people) ranked by the index of dissimilarity (ID). The total population size 
of each CEL Subgroup in London is also listed. See text for explanation of ‘International’, ‘Void’ and 
‘Unknown Names’ categories. 
 

Nevertheless, this finding is at odds with the consensus in the literature stating that 

ID index is independent of the groups’ size (Massey and Denton, 1988) (Simpson, 

2004). However, it is also known that the index of dissimilarity is dependent on the 

number of areas in which a city is divided (Voas and Williamson, 2000), especially 

‘where the group numbers are small or the areal grid is very finely drawn’ (Peach, 

1996a: 218). This seems to be the factor most affecting the relationship shown in this 

analysis, since there are 24,100 OAs in London and the total size of most of the 
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groups in London are either below this figure or just above it, and hence very 

difficult that a group would be evenly spread across all of them. 
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Figure 8.1: Scatterplot of CEL Subgroups Index of Dissimilarity (ID) at Output Area level vs. 
their total population size in London 
This scatterplot only includes the most frequent 46 CEL Subgroups with a total population size in 
London greater than 3,000 people. The Index of Dissimilarity (Duncan and Duncan, 1955) calculated 
at Output Area level is represented on the vertical axis and the total population size of the CEL 
Subgroup in London on the horizontal axis. A trend line between the points is plotted using a linear 
fit, the R2 of which is 0.805, demonstrating the relationship between segregation index and population 
size. 
 

In any case, it is interesting to look at deviations from this relationship between 

group’s size and the dissimilarity index in Figure 8.1, which are also readily apparent 

in Table 8.3. It is striking to notice the position of the English CEL Subgroup, which 

according to its disproportionate size would be expected to be the least segregated 

group of all, while the other three co-British Isles CELs (Irish, Scottish and Welsh) 

are less segregated than the English group, as expected by their population sizes. 
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Other groups which are more segregated than expected by their population size are 

Hindi Indian, Pakistani, Sikh, Jewish, Iranian and Greek. 

 

Besides population size, another factor that ought to account for difference in the 

index of dissimilarity is the length of time since migration, since some ethnic groups 

have been longer established in Britain are likely to have lower residential 

segregation. To test this point, Figure 8.2 shows a scatterplot of the index of 

dissimilarity (ID) of 26 CEL Subgroups in London, against the average year of 

arrival in Britain of people born in countries associated with those CEL Subgroups. 

The year of arrival information corresponds only to current residents in the London 

Borough of Camden who have been born abroad, sourced from the General Practice 

register of Camden Primary Care Trust, a funding partner of this PhD research. A 

caveat to take into consideration is that both the ID index and the average year of 

arrival are drawn from different populations (respectively London and Camden) and 

from different ontologies of ethnicity (respectively name-based and country of birth). 

Despite this difference, Figure 8.2 shows that there is a positive relation between 

year of arrival and the index of dissimilarity, and although the linear regression R2 is 

0.336, it initially validates the hypothesis of length of residence as an additional 

factor, together with population size, explaining differences in the level of 

segregation between CEL Subgroups measured by the ID index. 
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Figure 8.2: Index of dissimilarity vs. average year of arrival in Britain 
This scatterplot shows on the vertical axis the index of dissimilarity of 26 CEL Subgroups in London, 
against the average year of arrival in Britain on the horizontal axis. The year of arrival information 
corresponds only to current residents in the London Borough of Camden who have been born abroad. 
Country of birth has been matched to their associated CEL Subgroup. Source: General Practice 
register, Camden Primary Care Trust. 
 

8.2.3. Exposure 

Exposure measures the degree of potential contact, or physical interaction, between 

two groups within geographic areas of a city, by virtue of sharing a common area of 

residence (Massey and Denton, 1988). The index of exposure most widely used is the 

index of isolation P* initially proposed by Skevy and Williams (1949), modified by 

Bell (1954) and popularised by Lieberson (1981). The version of the isolation index 

calculated here is xPx
*, which measures the probability of a member of ethnic group 

X entering into contact with a member of the same group within an area of residence, 

in this case an Output Area in London.  
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  (See Section 8.2.1 for explanation of variables) 

 

The name ‘index of isolation’ is rather unfortunate, since a high value of this index 

means a high probability of finding a member of the same ethnic group living in the 

same area, that is being ‘highly exposed’, but not necessarily that this group is 

isolated from itself or other groups in surrounding areas.  The results of the 

calculation of this index of isolation are shown in Table 8.4 following the same 

layout as described in Table 8.3.  

Rank      CEL Subgroup 
Total 
Pop. P*  Rank       CEL Subgroup 

Total 
Pop. P* 

1 ENGLISH 2,876,980 0.587  24 PAKISTANI KASHMIR 32,061 0.019 
2 SIKH 83,968 0.168  25 FRENCH 40,264 0.019 
3 BANGLADESHI 72,829 0.150  26 POLISH 33,270 0.018 
4 HINDI INDIAN 156,269 0.137  27 HINDI NOT INDIAN 12,643 0.016 
5 IRISH 414,038 0.093  28 SOMALIAN 20,376 0.015 
6 PAKISTANI 140,548 0.085  29 NORWEGIAN 24,927 0.014 
7 JEWISH 35,984 0.074  30 JAPANESE 3,469 0.013 
8 SCOTTISH 323,847 0.073  31 MUSLIM SOUTH ASIAN 11,380 0.013 
9 GREEK 61,296 0.062  32 CHINESE 8,874 0.013 

10 NIGERIAN 68,596 0.058  33 BLACK CARIBBEAN 11,554 0.013 
11 WELSH 222,429 0.052  34 SIERRA LEONIAN 3,854 0.012 
12 SRI LANKAN 39,269 0.046  35 SOUTH ASIAN OTHER 8,484 0.012 
13 TURKISH 34,359 0.033  36 IRANIAN 4,761 0.012 
14 VOID 90,715 0.030  37 BALKAN 9,035 0.012 
15 GHANAIAN 35,255 0.029  38 EUROPEAN OTHER 9,091 0.010 
16 ITALIAN 71,967 0.029  39 RUSSIAN 5,539 0.010 
17 VIETNAM 8,415 0.026  40 AFRICAN 4,879 0.010 
18 MUSLIM MIDDLE EAST 48,114 0.025  41 SWEDISH 5,155 0.010 
19 HONG KONGESE 35,609 0.025  42 UNKNOWN NAME 10,546 0.009 
20 INDIA NORTH 31,888 0.024  43 DANISH 4,592 0.009 
21 PORTUGUESE 44,780 0.023  44 DUTCH 5,477 0.009 
22 SPANISH 44,679 0.022  45 AFRIKAANS 3,036 0.008 
23 GERMAN 33,264 0.019  46 INTERNATIONAL 6,214 0.007 

 
Table 8.4: Index of Isolation (P*) by CEL Subgroups in London at Output Area level 
P*; Index of Isolation (Lieberson, 1981), Rank; Rank ordered by the P* index in descending order. 
The table only lists the most frequent 46 CEL Subgroups (those with a total population size in London 
greater than 3,000 people) ranked by the index of isolation (P*). The total population size of each 
CEL Subgroup in London is also listed. See text for explanation of ‘International’, ‘Void’ and 
‘Unknown Names’ categories. 
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As expected, the most exposed group by far is the English group, since it is the 

majority population and its members have the highest probability of meeting each 

other in the same Output Area of residence. The next three more exposed groups are; 

Sikh, Bangladeshi and Hindi Indian, which are the groups usually picked up by the 

segregation literature about London (see for example Brimicombe, 2007). This 

means that members of these three ethnic groups are more likely to find someone 

from their own ethnic group in the Output Areas where they live than of any other 

ethnic minority. Furthermore, the fact that the analysis performed here, that uses 

name-based ethnicity from electoral registration records, gives such a similar result 

to the findings of other researchers using Census data, is in a sense another way of 

validating the methodology presented in this thesis. 

 

The index of isolation is by definition correlated with the size of the group, in this 

case positively correlated, however not as much as the index of dissimilarity. The 

scatterplot in Figure 8.3 shows this relationship between P* and population size, but 

the linear regression R2 is 0.517 – suggesting a much weaker over-all fit than that of 

the index of dissimilarity (R2 is 0.805). Apart from the three CEL Subgroups already 

mentioned (Sikh, Bangladeshi and Hindi Indian), there are some others that have 

strikingly high values of P* relative to what might be expected given their population 

size. These include Jewish, Vietnamese, Japanese and Swedish CEL Subgroups. On 

the other hand, CEL Subgroups which are less exposed than might be expected given 

their population sizes are the Irish, Scottish, Welsh, Ghanaian, Muslim (Middle 

East), Spanish, and Portuguese. 
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Figure 8.3: Scatterplot of CEL Subgroups Index of Isolation (P*) at Output Area level vs. their 
total population size in London 
This scatterplot only includes the most frequent 46 CEL Subgroups, each with a total population size 
in London greater than 3,000 people. The ‘English’ CEL Subgroup is an outlier and falls outside the 
plotting area: it has been omitted from the plot for ease of visual interpretation. The Index of Isolation 
P* (Lieberson, 1981) calculated at Output Area level is represented on the vertical axis and the total 
population size of the CEL Subgroup in London on the horizontal axis. A trend line between the 
points is plotted using a linear fit, the R2 of which is 0.517, showing a quite a strong relationship 
between P* and population size. 
 

8.2.4. Concentration 

Concentration refers to the relative amount of physical space occupied by a group in 

a city. The index of absolute concentration ACO was proposed by Massey and 

Denton (1988) (see formula in Section 8.2), and computes the total area inhabited by 

a group, and compares this figure with the minimum and maximum spatial 

concentration that could be inhabited by the group in a given city or area.  
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ACO  (Massey and Denton, 1988) 

(Spatial units are sorted by area size in ascending order. See Section 8.2.1 for 

explanation of variables.) 

 

The maximum spatial concentration is reached when all members of the group live in 

the smallest space possible (i.e. in just one or very few of the smallest spatial units), 

while the minimum spatial concentration correspond to a situation where the 

members of the group live in the largest spatial units in the city. The ACO index 

varies from 0 to 1, where a score of 1 indicates that the group experiences the 

maximum spatial concentration possible (all members live in the smallest spatial 

units), and a score of 0 the minimum spatial concentration possible, in other words, 

the maximum deconcentration possible. 

 

The results of this index are rather deceptive, since all CEL Subgroups obtain very 

similar and high values of ACO, except for the British Isles CELs (English, Welsh, 

Scottish, Irish). If these four CEL Subgroups are excluded (which respectively have 

ACO values of 0.396, 0.900, 0.882, and 0.867), the mean ACO for the remaining 42 

Subgroups is 0.977 with a standard deviation of 0.015. This result might suggest that 

they all present a highly concentrated spatial pattern, but in reality it is an artefact of 

applying the ACO index to a large number of fine ethnic groups that are spread over 

a large number of small areas. The ACO index was designed to measure binary 

situations in US cities between a white majority and a Non-White minority, at census 

tract level (average size 4,000 people), where in this example there are 66 groups and 
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spatial units which average 285 people (OAs). Furthermore, OAs are by definition 

homogeneous in population size, and hence large differences between the densities 

of the areas studied, in an urban area like London, are highly unlikely. No other 

alternative spatial concentration index is available in the literature that is designed 

for such situations. 

 

8.2.5. Clustering (I): the sociological approach 

The clustering dimension measures the degree to which members of a group inhabit 

areas which are contiguous and closely packed, that is, if their geographical 

distribution presents a clustered pattern. There are several measures of clustering in 

the geographical literature, which are extensions to the ‘checkerboard problem’ 

(Geary, 1954), but in the first instance an index from the sociological literature will 

be computed here, namely the absolute clustering index (ACL) (Massey and Denton, 

1988). 
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(See Section 8.2.1 for explanation of variables) 

 

The absolute clustering index ACL (Massey and Denton, 1988), expresses the 

average number of members of a group in neighbouring spatial units as a proportion 

of the total population in those neighbouring units (see formula in Section 8.2). It 

varies from a minimum of 0 (low clustering) to a maximum that approaches but 

never equals 1 (high clustering).  
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Rnk   CEL Subgroup 
Total 
Pop. ACL  Rnk   CEL Subgroup 

Total 
Pop. ACL 

1 ENGLISH 2,876,980 0.235  24 POLISH 33,270 0.006 
2 SIKH 83,968 0.149  25 PAKISTANI KASHMIR 32,061 0.006 
3 HINDI INDIAN 156,269 0.106  26 FRENCH 40,264 0.006 
4 BANGLADESHI 72,829 0.106  27 HINDI NOT INDIAN 12,643 0.005 
5 PAKISTANI 140,548 0.055  28 SOMALIAN 20,376 0.005 
6 JEWISH 35,984 0.052  29 JAPANESE 3,469 0.004 
7 GREEK 61,296 0.042  30 SOUTH ASIAN OTHER 8,484 0.004 
8 NIGERIAN 68,596 0.028  31 BLACK CARIBBEAN 11,554 0.003 
9 SRI LANKAN 39,269 0.028  32 SIERRA LEONIAN 3,854 0.003 

10 IRISH 414,038 0.021  33 MUSLIM SOUTH ASIAN 11,380 0.003 
11 SCOTTISH 323,847 0.016  34 BALKAN 9,035 0.003 
12 TURKISH 34,359 0.016  35 CHINESE 8,874 0.003 
13 INDIA NORTH 31,888 0.012  36 IRANIAN 4,761 0.003 
14 GHANAIAN 35,255 0.011  37 NORWEGIAN 24,927 0.003 
15 WELSH 222,429 0.010  38 SWEDISH 5,155 0.003 
16 VIETNAM 8,415 0.010  39 AFRICAN 4,879 0.002 
17 VOID 90,715 0.010  40 RUSSIAN 5,539 0.002 
18 ITALIAN 71,967 0.009  41 EUROPEAN OTHER 9,091 0.002 
19 MUSLIM MIDDLE EAST 48,114 0.008  42 DANISH 4,592 0.002 
20 PORTUGUESE 44,780 0.008  43 AFRIKAANS 3,036 0.002 
21 HONG KONGESE 35,609 0.007  44 UNKNOWN NAME 10,546 0.002 
22 GERMAN 33,264 0.007  45 DUTCH 5,477 0.002 
23 SPANISH 44,679 0.007  46 INTERNATIONAL 6,214 0.001 

 
Table 8.5: Absolute Clustering Index (ACL) by CEL Subgroups in London at Output Area level 
ACL; Absolute Clustering Index (ACL) (Massey and Denton, 1988), Rnk; Rank ordered by ACL in 
descending order. The table only lists the most frequent 46 CEL Subgroups (those with a total 
population size in London greater than 3,000 people) ranked by ACL. The total population size of 
each CEL Subgroup in London is also listed. See text for explanation of ‘International’, ‘Void’ and 
‘Unknown Names’ categories. 
 
 

The results for the calculation of the ACL index in London are shown in Table 8.5, 

which only lists the most frequent 46 CEL Subgroups. The most clustered group is 

again the English CEL, since it has most neighbours of its own group, followed by 

the Sikh, Hindi Indian, and Bangladeshi groups. The spatial clustering of these three 

groups has been persistently identified in the recent segregation literature on London 

(Brimicombe, 2007; Peach, 2006). Following these groups in the clustering ranking 

are the Jewish and Greek groups. Again the Jewish case has been repeatedly reported 

in the literature  (Brimicombe, 2007; Peach, 2006), but the Greek group has not been 

studied before since it is not measured separately from the ‘White Other’ ethnic 
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group or the Christian religion in the UK Census. The Greek group has already been 

highlighted as having a segregated pattern in the indices previously described, and 

presents an example of the advantages of using a name-based classification in 

segregation studies, which will be further discussed later in this section. Amongst the 

less clustered groups, there are several Nordic CELs (Norwegian, Swedish, and 

Danish), some European small groups (Dutch, Russian, ‘European Other’), African 

and Afrikaans, and finally the Unknown Name and International Names groups, 

which is reassuring to find at the bottom of the clustering table since they might be 

expected to share no common characteristics. 

 

The relationship between ACL and group population size is still positive but very 

weak, as can be seen in the scatterplot between the two variables presented in Figure 

8.4. The R2 of the linear regression is 0.418, a consequence of the wide range of 

outliers in this linear relationship. However, this relationship seems to hold true for 

CEL Subgroups above a threshold level of a total population size of approximately 

60,000 people, while below it, the ACL index barely grows with population size 

(bottom left part of Figure 8.4). This is a consequence of the population size effect 

discussed above, since below the 60,000 threshold there are fewer than 2.5 people 

per Output Area on average, and the mechanics of the indices applied here were not 

designed for such small concentrations of people per unit area. 
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Figure 8.4: Scatterplot of CEL Subgroups’ Absolute Clustering Index (ACL) at Output Area 
level vs. their total population size in London 
This scatterplot only includes the most frequent 46 CEL Subgroups with a total population size in 
London greater than 3,000 people. The ‘English’ CEL Subgroup is an outlier and falls outside the 
plotting area. It has been omitted from the plot for ease of visual interpretation. The Absolute 
Clustering Index (ACL) (Massey and Denton, 1988), calculated at Output Area level, is represented 
on the vertical axis and the total population size of the CEL Subgroup in London on the horizontal 
axis. A trend line between the points is plotted using a linear fit, the R2 of which is 0.418. 
 

8.3. Additional Dimensions and Approaches to Measuring 

Residential Segregation 

In the previous section the most commonly used indices to measure four of the five 

traditional dimensions of residential segregation (Massey and Denton, 1988) were 

reviewed and applied to the CEL-classified Electoral Register for London. In this 

section two additional aspects of residential segregation will be separately measured: 

spatial clustering of ethnic groups using a geographical approach, and the degree of 
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diversity of areas, using an index of entropy. These two measures complement the 

four indices already presented since they represent aspects not adequately reflected 

by the previous measures, more precisely; measures are not global/spatially invariant 

across the study area, and that focus on the over-all ethnicity composition of each 

neighbourhood rather than separately on each particular ethnic group. 

8.3.1. Clustering (II): the geographical approach 

An alternative view of segregation can be achieved by using spatial autocorrelation 

statistics, which measure the tendency of similar values to cluster together in space 

(Goodchild, 1986). Therefore, it seems pertinent to apply such measures to study 

residential segregation from a geographical analysis perspective, as has been 

proposed by some authors (Owen, 2006). The most widely accepted measures of 

spatial autocorrelation are Moran’s I and Geary’s C, which at their simplest are 

global measures providing a value for the whole study area (Fotheringham et al, 

2000). A spatially variable measure of autocorrelation is preferred here to measure 

differences between areas. One particular instance are local indicators of spatial 

autocorrelation (LISA) (Anselin, 1995) such as the Local Moran statistic: 

   ∑=
j

jijii  zwzI       (Anselin, 1995) 

where the observations zi and zj are given in standard deviations from the mean 

[ )();( XXzXXz jjii −=−= ], and the summation over j is such that only 

neighbouring values are included. Neighbourhood is defined by a weight matrix wij 

representing contiguity, which in this application represents binary adjacency (1 

adjacent and 0 non-adjacent) between the ith and jth points (0 or 1) – other definitions 

of neighbourhood may also be accommodated.  
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The Local Moran statistic was calculated for the OAs in London and the 66 CEL 

Subgroups, using GeoDa, an exploratory spatial data analysis (ESDA) software tool 

(Anselin and Regents of the University of Illinois, 2004). The weights matrix was 

defined using a Rook adjacency criterion taking into account both first and second 

order neighbourhoods (a window of area’s immediate areal units comprising 

immediately adjacent neighbours plus zones adjacent to these neighbours).  

 

The purpose of using the Local Moran’s statistic is to investigate and identify local 

clusters of spatial autocorrelation. In the analysis performed here the purpose is to 

identify the areas within London of highest and lowest clustering of each CEL 

Subgroup. While the value of Moran’s I varies between -1 and 1, indicating the range 

from strong negative autocorrelation to strong positive autocorrelation (in a similar 

fashion to the correlation coefficient), the value range of the Local Moran has no 

particular bounds. Values range from a negative figure to a positive figure for each 

spatial unit, indicating strong negative autocorrelation to strong positive 

autocorrelation. However, the amount of correlation is given in relative terms 

denoting variation in spatial autocorrelation at local level, and its final value depends 

on the immediate neighbouring values whose weighted average difference from the 

mean is built into the final value. Therefore the most appropriate scale to interpret the 

final LISA results is to create a relative classification of each areas’ local 

autocorrelation.  In the analysis reported here, the results of the Local Moran I 

statistic were represented in a choropleth map for the most significant CEL 

Subgroups (p values < 0.05) classifying all output areas into five types of spatial 

correlation, following Anselin (2004): 
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- High-high; output areas with high proportions of people from the CEL 

Subgroup next to areas with similar values. 

- Low-low; output areas with low proportions of people from the CEL 

Subgroup next to areas also with similar values. 

- High-low; output areas with high proportions of people from the CEL 

Subgroup next to areas with low values. 

- Low-high; output areas with low proportions of people from the CEL 

Subgroup next to areas with high values. 

- No clustering; output areas with no significant LISA, and thus whose p-

values > 0.05 

In this scale, ‘high’ values  are statistically significant (p < 0.05) and positive LISAs 

while low values are negative and significant. The high-high and low-low adjacency 

types suggest clustering of similar values, whereas the high-low and low-high 

locations indicate spatial outliers (i.e. they represent departures from uniformity in 

spatial distribution, hence areal differentiation at the scale of the mapped areal units). 

22 out of the total 66 CEL Subgroups were selected representing the third with a 

larger number of high clustering Output Areas in London. The 22 maps of the five 

types of local clustering of LISA are shown in Figure 8.5, Figure 8.6, Figure 8.7 and 

Figure 8.8. These maps use the following colour scheme: bright red for the high-high 

association, bright blue for low-low, light blue-purple for low-high, light red-pink for 

high-low, and white for areas with no clustering. 
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Figure 8.5: Maps of local indicators of spatial autocorrelation (LISA): Turkish, Greek, 
Nigerian, Somali, Portuguese and Spanish CELs 
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Figure 8.6: Maps of local indicators of spatial autocorrelation (LISA): Polish, Russian, Italian, 
Japanese, Iranian and Muslim Middle East CELs 
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Figure 8.7: Maps of local indicators of spatial autocorrelation (LISA): Bangladeshi, Pakistani, 
Hindu Indian, Hindu Not Indian, Sikh and Jewish CELs 
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Figure 8.8: Maps of local indicators of spatial autocorrelation (LISA): English, Welsh, Scottish 
and Irish CELs 

 
 

These 22 maps show the unique patterns of geographical distribution of these CEL 

Subgroups, summarised by the areas where each of them is most or least clustered. A 

summary of some of the most evident features of the clustering patterns will be 

commented here, stressing the value of the name-based technique adopted here as 

opposed to the results that would have been obtained using just Census ethnicity 

data. 
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Figure 8.5 and Figure 8.6 show twelve clustering maps for ethnic groups that are not 

separately reported in the UK 2001 Census ethnicity classification; Turkish, Greek, 

Nigerian, Somali, Portuguese, Spanish, Polish, Russian, Italian, Japanese, Iranian, 

and Muslim Middle East. To the author’s knowledge this is the first time that these 

fine groups have been mapped in London using a universal register, such as the 

Electoral Register, and a broad definition of ethnic origin, as opposed to country of 

birth data which is common in the literature (Peach, 1999a). These maps show the 

unique spatial clustering patterns of each CEL, in which each group seems to occupy 

a distinct set of areas within the city. However, of these twelve groups, eleven appear 

to cluster in an area comprising approximately a third of the Capital’s total area, in 

what constitutes the Northwest third of the whole city, from the North-Central to the 

Southwest bounds of the city (approximately postal areas N, NW, WC, W, WC, EC 

and the west of SW). The exception is the Nigerian CEL which is predominantly 

clustered in the East of London on both sides of the river, following historic 

settlement areas of Black Africans in London. 

 

It is surprising to notice the degree of overlap between areas of high clustering of 

Turkish and Greek names in North London, perhaps indicative of  the cultural 

closeness of these groups when they live abroad despite their historical grievances at 

home. However, Greeks are more distributed towards the northern periphery of 

London, especially in and around the Boroughs of Enfield and Barnet, while Turks 

are more concentrated in Inner London, especially in Hackney and Haringey, sharing 

Enfield with Greeks. 
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Output Areas where Somali names are most clustered are found in several parts of 

the city, probably because of the sparse availability of public housing into which this 

community was originally accommodated following the refugee arrivals from the 

Horn of Africa in the early 1990s. A bigger cluster in Haringey and Enfield can also 

be discerned. 

 

Portuguese and Spanish names clusters share a clear common pattern of settlement in 

West London that spreads throughout the Boroughs of Brent, Ealing, Chelsea and 

Kensington, Westminster, and Lewisham. This reveals the commonalities in cultures 

and preferences between Spanish speaking and Portuguese speaking communities in 

London, which comprise people originating in over 25 countries in Latin America, 

the Iberian Peninsula and some African countries. The spread over very affluent and 

less affluent areas of inner west London suggests a diverse range of socio-economic 

backgrounds of members of these CEL groups. Further analysis of these differences 

using postcode unit level names data in combination with geodemographic 

classifications would shed light upon these local differences. 

 

The Polish CEL (Figure 8.6) is highly clustered in the Boroughs of Ealing and Barnet 

with some other smaller clusters in West and Southwest London. The version of the 

Electoral Register used for this analysis is from 2004, and hence the pattern revealed 

here is three years old at the time of finishing this thesis. However, it is known that 

the Polish ethnic group has been one of the fastest growing in Britain since Poland 

joined the EU in May 2004, with immigration from Poland from May 2004 to March 

2007 estimated in 294,000 workers plus their families (Border and Immigration 

Agency et al, 2007). Therefore, it would be very interesting to repeat this clustering 
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exercise with a current version of the Electoral Register or even better with a patient 

register, in order to see how these geographical patterns have changed in London. As 

regards the clustering of Russian names, this group is much smaller than the Polish 

group and is concentrated in a number of hotspots scattered in inner Northwest 

London. 

 

Italian names are clustered in several Boroughs in Central and North London, 

following a pattern of historic settlement of Italian communities in Central London 

and in Enfield. Clustering of Japanese and Iranian names follows a surprisingly 

similar pattern; concentrated in Westminster, Chelsea and Kensington, west of 

Camden, Barnet and east of Ealing. This similarity could be explained by the relative 

wealth of the areas where members of these two communities live. Finally, Muslim 

names associated with the Middle East, that is, generally with Arab language 

patterns, are highly concentrated across several Boroughs in the West of London. 

 

The six maps in Figure 8.7 represent the CEL Subgroups associated with the most 

commonly reported ethnic minorities in the literature; Bangladeshi, Pakistani, Hindu 

Indian and Hindu Not Indian, Sikh, and Jewish CEL Subgroups. The local clusters of 

each of these groups correspond to the areas repeatedly identified in the literature 

using Census derived data (Johnston et al, 2002a; Owen, 2006; Peach, 2006). It is 

interesting to notice the way in which Pakistanis share common neighbourhoods with 

the Hindu Indian and Bangladeshi neighbourhoods that are themselves very 

segregated from each other. Given that these are ethnic group categories that are 

reported in the Census, and that were compared with the CEL classification through 
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the validation exercise described in Chapter 7, the results of both methodologies tell 

a very similar story in London.  

 

Figure 8.8 includes the LISA maps of the British Isles CELs; English, Welsh, 

Scottish and Irish, whose degree of segregation is rarely analysed by the literature. 

The areas of high clustering of the English CEL are the reverse of the combined 

maps shown so far for non-British groups, and are mainly concentrated in the 

southeast and outer rim of London. This map clearly shows the result of a sort of 

‘centrifugal force’ that hollows out Inner London of English names and clusters them 

in the outer suburbs, especially in the southeast. It is also interesting to notice 

specific clusters of Welsh and Scottish names in the west and southwest of London. 

The analysis of these last three ethnic groups constitutes an innovative type of 

analysis and findings since this information is not collected in official statistics. It 

could be argued  perhaps that the Scots immediately north of the river Thames could 

be recent north-south migrants in rental housing areas, and some of those south of the 

river could just be Black Caribbeans with Scottish surnames (which are known to be 

very common in the Caribbean). The Welsh pattern seems to mirror the English 

clusters, and could be more dispersed because of small numbers.  

 

Finally, the map of Irish clustering indicates areas of settlement of Irish migrants that 

might mirror Old Commonwealth immigration patterns in London, suggesting that 

there are still some less well established migrants from Ireland in London. However, 

as it was found in the validation exercise described in Chapter 7, Irish names were 

one of the two ethnic groups, together with Black Caribbeans, where name derived 

ethnicity vs. Census ethnicity presented a larger degree of mistmatch.This was 
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explained then by a difference in the perceptions of Irish identity between 

generations of people with Irish names. One aspect that is worth investigating in the 

future is comparing the areas of these two types of Irish identity self-identification to 

study the differentials between their demographic and migration profiles. 

Furthermore, anticipating a question about national identity in the 2011 Census, a 

similar type of future analysis for the rest of the British Isles CELs will be very 

illustrative of collective identity formation processes at local level. 

8.3.2. Diversity 

Beyond the five dimensions of segregation analysed in the previous section, and as 

was discussed in Section 2.2, it has been recognised that there are two other aspects 

related to the measurement of segregation; movement (Simpson, 2007), which 

analyses changes in segregation over time taking into account migration and 

demographic structure, and diversity (based on Edward Simpson, 1949), which 

measures how close a set of groups are to equal numbers within an area.  

 

Since no temporal change data on names were available, the measurement of 

movement could not be calculated in this exercise (although this is an interesting 

avenue for future research in this direction). However, the measurement of diversity 

was added to the four indices previously described. An index of entropy or diversity, 

derived from the ecological literature (Simpson, 1949), was calculated to measure the 

level diversity of each Output Area, H, expressed by the number and size of ethnic 

groups as per the following formula (Thiel and Finezza, 1971): 
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where: 

n= number of groups 

Pij= Population of group i in spatial unit j 

Pj= Sum of population of all groups 1 to n in spatial unit j 

 

This index is sometimes known as the Multigroup Entropy Index, the Information 

Theory Index, or Theil’s H. The values of H vary from 0 (no diversity) to 1 

(maximum diversity), and there is single value for each of the areas, in this case each 

OA in London. The frequency distribution of the H index across all OAs, calculated 

in this analysis, is summarised in a histogram shown in Figure 8.9 that shows a near-

to-normal shape of the frequency distribution, which is slightly negatively skewed 

(its skewness is -0.208). However, when the same results are mapped, as shown in 

Figure 8.10, systematic differences in OA diversity become very apparent. The map 

in Figure 8.10 confirms the aggregated results of the clustering processes unveiled by 

the previous maps for each individual CEL Subgroup, although here the number of 

groups rather than group size is driving the values of the diversity index. The areas of 

higher diversity are predominantly found in the northern half of London, with the 

Boroughs of Brent, Newham and Westminster leading the diversity league measured 

at OA level. 

 



 
Cha

 

Figure 8.9: Frequency distribution of the H entropy index by OA in London 
The histogram shows the frequency distribution of the H entropy index of diversity (Thiel and 
Finezza, 1971) by output area level in London, with each count representing one OA. A Normal 
distribution with mean H = 0.4 is included for reference purposes.  

pter 8 - Applications: Residential Segregation and Ethnic Inequalities 334 

0.800.600.400.200.00

H Entropy Index

Fr
eq

ue
nc

y 
(N

r o
f O

A
s)

1,000

800

600

400

200

0

 



 C
hapter 8 –R

esidential S
egregation and E

thnic Inequalities 
 

 
        335 Figure 8.10: Map of ethnic diversity in London at Output Area level, measured by the Multigroup Entropy Index (H) 
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8.4. Discussion of Residential Segregation Results 

8.4.1. Scale effect 

As a result of the analysis carried out in the previous sections, the issue of the scale 

dependency of the indices has emerged in the calculation of most of them. The 

purpose of this section is to investigate the sensitivity of the main measures of 

segregation to changes in the geographical scale of measurement as well as to 

changes in the level of aggregation of the ethnic groups analysed. The index of 

dissimilarity (ID) is used here since it is deemed to be independent of the relative 

size of the ethnic group (Massey and Denton, 1988; Peach, 1996a), although it is 

influenced by the number of areas and the fineness of the grid used (Voas and 

Williamson, 2000). The objective is to compare the effect that changes in 

geographical scale and ethnic group unit definition have on the resulting ID index, 

using both the CEL dataset and the 2001 UK Census ethnicity data. The different 

geographical scales calculated were Output Area (OA), Lower Super Output Area 

(LSOA), Ward and London Borough levels.  A summary of the number and sizes of 

geographical units at each of these scales is shown in Table 8.6

OA LSOA Ward Borough

Average Persons / Geographical Unit 285 1,443 10,931 208,011

Number of Geographical Units 24,100 4,758 628 33

 
Table 8.6: Summary of geographic units’ characteristics 

 

 

Firstly, the 66 CEL Subgroups were aggregated into a set of 17 aggregations of CEL 

groups in order to analyse the effect of a phenomena that could be termed the 

‘Modifiable Ethnic Unit Problem’ (MEUP), drawing a parallelism with the 
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‘Modifiable Areal Unit Problem’ (MAUP) (Openshaw, 1984). Furthermore, this 

scale of analysis makes the CEL results more comparable with the Census dataset. 

These CEL groups were defined as follows; British (including English, Scottish and 

Welsh), Irish, Eastern European (including ex-communist countries), Spanish-

Portuguese, Western Europe (the rest of Europe not included in the previous groups), 

Black Caribbean, Somali, African (including all other Black African CELs), Greek 

or Greek Cypriot, Jewish, Chinese, Japanese, Bangladeshi, Pakistani, Hindu (all 

Hindu CELs), Sri Lankan, Sikh, and Other Muslim (Muslim CELs not included in 

the rest). Calculations of the index of dissimilarity (ID) were made for each of these 

17 CEL groups at each of the four geographical levels Output Area (OA), Lower 

Super Output Area (LSOA), Ward and London Borough.  

 

The ID index was also calculated for the Census 2001 ethnic groups (Key Statistics 

KS06 table) for the 33 London Boroughs at Output Area (OA) level (comprising 

7,158,904 Census respondents and 24,100 OAs), and higher geographies (LSOA, 

Ward and Borough). The detailed characteristics of this Census dataset were 

described when explaining the evaluation of the CEL methodology in Section 7.4 

and repetition is avoided here. The Census ethnicity dataset is the main source of 

ethnicity information used in the literature to calculate indices of segregation, so here 

the intention is to compare it with the results using the CEL classification in order to 

highlight the advantages of the methodology presented in this thesis. 

 

The ‘radar’ charts shown in Figure 8.11 and Figure 8.12 represent a graphical 

comparison of the ID index for both the Census and the CEL datasets at each of the 

four geographical scales; OA, LSOA, Ward and Borough. As expected, the level of 
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segregation increases as the size of the geographical unit is reduced (Wong, 2004), 

although the strength of this scale effect shows substantial variations by ethnic group. 

If segregation were to increase with decrease in the size of geographical units in the 

same way for each of the groups, all of the lines in Figure 8.11 and Figure 8.12 

would look like parallel concentric rings. However, in the Census-based Figure 8.11, 

all the ‘Mixed’ ethnic groups are much more segregated at OA than at LSOA level. 

A similar difference is noticeable in the CEL-based Figure 8.12, for the Eastern 

European, Pakistani, Black Caribbean, and Irish CEL groups. Therefore, these 

groups show processes of more pronounced segregation at smaller geographical 

units. 

 

Another aspect worth mentioning is the relatively homogeneity of values in the index 

of dissimilarity measured at the coarser scales, i.e. the Ward and the Borough levels. 

These present very smooth profiles of segregation across ethnic groups. This finding 

is surprising since these are the geographical scales at which most of the segregation 

studies in Britain are based (Johnston et al, 2002a; Peach, 2006; Simpson, 2005a). 

 

Moreover, the advantage of the much finer CEL categories is apparent in Figure 

8.12, which reveals the differential patterns of residential segregation between finely 

defined ethnic groups. For example, the Greek group’s index of dissimilarity at OA 

level is nearly double (0.55) that of Western Europeans (0.3). In general the CEL 

dataset produces a more segregated pattern than the Census for the same areal units, 

because of its much finer ethnic group categories and the consequent more intricate 

representation of underlying segregation patterns. 
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Figure 8.11: Index of dissimilarity of the Census dataset at four different geographical scales 
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Figure 8.12: Index of dissimilarity of the CEL dataset at four different geographical scales 
Both figures represent the index of dissimilarity ID (Duncan and Duncan, 1955)calculated for the 
Census (Figure 8.11) and CEL (Figure 8.12) datasets at four different geographical scales. The ethnic 
categories are ordered by their average ID value, showing increasing segregation in a clockwise 
direction from ‘12 o’clock’. 
 

Furthermore, changes in the ontology of ethnicity can have a significant effect in 

segregation levels. In Figure 8.12 the newly created CEL aggregations of Western 

and Eastern Europe show a distinct segregation pattern at OA level, with Eastern 
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European CELs slightly more segregated (ID = 0.40) than Western European ones 

(ID= 0.30). This presents a distinct pattern that might be explicable by the 

differential history of these groups in terms of settlement and socioeconomic profile. 

In another example, while the Census-based ‘Black African’ in Figure 8.11 presents 

an ID index of 0.43 at OA level, the CEL-based Somali group in Figure 8.12 shows a 

higher ID index of 0.66, denoting an increase in segregation that arises from use of a 

more detailed ontology of ethnicity. 

 

However, when the effects of the two last aspects of changes of scale are compared; 

aggregations of geographical units (MAUP) and aggregation of ethnic groups 

(MEUP), it seems that having more information about CEL group is as much or even 

more important than having greater spatial detail. This is illustrated with an example 

in Table 8.7, that shows the effect on the Index of Dissimilarity (ID) of changing 

between ontologies of ethnicity (MEUP); Census based ‘Black African’ and CEL 

based ‘Somali’, vs. changing the areal aggregation of the calculation (MAUP), at 

Borough (district), Ward, Lower Super Output Area (LSOA), and Output Area (OA). 

The MAUP index compares within each ontology of ethnicity the ID value at each 

geographical scale with the one at OA level (=100). The MEUP index compares the 

ID of the Somali group with the ID of the Black African (=100) at each of the 

geographical scales. The conclusion is that while the MAUP effect introduces loss of 

information (MAUP index) at each scale of aggregation, the relative difference 

between the two ontologies of ethnicity remains practically constant (MEUP index), 

therefore corroborating the existence of the MEUP effect. 
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  Borough Ward LSOA OA 

ID 0.26 0.35 0.39 0.43 Black 
African 

(Census) 
MAUP index 
OA=100 60 80 90 100 

ID 0.37 0.48 0.53 0.66 Somali 
(CEL) MAUP index 

OA=100 56 73 80 100 

MEUP index      
(ID Somali / ID Black African * 100) 141 139 136 153 

 
Table 8.7: Effect of MAUP and MEUP on Black African and Somali Index of Dissimilarity in 
London 
ID; Index of Dissimilarity, MAUP; Modifiable Areal Unit Problem, MEUP; Modifiable Ethnic Unit 
Problem.  
The table shows the effect on the Index of Dissimilarity (ID) of changing between ontologies of 
ethnicity (MEUP); Census based ‘Black African’ and CEL based ‘Somali’, vs. changing the areal 
aggregation of the calculation (MAUP), at Borough (district), Ward, Lower Super Output Area 
(LSOA), and Output Area (OA). The MAUP index compares within each ontology of ethnicity the ID 
value at each geographical scale with the one at OA level (=100). The MEUP index compares the ID 
of the Somali group with the ID of the Black African (=100) at each of the geographical scales. The 
conclusion is that while the MAUP effect introduces loss of information (MAUP index) at each scale 
of aggregation, the relative difference between the two ontologies of ethnicity remains practically 
constant (MEUP index), therefore corroborating the existence of the MEUP effect. 
 

Taken together, there are three inter-related aspects to these observations: the size 

and number of areal units, the fineness of the ethnic group units, and the ontology of 

ethnicity (self-reported vs. name-based). All have an impact in the level of 

segregation that is reported for a particular group. In other words, the granularity and 

ontology of the units upon which segregation indices are calculated have an 

important effect on the results, as it has been demonstrated through the comparison 

presented in Figure 8.11, Figure 8.12 and Table 8.7. It is envisaged that the name-

based methodology developed in this thesis will allow future analysts to re-aggregate 

ethnic groups and geographical units in various flexible ways in order to perform 

scale-sensitivity analysis of MAUP and MEUP of these indices. 
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8.4.2. Summary and discussion of overall residential segregation results 

The analysis of residential segregation in London presented in the previous three 

sections has produced a series of interesting results that will be summarised here. 

The results of the indices calculated here for each CEL Subgroup and the four 

dimensions of evenness, exposure, concentration, and clustering, are summarised in 

Table 8.8. In order to rank all of the 46 Subgroups evaluated here from high to low 

overall segregation an average composite index has been created as follows: 

Average Composite Index = (ID +P* + ACO + ACL) /4 

where ID= Index of Dissimilarity, P*= Index of Isolation, ACO= Absolute 

Concentration Index and ACL= Absolute Clustering Index. Standardisation of the 

four indices was not performed since they are bounded by a 0 to 1 scale, for ease of 

overall interpretation. However, as it will be seen the ‘English’ groups is an outlier in 

most indices and this could have an impact in the final result. 

 

Table 8.8 summarises the value and rank of each index of segregation for each of the 

four dimensions, alongside the composite index summarising them. The table is 

ordered by this composite index from high to low overall segregation. It is interesting 

to note at first sight that the final rank of this composite index is not solely 

determined by population size. It could be argued that the averaging of the indices is 

smoothing the population size effect in some of the individual indices discussed in 

the previous sections. 

 

According to this composite index, the ten most segregated groups are: Sikh, Sierra 

Leonean, Japanese, Afrikaans, Vietnamese, Iranian, Bangladeshi, African, Danish, 

and Swedish. Amongst them, only the Sikh and Bangladeshi have previously been 
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identified as being amongst the most segregated groups in the Capital (Brimicombe, 

2007; Peach, 2006), in practice because they are easily identifiable ethno-religious 

groups in the Census. Amongst the others, two types of segregation might be taking 

place at the Output Area level: more affluent or highly educated groups seeking 

exclusive areas of residence (Japanese, Danish, Swedish, Afrikaans and Iranian); and 

more socio-economically constrained groups (Vietnamese, Sierra Leonean, and 

African) being constrained to a restricted range of neighbourhoods. 

 

At the opposite end of the segregation scale the following groups present lower 

overall segregation at Output Area level; Muslim Middle East, Portuguese, English, 

Spanish, French, Italian, Void, Welsh, Irish, Scottish. Amongst these groups, and as 

has been reported throughout the chapter, the British Isles CELs comprise the largest 

and least segregated groups in London (English, Welsh, Scottish, and Irish). The 

other major group that could be identified seems to be a set of southwest European 

CELs whose names are well established in the Capital and are more evenly 

distributed according to the four dimensions of segregation (Portuguese, Spanish, 

French and Italian). It is comforting to see the ‘Void’ category presenting low 

segregation, indicating that there is no direction or pattern in the errors found in the 

input data. 
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   Evenness Isolation Concentrtn Clustering 

Rank   CEL Subgroup Total Pop. ID Rnk P* 
Rn
k ACO Rnk ACL Rnk   

Avg. 
Composit

e Index 
1 SIKH 83,968 0.670 20 0.168 2 0.941 41 0.14 2 0.482
2 SIERRA LEONEAN 3,854 0.908 2 0.012 34 0.994 1 0.00

3
32 0.479

3 JAPANESE 3,469 0.905 3 0.013 30 0.990 8 0.00
4

29 0.478
4 AFRIKAANS 3,036 0.909 1 0.008 45 0.992 2 0.00

2
43 0.478

5 VIETNAMESE 8,415 0.862 7 0.026 17 0.990 5 0.01
0

16 0.472
6 IRANIAN 4,761 0.875 4 0.012 36 0.990 7 0.00

3
36 0.470

7 BANGLADESHI 72,829 0.644 22 0.150 3 0.973 27 0.10
6

4 0.469
8 AFRICAN 4,879 0.868 5 0.010 40 0.991 3 0.00

2
39 0.468

9 DANISH 4,592 0.864 6 0.009 43 0.989 10 0.00 42 0.466
10 SWEDISH 5,155 0.854 8 0.010 41 0.990 6 0.00

3
38 0.464

11 RUSSIAN 5,539 0.843 9 0.010 39 0.989 11 0.00
2

40 0.461
12 DUTCH 5,477 0.840 10 0.009 44 0.988 12 0.00

2
45 0.460

13 SOUTH ASIAN OTHER 8,484 0.788 12 0.012 35 0.987 15 0.00 30 0.448
14 CHINESE 8,874 0.787 13 0.013 32 0.987 16 0.00

3
35 0.447

15 INTERNATIONAL 6,214 0.789 11 0.007 46 0.991 4 0.00
1

46 0.447
16 BALKAN 9,035 0.774 14 0.012 37 0.988 13 0.00

3
34 0.444

17 EUROPEAN OTHER 9,091 0.761 15 0.010 38 0.985 17 0.00
2

41 0.440
18 HINDI NOT INDIAN 12,643 0.754 16 0.016 27 0.982 20 0.00 27 0.439
19 BLACK CARIBBEAN 11,554 0.739 17 0.013 33 0.989 9 0.00

3
31 0.436

20 HINDI INDIAN 156,269 0.573 29 0.137 4 0.926 42 0.10
6

3 0.436
21 MUSLIM SOUTH 

S
11,380 0.734 18 0.013 31 0.985 18 0.00 33 0.434

22 JEWISH 35,984 0.620 24 0.074 7 0.967 36 0.05
2

6 0.428
23 SRI LANKAN 39,269 0.665 21 0.046 12 0.973 30 0.02

8
9 0.428

24 UNKNOWN NAME 10,546 0.695 19 0.009 42 0.987 14 0.00
2

44 0.423
25 TURKISH 34,359 0.620 23 0.033 13 0.975 23 0.01

6
12 0.411

26 NIGERIAN 68,596 0.580 27 0.058 10 0.969 35 0.02 8 0.409
27 GHANAIAN 35,255 0.611 25 0.029 15 0.980 21 0.01

1
14 0.408

28 GREEK 61,296 0.557 30 0.062 9 0.954 39 0.04
2

7 0.404
29 SOMALIAN 20,376 0.585 26 0.015 28 0.982 19 0.00 28 0.397
30 PAKISTANI 140,548 0.495 35 0.085 6 0.947 40 0.05 5 0.395
31 INDIA NORTH 31,888 0.574 28 0.024 20 0.970 32 0.01

2
13 0.395

32 HONG KONGESE 35,609 0.549 31 0.025 19 0.972 31 0.00
7

21 0.388
33 PAKISTANI KASHMIR 32,061 0.537 32 0.019 24 0.975 22 0.00

6
25 0.384

34 NORWEGIAN 24,927 0.516 33 0.014 29 0.974 26 0.00
3

37 0.376
35 GERMAN 33,264 0.499 34 0.019 23 0.969 34 0.00 22 0.373
36 POLISH 33,270 0.478 36 0.018 26 0.973 29 0.00

6
24 0.369

37 MUSLIM MIDDLE E. 48,114 0.469 37 0.025 18 0.970 33 0.00
8

19 0.368
38 PORTUGUESE 44,780 0.464 38 0.023 21 0.974 24 0.00 20 0.367
39 ENGLISH 2,876,980 0.249 43 0.587 1 0.396 46 0.23

5
1 0.367

40 SPANISH 44,679 0.459 39 0.022 22 0.974 25 0.00 23 0.366
41 FRENCH 40,264 0.445 40 0.019 25 0.973 28 0.00

6
26 0.361

42 ITALIAN 71,967 0.386 41 0.029 16 0.960 37 0.00 18 0.346
43 VOID 90,715 0.341 42 0.030 14 0.956 38 0.01

0
17 0.334

44 WELSH 222,429 0.206 44 0.052 11 0.900 43 0.01
0

15 0.292
45 IRISH 414,038 0.180 46 0.093 5 0.867 45 0.02

1
10 0.290

46 SCOTTISH 323,847 0.188 45 0.073 8 0.882 44 0.01
6

11 0.290

 
 

 
Table 8.8: Summary of the four dimensions of segregation and composite index 
ID= Index of Dissimilarity, P*= Index of Isolation, ACO= Absolute Concentration Index, ACL= 
Absolute Clustering Index. Average Composite Index = (ID + P*+ ACO + ACL) /4 
This table summarises the value and rank of each index of segregation for each of the four 
dimensions, alongside a composite index that summarises them all. 
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The scatterplot in Figure 8.13 presents, in a similar fashion as the ones shown before, 

a comparison of the average composite index described here with the total 

population. It demonstrates the negative correlation of the composite index with the 

group’s size, whose linear regression has an R2 of 0.541. However, as can be seen, 

there are very stark outliers in this relationship, with several high leverage points. 

The Sikh, Bangladeshi, Hindi-Indian, and English present very high segregation 

relative to their population sizes, while the Welsh, Scottish and Irish have lower than 

expected levels of segregation, followed by Italian, Portuguese, French and Spanish. 
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Figure 8.13: Scatterplot of average composite index vs. total population size 
 

Underlying the relationship exposed by Figure 8.13 is the problem repeatedly 

mentioned in this chapter, namely of the dependency of the segregation indices on 

the size and number of ethnic groups. This problem is of course linked to the scale 
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dependency analysed in the previous section, and the three aspects (scale, size and 

number of ethnic groups) are closely intertwined. However, most of these issues are 

usually ignored by much of the segregation debate outside the specialised literature. 

One reason for this is that these issues are difficult to unveil, and it is only when data 

are available to sufficient level of geographical and nominal disaggregation, as in the 

examples presented here, that the issues of scale, size and number of ethnic groups 

become so apparent. 

 

Furthermore, the analysis presented here has made evident that segregation indices 

were designed with a preconceived idea of residential segregation as being formed 

solely by a white / Non-White dichotomy. For example, the English CEL Subgroup 

ranks first in the isolation index, with a P* index of 0.587, only followed in the 

distance by the Sikh group with P* of 0.168. Is the English group the most isolated 

of all ethnic groups? The reason behind this bizarre finding is because this index is 

not designed to be used on the ‘majority’ ethnic group, but only with one or a few 

minorities. A similar situation applies to the concentration indices, since the formula 

is just designed to have a majority group and one or just very few ethnic groups all 

with substantial population size.  

 

8.5. Other Applications of the CEL Methodology 

The bulk of this chapter on applications of the CEL methodology has been dedicated 

to elaborate a single example in depth; the analysis of residential segregation at very 

fine geographical and nominal scales. However, many other possible applications of 

the CEL methodology developed in this PhD research have been envisaged and some 
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already explored. Because of space limitations in this thesis and the number of 

external collaborators that have been involved in some of them, they will only be 

briefly mentioned in this last section. 

 

8.5.1. Ethnic inequalities in health 

One of the dimensions of ethnic inequalities that was exposed by the literature 

review in Section 2.1.2. is ethnic inequalities in health. The organisations charged 

with tackling and reducing these inequalities at local level frequently lack the 

appropriate information sources to understand the differential distribution of health 

outcomes by ethnic groups, and so are limited in their abilities to identify the wider 

determinants of health that underpin poor outcomes (London Health Observatory, 

2005). One rare opportunity to rectify this situation lies in the classification of 

people’s names that are part of the vast datasets about the health of the population. 

Names analysis has indeed proved very useful in segmenting populations by their 

most probable ethnic group of origin ever since the 1950s, as per the literature review 

carried out in Chapter 3. 

 

The CEL methodology presented here has already been applied within the context of 

a Knowledge Transfer Partnership between University College London (UCL) and 

Camden Primary Care Trust (PCT) in London, in which the author has worked 

during his PhD research. Moreover, through links developed during this KTP project 

with various NHS organisations, the CEL methodology has been tested at various 

steps of its developmental stages using different health datasets and applications. A 

few of them will be mentioned here, in order to illustrate other potential areas of 

application of this methodology. 
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One of the early examples of applications of the CEL name methodology has been 

the profiling of the population of General Practices in Camden by ethnic group, 

based on the names on patients as well as on the countries of birth when they have 

been reported in the patient register. An example of this type of population profiling 

for one General Practice in Camden PCT is given in Figure 8.14, showing the rich 

variety of ethnic groups present, that goes well beyond the coarse categories 

available in the Census ethnicity classification. 

 

 

Figure 8.14: Main ethnic groups in the population registered in a general practice in Camden 
PCT 
The chart shows the main ethnic groups that comprise the population of a general practice in Camden 
PCT’s area of responsibility. Ethnicity was estimated using the name-based CEL methodology in 
addition to country of birth information. Population sizes are relative, given as a percentage of the 
registered population in the practice (red) and compared to the overall Camden PCT average (blue) 
 

In another application of the CEL methodology, a report was produced for Camden 

PCT analysing the most likely ethnicity of women who did not respond to breast 

screening calls, when no ethnicity information had been recorded. Amongst the 

major findings of the report were that 26% of the non-respondents were women 

drawn from ethnic minorities, of which 38% had Bangladeshi names, 29% Jewish, 

18% Irish and 15% Greek names. This allowed Camden PCT to re-design their 

breast screening strategy, setting up a survey of ethnic minorities and communication 

campaign in community centres of the Borough where these ethnic groups are most 
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heavily represented. Similar types of analysis have been performed at Camden PCT 

on the birth register, the death register, the hospital episodes statistics dataset, and the 

general practice patient register, in order to analyse differential patterns of health 

outcome or to identify population groups at greatest risk of certain public health 

conditions. Without the name-based methodology, this segmentation of populations 

would have not been possible. 

 

The CEL methodology has also been used by other PCTs in London to perform 

similar analysis. Islington PCT used the CEL methodology to identify the ethnicity 

of patients diagnosed with diabetes. This was done by using the information in the 

patient register, where the names and the diabetes condition of each individual 

patient are known but not their individual ethnicity. Ethnicity was then assigned 

using the CEL methodology developed in this PhD. For the purpose of conducting 

health equity audits, the CEL-based diabetes prevalence information was then 

compared with the estimated percentages, aggregated by ethnic group, reported by 

each general practice (GP). Table 8.9 shows a summary of the percentages of 

patients diagnosed with diabetes by ethnic group, comparing the figures reported by 

GPs with those from the CEL-based analysis. This exercise allowed Islington PCT to 

go back to the general practices where major differences were found and work with 

them towards improved reporting mechanisms, as well as improved overall access to 

diabetes diagnosis services. 

  

The words of Islington PCT Public Health Information Officer, are an illustrative 

testimony in describing the usefulness of this type of analysis: 
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‘The CEL classification of names has helped me a lot. As a public health 

information officer, when I am asked to find the ethnicity of a certain group of 

patients and produce reports, I always come across the difficulty of  finding out 

the ethnicity information, because of missing data, or because it is very difficult 

to formulate the right queries through NHS systems’ 

 (Marina Kukanova, Public Health Information Officer, Islington Primary Care 

Trust, in an e-mail sent to the author in April 2007) 

 

Ethnic Group 
GP 

assigned 
CEL 

method 
White British 57% 41% 
Irish 4% 8% 
White Other 10% 17% 
Indian 2% 2% 
Pakistani 0% 1% 
Bangladeshi 4% 7% 
Other Asian 2% 2% 
Black Caribbean 6% 6% 
Black African 9% 12% 
Chinese 1% 1% 
Other 5% 2% 
Total 100% 100% 

 
Table 8.9: Patients diagnosed with diabetes in Islington PCT. GP-assigned ethnicity vs. CEL 
name-based ethnicity 
GP= General Practice (third-party reported ethnicity), CEL method= Cultural, Ethnic and Linguistic 
method (name based) 
 

 

This is just a very small sample of the number of applications of this type in the 

health sector. In the last two years of this PhD research the author has received 

numerous requests of health analysts struggling to segment their population by 

ethnicity, as equal opportunity practices have been rolled out and interest beyond the 

typical segmentation by gender, age and geography have been exhausting the basic 

factors explaining some of the inequalities in health. Another two examples of this 
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type of demand is depicted by the following e-mail messages received from different 

health organisations: 

 

‘(…)I work for a PCT in Birmingham and we are trying to find out which 

ethnic groups our breastfeeding peer workers deliver a service to. We have the 

names of all the mums but ethnicity has never been recorded. Can you help me 

in anyway? Many thanks’  

(Ian Mather, Specialist Trainee in Public Health, Heart of Birmingham PCT, e-

mail sent to the author in October 2005) 

 

‘ (…) I saw your webpage on CASA UCL and wonder if you know of software 

that analyses data by name to pick out different ethnic groups e.g. Chinese? I 

am secretariat to the Advisory Group on Hepatitis who currently has a working 

group looking at case-finding options in minority ethnic groups in the UK who 

originate from countries of intermediate or high hepatitis prevalence. (…) 

However data on hepatitis infection by ethnicity in the UK is lacking and 

prevalence here could be different to prevalence in country of origin.’  

(Claire Swales, Advisory Group on Hepatitis secretariat, Expert Advice 

Support Officer, Health Protection Agency. E-mail sent to the author in June 

2007) 

 

It is envisaged that the CEL name classification system developed in this PhD should 

be made available to these and other types of users through an easy-to-access 

software platform. Currently the CEL classification runs as a series of queries in an 

Oracle database and the names have to be sent to the author for coding. As part of the 
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future plans for developments beyond this PhD, such software should be developed 

as a stand-alone tool with which users can directly interact. This is also the form of 

access to the existing South Asian name-to-ethnicity algorithms, Nam Pechan and 

SANGRA. 

8.5.2. Population studies 

Another area of potential applications of the CEL methodology is in population 

studies, beyond the case of measuring residential segregation which has already been 

discussed. The CEL classification presents a high potential to be applied in broader 

population studies about ethnicity, such as: in ethnic group population forecasting by 

small area (Large and Ghosh, 2006); monitoring migration (Stillwell and Duke-

Williams, 2005); diagnosing possible Census undercount (Graham and Waterman, 

2005); analysing the geography of ethnic inequalities (Dorling and Rees, 2003) or of 

mortality and morbidity (Boyle, 2004); evaluating equal opportunity policies 

(Johnston et al, 2004) and political empowerment processes (Clark and Morrison, 

1995); and improving public and private services to ethnic minorities (Van Ryn and 

Fu, 2003). A central contention of this thesis has been that each of these research and 

public policy areas presents a lack of appropriate, timely and detailed data on 

ethnicity. Moreover, this problem is increasing as the last round of Census data age 

and new migration flows are changing the composition and demands for public 

services. Improved methods in these areas are thus of key policy importance in 

today's multi-cultural society. 

 

One example of a real application of the CEL classification in this area has been the 

attempt to improve population projections by ethnic groups and to better understand 

the geographical distribution of ethnic groups in the London Borough of 
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Hammersmith and Fulham (hereinafter H&F). Using the full version of the Electoral 

Register (as opposed to just the publicly available edited version), H&F compared 

the nationality of the 119,551 electors in December 2006 with the CEL-derived 

ethnicity of their names at the individual level, establishing a lookup table between 

the most likely CEL for each nationality. The conceptions of identity behind these 

two concepts are obviously quite different: nationality is a legal aspect associated 

with one’s place of birth, or of residence, or of those of one’s parents, while the CEL 

class reflects the culture or language of origin of one’s forename and surname. 

However, the results of this comparison are very encouraging.  

 

Nationality was matched to CEL ethnicity using the lookup table between the CEL 

Types and the major languages, geographies and Census ethnicity information that is 

reported in Appendix 3. A total of 101,387 people of a number of ‘Anglo-Saxon 

nationalities’ were excluded from this analysis, since British is the default nationality 

of many second generation ethnic minorities, and other nationalities are primarily 

comprised of people with British names (English, Welsh and Scottish names). The 

following nationalities were excluded; British, British Commonwealth, Canadian, 

Australian, New Zealander, Malta, and other small territories of the Commonwealth.  

 

Table 8.10 shows a summary of this validation exercise in Hammersmith and 

Fulham. It includes ‘CEL Subgroup’ and the ‘total number of people’, which are 

derived from applying the CEL methodology to the names in the full version of the 

H&F Electoral Register, and ‘Nationality match’ and ‘Perc. match’ which show the 

counts and percentage of those whose reported nationality in the Electoral Roll 

matched the name-CEL Subgroup, as per the lookup table described above 
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(columns). The over-all match rate is 73%, which bearing in mind the different 

ontological nature of nationality and name-based cultural, ethnic and linguistic 

origin, is indeed a promising result. 

CEL Subgroup (name) 
Total 

people 
Nationality 

match 
Perc. 
match 

UGANDAN 3 3 100% 
AFRIKAANS 70 63 90% 
IRISH 1,967 1,705 87% 
POLISH 1,365 1,166 85% 
FRENCH 1,490 1,272 85% 
NIGERIAN 141 115 82% 
SWEDISH 195 159 82% 
PORTUGUESE 760 612 81% 
GREEK 436 328 75% 
ITALIAN 1,998 1,452 73% 
FINNISH 64 46 72% 
BALTIC 43 29 67% 
CZECH & SLOVAKIAN 65 42 65% 
HINDI INDIAN 146 94 64% 
GERMAN 527 334 63% 
GHANAIAN 97 61 63% 
HUNGARIAN 93 58 62% 
SIERRA LEONEAN 28 17 61% 
DANISH 129 78 60% 
BLACK CARIBBEAN 15 9 60% 
SPANISH 1,245 712 57% 
DUTCH 429 224 52% 
PAKISTANI 201 80 40% 
BANGLADESHI 98 38 39% 
SRI LANKAN 57 19 33% 
AFRICAN 25 7 28% 
MALAYSIA 6 1 17% 
HONG KONGESE 157 14 9% 
BALKAN 55 4 7% 

TOTAL 11,905 8,742 73% 
 
Table 8.10: Validation of the CEL methodology against nationality in Hammersmith and 
Fulham (London) 
The CEL Subgroup is derived from name analysis of the full version of the Electoral Register in the 
London Borough of Hammersmith and Fulham, showing the total number of people per CEL 
Subgroup. The ‘Nationality match’ column is the number of people whose nationality matched the 
one assigned for that CEL Subgroup. A total of 101,387 people with the following ‘Anglo-Saxon 
nationalities’ were excluded from this analysis; British, British Commonwealth, Canadian, Australian, 
New Zealander, Malta, and other small territories of the Commonwealth. (Source: Data courtesy of 
Martin Robson, Research Officer, Planning Division, London Borough of Hammersmith & Fulham) 
 

Figure 8.15 presents a comparison between two maps with the distribution of Polish 

people by output area in Hammersmith and Fulham. Both maps are based on the full 
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version of the Electoral Register as of December 2006. The map on left represents 

Polish ethnicity based on the CEL methodology and the one on the right on the self-

reported nationality. Both maps show a very similar pattern, facilitating a visual 

corroboration of the agreement between these two datasets and methodologies to 

assign population ancestry/national identity. 

 

Figure 8.15: Maps of Polish CEL Subgroup vs. Polish nationality in Hammersmith and Fulham 
(London) 
These maps present a comparison of the distribution of Polish people by output area in the London 
Borough of Hammersmith and Fulham. Both maps are based on the full version of the Electoral 
Register as of December 2006. The map on left represents Polish ethnicity based on the CEL 
methodology and the one on the right on the self-reported nationality. Both show a very similar 
pattern. (Source: Map by the author, using data courtesy of Martin Robson, Research Officer, 
Planning Division, London Borough of Hammersmith & Fulham) 
 

H&F have subsequently used the name-coded Electoral Register to enrich the 

knowledge about the 96,306 electors with British or British Commonwealth 

nationalities inferring their most likely ethnicity based on their names. This 

information was fed into several planning areas of local government in order to 

supplement the population projections by ethnic group and small area. 
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8.6.   Conclusion 

While the rest of this thesis has focused on different developmental aspects of the 

CEL methodology, this chapter has presented potential applications of the 

methodology to ascribe ethnicity using people’s names. Most of the chapter has been 

devoted to one of the many potential applications, given its high relevance to current 

debates in contemporary society: namely, the study of ethnic residential segregation, 

and in particular in London. 

 

The application of the CEL methodology to this purpose has opened up new 

opportunities for much finer analysis of several dimensions of residential segregation 

in terms of the size of the geographical units and ethnic group boundaries, and the 

frequency of update.  This example has also raised several key questions about the 

relevance of widely adopted segregation indices which were developed with a very 

simplistic conception of society based on a ‘racial duality’ of neighbourhoods, which 

does not resemble the complexity of contemporary cities, especially outside the US. 

The large number of ethnic groups and quantity of small neighbourhoods, 

accommodated by the analysis introduced in this chapter, has brought new 

challenges to traditional segregation indices that were designed to deal with two or a 

very few ethnic groups, and zoning schemes that comprise only tens of coarse 

geographical units. 

 

Despite these challenges, the analysis presented in this chapter has confirmed the 

conclusions reached by previous studies of segregation in London: namely, the 

higher degree of residential segregation of some of the South Asian ethno-religious 

groups, especially Sikh, Indian and Bangladeshi, as well as the Jewish religious 
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minority. Moreover, the use of name-based ethnicity classifications has suggested a 

much more complex reality of highly segregated small groups across the socio-

economic spectrum: Japanese, Iranian, Danish, Swedish, Sierra Leonean, Afrikaans, 

Other African, and Vietnamese. In some dimensions, such as evenness and 

clustering, other groups such us Greek and Turkish CELs show a higher level of 

segregation than expected by their total population sizes. On the other hand, the three 

‘Celtic CELs’, Welsh, Scottish and Irish show a very low level of segregation across 

all dimensions, even less so than the English majority. 

 

The number of geographical units considered, the group’s population size and the 

average length of residence of each CEL Subgroup seems to be the three key factors 

in explaining the major variations observed in the segregation indices in London. In 

the scatterplots that relate each of these indices and the CEL Subgroups population 

sizes, there are some CELs that fall outside the main regression trend lines. These 

should be the ones that receive future attention to investigate the other factors that 

might explain their atypical behaviour. Most of these groups have been highlighted 

under each of the dimensions of segregation analysed here. 

 

A commonly used tool in geographical analysis, local spatial autocorrelation, has 

been also applied here to the study of segregation through the computation of local 

indicators of spatial association. This tool has proven its ability to delineate local 

clusters of concentration of the main ethnic groups in London neighbourhoods. 

Moreover, the use of a diversity index has also allowed the classification of the 

Capital’s output areas according to the number and size of ethnic groups present in 

each of them, pinpointing the areas that are more diverse. Most of these are found 
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north of the River Thames and within Inner London. The development of more 

examples that use different innovative tools from different disciplines, such as the 

two mentioned here, will make more significant contributions through cross-

fertilization between disciplines concerned with residential segregation and socio-

spatial differentiation processes. 

 

Finally, the last section in this chapter has briefly mentioned a few examples of other 

potential applications of the CEL methodology in tackling ethnic inequalities in 

health and in population forecasting and planning at local level. These constitute a 

small gallery of applications, in order to illustrate the very wide potential 

applicability of the CEL classification. From a methodological standpoint, it will 

only be through the persistent application of the CEL classification to different 

settings and contexts that its wider validation can take place. 
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Chapter 9. Conclusions – The Cultural, Ethnic and 

Linguistic Classification of Names 

 

Identity, though complex, can be encoded in a name 

 (Seeman, 1980: 129) 

 

9.1. Reflections on Names, Identity, Populations and 

Neighbourhoods 

This closing chapter marks a point of arrival in a journey that started justifying the 

need for new and innovative methods of analysing ethnicity in the study of 

inequalities and segregation, and ends with a developed and tested new ontology and 

classification of ethnicity based on name origins. During this journey, the PhD has 

gathered enough evidence to substantiate the association between collective 

identities, languages, genes, places and personal names. It has concluded that if 

current multicultural cities are composed of a rich variety of culturally diverse 

neighbourhoods and populations, their inhabitant’s names leave in them an ‘identity 

trail’ through processes of migration, settlement, mobility and intergenerational 

transmission of culture. Drawing a physical geography parallel, such processes of 

‘transportation, sedimentation and erosion’ of collective identities may be revealed 

by studying the ‘names geomorphology’ left by that identity trail in contemporary 

populations and neighbourhoods. Therefore, names can serve as very valuable 

markers of collective identity. This PhD has then set the objective to develop a 
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methodology to decipher such markers in population registers, based on an ontology 

of ethnicity designed for this purpose. 

 

As a result, the cultural, ethnic and linguistic classification of names has been 

developed through this PhD, expanding previous and partial efforts in the literature, 

and taking a multidisciplinary approach that has borrowed ideas, methods and data 

sources from the fields of public health, population genetics, historical demography, 

linguistics, computer science and marketing. The core chapters of this thesis have 

been dedicated to carefully describing the techniques to develop such taxonomy and 

classification of names, initially through an exploratory phase and later in an 

automated and reproducible approach. Outstanding amongst all the techniques used, 

because of its extraordinary classificatory power, is Forename-Surname Clustering 

(FSC), which allows the effective clustering of surname types through the cross-

occurrences of common forename bearers, and vice-versa for clustering forename 

types. As a result, two tables have been produced, a surname-to-CEL table including 

225,576 surnames, and a forename-to-CEL table including 98,624 forenames, each 

alongside their most likely CEL and a measure of the degree of association between 

the name and the CEL. A personal allocation algorithm has been developed to finally 

assign the most probable CEL to each individual person, using both forename and 

surname. The intention is to make these tables available on request to bona-fide 

academic researchers for further evaluation and enhancement. 

 

Moreover, the thesis has also reported the validation of the CEL classification, in 

multiple applications; one following a public health literature tradition, using patient 

registers, and a separate one following a ‘geography tradition’ comparing Census 
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small area statistics. The results of both of the validation exercises have been very 

consistent, even though the nature of the two datasets was very different, and showed 

high accuracy level of the CEL methodology in identifying the main ethnic groups in 

the independent datasets. However, these results should be interpreted in the light of 

the caveats mentioned relating to the problems inherent in comparing constructs of 

different ontological nature. Hence, onomastic classifications based on cultural, 

ethnic and linguistic origin of names cannot be easily compared with self-reported 

ethnicity. 

 

Finally, the last part of the journey was spent developing an example of the 

application of the CEL classification to the study of residential segregation in 

London. This application was chosen given its high relevance to current debates of 

ethnic residential segregation, in particular in highly diverse cities such as London, 

and because it constitutes a research area in which geography is the key to 

understanding social processes. This application has opened up new opportunities for 

much more sophisticated and detailed analysis of several dimensions of residential 

segregation in terms of both the size of the geographical units and the definition of 

ethnic group boundaries. Based on the latter, a new concept of the Modifiable Ethnic 

Unit Problem (MEUP) has been proposed, differentiating it from the effect of the 

former, better known as the Modifiable Areal Unit Problem (MAUP) (Openshaw, 

1984). Furthermore, the frequency of update of name-based datasets have a great 

potential compared to traditional sources in the study of residential segregation, since 

resident characteristics may change rapidly during decennial inter-censal periods. 

This type of detailed analysis would not be possible without the contribution of the 

ontology of ethnicity based of names proposed by this thesis. 
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Many other areas of applications can be envisaged at this stage, some of which have 

been explicitly mentioned in Chapter 8 in the fields of ethnic inequalities in health 

and population studies. The number of other possible applications are too numerous 

to mention, but future work by the author will focus on extending the usage of the 

CEL classification. These lie beyond the scope of this PhD thesis and form part of 

the ‘next stage in the journey’. 

9.2. Advantages and Limitations of the CEL Classification 

The name-based ethnicity classification methodology developed in this PhD offers a 

series of advantages over traditional information sources such as censuses of 

population. Amongst them, it can be used to develop a more detailed and meaningful 

classification of people’s origins (finer categories based on a very large number of 

languages, vs. just 10 to 20 ethnic groups in the Census), it offers improved updating 

(annually through registers with substantial population coverage, such as electoral or 

patient registers), it better accommodates changing perceptions of identity than 

ethnicity self-classification (through independent assignment of ethnicity and or 

cultural origins according to name), and it is made available, subject to 

confidentiality safeguards, at the individual or household level (rather than an 

aggregated Census area). Moreover, the research literature suggests that an important 

advantage of name-based classifications lies in their capability to provide an 

ethnicity classification when self-reported ethnicity is not available. This is the case 

in most population registers and data-sets pertaining to individuals, and automated 

classification provides solutions at a fraction of the cost of alternative methods. 

However, this advantage may dissipate over time, as the recording of self-reported 
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ethnicity becomes routine, and data linkage methods make possible wide linkage 

through population registers (Bhopal et al, 2004; Blakely et al, 2000). 

 

Compared to other name classifications in the literature, the CEL classification offers 

a number of advantages that overcome some of the issues with previous name 

analysis identified in Chapter 3. These include that other methods: only classify a 

few ethnic groups; ignore spatio-temporal differences in the frequency distribution of 

names and the selective nature of migration; fail to exploit differences in the strength 

of association between a name and an ethnic group. The advantages of the CEL 

classification are that: it classifies the entire population of a country (in this case 

optimised for the UK), rather than just a specific subset; it classifies the names into 

all of the likely cultural, ethnic and linguistic groups (CELs) found in a society, 

rather than just one or a very few ethnic groups; it allows the end user to aggregate 

highly disaggregate CELs into new groups according to different criteria that are 

appropriate and tailored to each individual application, consistent with the core CEL 

taxonomy; and finally, it offers a measure of strength through name scores and 

person-allocation scores, that allows the user to adapt the classification to the 

sensitivity of the specific research purpose. It can be argued that these advantages 

constitute important contributions of this PhD to existing knowledge on name-based 

ethnicity classifications. 

 

In spite of all of these advantages, the CEL classification suffers from some of the 

same limitations as its predecessors in the literature: autocorrelation of names 

amongst family members; name spelling errors and name normalisation issues; 

inconsistent transcriptions or transliterations of name into different alphabets or 
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errors induced by pronunciation; names usually only reflecting patrilineal heritage; 

and different histories of name adoption, naming conventions and surname change. 

Moreover, if exogamy outside CEL groups increases, as is anticipated in the near 

future, the method’s discriminatory ability may decline. These are all problems that 

the final user of the CEL classification will have to solve as they specifically affect 

their data configuration and particular research objectives. 

 

Finally, there is a series of ethnical considerations that should be taken into account 

when handling names data about individuals and inferring the CEL or ethnicity 

assignments based upon them. These have not been specifically addressed by this 

thesis, but future researchers should be exercise caution in considering the sensitivity 

of the context in which their research is conducted, so as to prevent any potential risk 

of incorrect inference. Nevertheless, it should  be restated that the classification of 

populations into groups of common culture, ethnicity and language based on the 

origin of names cannot, by definition, replace self-assigned ethnicity, in the sense 

that the information based upon names is not intended to replace personal perception 

of identity, but rather provide the most plausible externally assigned one. As has 

been discussed in this thesis, this is not necessarily a bad thing, but this important 

distinction should be taken into consideration at every step of the research when 

using this type of method. 

9.3. Future Research  

Two avenues for future research are envisaged at this stage. One is inherently 

methodological, and focused upon development of the core classification proposed in 
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this thesis; and the other lies in the development of new types of applications using 

this methodology. 

 

9.3.1. Methodological improvements 

Amongst the methodological aspects, there are three major needs for future 

enhancements that arise out of this research: fully automating the classification of 

names; expanding the classification to cover several countries; and using contextual 

information to improve the CEL allocations. 

 

The first type of enhancement, full automation of the classification of names, arises 

from the need to find an alternative to dependency on an externally and non-

automatically produced ‘forename seed list’, that is currently used to ‘ignite’ the 

automated classification presented in this thesis. Some alternative methods that have 

already been explored in this PhD are the account of the investigations reported in 

Section 6.5. These entail the use of subspace clustering techniques of very large two-

way sparse matrices of names, which although offering some promising aspects, as 

yet produce results deemed insufficiently successful because of the size and 

complexity of the names datasets and its relationships. As a consequence, these 

investigations did not progress to the implementation phase. These attempts are 

nevertheless very promising and should inform future research in this area. 

 

The second type of enhancement lies in expanding the classification to cover several 

countries, since the current system is only optimised to classify the population 

resident in the UK. Each country has a unique set of ‘host’ and ‘foreign’ names, that 

is closely linked to very specific geo-historical contexts, and that is currently 
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changing very rapidly because of international migration flows. The first stage of this 

would involve expanding the number of names in the database and the number of 

CELs in the taxonomy in order to represent the majority of names in a number of 

other countries where the CEL classification could be used to classify ethnic groups, 

specifically in Western Europe, North America, and Australia, but in many other 

regions as well. The second stage would imply the development of country-specific 

name scores, to avoid cases of name overlap between CELs (for example ‘Martin’ is 

an English surname in Britain but a Spanish surname in Spain), and to develop an 

algorithm to decide between competing CELs depending on the country for which 

the population is being classified. 

 

The third type of enhancement is to develop a person CEL allocation algorithm that 

takes into account contextual information in order to improve the allocations. Such 

contextual assignment is somehow related to the last point made about the 

international context, and relates to situations where other multiple sources of 

information could be used in combination with a name’s ethnicity, such as for 

example the address of a person’s residence or his or her place of birth. For example, 

a Jewish component of a name could be given more weight in the allocation if the 

person lives in Golders Green in London (an area known to have high concentrations 

of Jewish people). Moreover, most population registers (birth, death and patient 

registers) consist of a name, address and place of birth, and the last two components 

have great potential to enhance the accuracy of the final person CEL allocation. This 

enhancement would entail building lookup tables of contextual information between 

geographies and CELs, using Census information and other sources. 
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9.3.2. Future types of applications 

The second avenue for future research concerns the type of applications that this 

methodology permits, that were somehow unthinkable before. There are endless 

possibilities of exploiting the CEL methodology through the ‘traditional applications’ 

that have been mentioned in Chapter 8, contributing to some of the research gaps 

identified by the literature in respect to facilitating better understanding of ethnicity 

through advanced analysis of population composition and change in contemporary 

society and cities.  

 

However, it is envisaged that the methodology presented in this thesis will make it 

possible to ask totally different types of questions to the traditional research enquiries 

in social science, heavily determined by the availability of up-to-date and accurate 

Census data (particularly of recent immigrant or mobile populations). These of 

course are difficult to predict at this stage, but are likely to emerge from new ways of 

analysing population collective identity at the individual level, or at very small area 

level, i.e. the household, building or street block/postcode unit. They will also be 

related to the developing opportunities to: link datasets about the same individuals 

longitudinally through space and time; or to analyse relationships within and between 

different aggregations of CEL groups and geographical units (assessing the MEUP-

MAUP effect). Such types of linkages and clustering through CELs will make it 

possible to address new questions about population change over time and space, 

sometimes using very fine temporal resolution datasets, such as frequently updated 

electoral or patient registers. An example of an area where these questions look 

promising is in the analysis of the movement dimension of residential segregation 

recently proposed by Simpson (2007).  



 
Chapter 9 - Conclusions – The Cultural, Ethnic and Linguistic Classification of Names 368 

 

 

Moreover, the linkages between the different aspects of identity revealed by names 

can feed enormous amounts of complex information into current debates concerning 

social networks (Wasserman and Galaskiewicz, 1995). An example of these 

possibilities in shown in Figure 9.1, which represents the relationships between 

surnames in a sample of 5,000 people by showing a network of the ‘forename 

distances’ between them, that is, whether surnames are related through common 

forename bearers or not. It can be appreciated how some surnames are only related to 

some other surname types, constituting neatly defined clusters, which in essence is 

the characteristic exploited by the FSC technique. However, the possibilities for 

social network research of these relationships are endless, especially if the CEL 

classification and geography are added to the network. 

 

These are just some examples of how it is anticipated that researchers will be able to 

develop interesting new types of applications of the CEL classification using 

individual person level data and finely spatially disaggregated data. 
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Figure 9.1: Network of  ‘forename distance’ between the surnames of a sample of 5,000 people 
The network represents the relationships between surnames in a sample of 5,000 people drawn from 
non-British surnames in the GB 2004 Electoral Register. It shows a network of those surnames related 
by the ‘forename distances’ between them, that is, whether surnames are related through common 
forename bearers or not. Distances and locations are randomly selected by the software Pajek. Some 
surnames are only related to small cluster of similar ones, while a few act as ‘surname hubs’ in 
between different clusters. Source: Prepared by the author using GB 2004 Electoral Register and 
social network analysis software Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). 
 

9.4. Concluding Statement 

The subdivision of populations according to ethnicity and geography has allowed 

social scientists to gain better understandings of contemporary society and 

neighbourhoods, as populations and cities have become increasingly multi-culturally 

diverse and globally connected. However, there is a desperate requirement to 

improve the depth of such understandings, especially the complex processes of 

population composition and change by ethnic group and small area. New methods 

are required which might be adapted to rapid changes in international migration and 

ethnic group formation processes. Such improved methods will prove key in 

 

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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informing policy to reduce ethnic inequalities, produce accurate population statistics 

and plan for the future complex needs of our societies and cities. 

 

This PhD has sought to make a contribution to these methodological requirements, 

by developing an ontology of ethnicity based on the classification of names 

according to their cultural, ethnic and linguistics groups. This has been termed the 

CEL classification. The steps to develop and validate this methodology have been 

fully described in a robust and transparent manner, and its results are available for 

other researchers to use and enhance. This thesis has illustrated one of many possible 

applications to a classical geographical problem of current relevance to public 

debates, namely the study of residential segregation. It has also presented a small 

gallery of applications, in order to illustrate the very wide potential applicability of 

the CEL classification. Application of the CEL methodology to different research 

settings and contexts offers one way of improving our understandings of 

contemporary society and neighbourhoods, and these in turn will allow wider 

validation of the classification to take place.  

 

There is evidence today that names are unfortunately still being used to discriminate 

against people’s abilities to access the labour, housing, and credit markets (Carpusor 

and Loges, 2006; Williams, 2003), because of the prejudices that some retain about 

people’s ancestry, language, religion, culture, or skin colour. Yet it is in using the 

same weapons as the ‘enemy’, in the ‘The Causes and Consequences of Distinctively 

Black Names’, that Fyer and Levitt (2004) develop a (albeit crude) picture of ethnic 

inequalities and discrimination in the US through an innovative analysis of 

forenames. A golden opportunity would be missed if social science researchers 
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eschew a creative opportunity to find new ways of reducing persistent discrimination 

and inequalities between ethnic groups in today’s ever increasingly multi-cultural 

cities. It is hoped that the methodology developed in this thesis will assist them in 

this difficult task. 
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Appendix 2: Ethnicity Classifications 

Ethnicity classification used in the Pupil Level Annual School Survey (PLASC) 
(Source: PLASC/NPD User Group, 2007) 
 
101= British  
102 = English  
103 = Scottish 
104 = Welsh  
105 = Irish 
106 = Traveller of Irish Heritage 
107 = Other White British 
108 = Any Other White Background 
109 = Albanian 
110 = Bosnian-Herzegovinian 
111 = Croation  
112 = Greek/Greek Cypriot 
113 = Greek  
114 = Greek Cypriot  
115 = Kosovan 
116 = Italian  
117 = Portuguese  
118 = Serbian 
119 = Turkish/Turkish Cypriot  
120 =Turkish 
121 = Turkish Cypriot  
122 = White European 
123 = White Eastern European 
124 = White Western European  
125 = Other White 
126 = Gypsy/Roma 
127 = White and Black Caribbean 
128 = White and Black African 
129 = White and Asian 
130 = White and Pakistani 
131 = White and Indian 
132 = White and Any Other Asian Back 
133 = Any Other Mixed Background 
134 = Asian and Any Other Ethnic Group 
135 = Asian and Black 
136 = Asian and Chinese 
137 = Black and Any Other Ethnic Group 
138 = Black and Chinese 
139 = Chinese and Any Other Ethnic 
Group 
140 = White and Any Other Ethnic Group 
141 = White and Chinese 
142 = Other Mixed Background 
143 = Indian  
144 = Pakistani  
145 = Bangladeshi 
146 = Any Other Asian Background 
147 = Mirpuri Pakistani 
148 = Other Pakistani 
149 = Kashmiri Pakistani 
150 = African Asian 

151 = Kashmiri Other 
152 = Nepali 
153 = Sinhalese 
154 = Sri Lankan Tamil 
155 = Other Asian 
156 = Caribbean 
157 = African 
158 = Any Other Black Background 
159 = Angolan 
160 = Congolese 
161 = Ghanaian 
162 = Nigerian 
163 = Sierra Leonian 
164 = Somali 
165 = Sudanese 
166 = Other Black African 
167 = Black European 
168 = Black North American 
169 = Other Black 
170 = Chinese 
171 = Hong Kong Chinese 
172 = Malaysian Chinese 
173 = Singaporean Chinese 
174 = Taiwanese 
175 = Other Chinese 
176 = Any Other Ethnic Group 
177 = Afghanistani 
178 = Arab 
179 = Egyptian 
180 = Filipino 
181 = Iranian 
182 = Iraqi 
183 = Japanese 
184 = Korean 
185 = Kurdish 
186 = Latin American 
187 = Lebanese 
188 = Libyan 
189 = Malay 
190 = Moroccan 
191 = Polynesian 
192 = Thai 
193 = Vietnamese 
194 = Yemeni 
195 = Other Ethnic Group 
198 = Parent/pupil preferred not to say  
199 = Ethnic group information not 
sought. 
998 = Refused 
999 = Information Not Obtained 
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Write-in categories reported in the 2001 Census ethnicity. Figures for London. 
(Source: GLA Commissioned Tables C0183 - Ethnicity, Write-in by sex and age (200+ people) 
Greater London) 
Write-in Ethnic Group People  Write-in Ethnic Group People 
British, Mixed British 4,097,664  Punjabi 1,149
Irish 220,187  Kashmiri 734
English 154,203  East African Asian 5,328
Scottish 7,020  Sri Lankan 53,307
Welsh 6,895  Tamil 4,758
Cornish 468  Sinhalese 565
Northern Irish 387  Caribbean Asian 4,070
Cypriot (part not stated) 7,360  British Asian 14,625
Greek 17,888  Mixed Asian 2,786
Greek Cypriot 23,340  Other Asian, Asian 

unspecified 
18,334

Turkish 37,827  Black Caribbean 337,260
Turkish Cypriot 14,074  Black African 366,626
Italian 35,252  Somali 6,172
Irish Traveller 497  Nigerian 1,844
Gypsy/Romany 490  Black British 46,348
Polish 15,928  Mixed Black 9,001
Baltic States (Estonian, 
Latvian, Lithuanian) 

2,248  Other Black, Black 
unspecified 

8,344

Commonwealth of (Russian) 
Independent States 

11,606  Chinese 79,579

Kosovan 6,896  Vietnamese 11,719
Albanian 3,226  Japanese 19,415
Bosnian 1,695  Filipino 19,669
Croatian 1,954  Malaysian 3,384
Serbian 1,349  Hindu 778
Other republics which made 
up the former Yugoslavia 

2,674  Jewish 8,912

Mixed: Irish and other white 7,071  Muslim 707
Other white European, 
European Mixed 

185,690  Sikh 2,814

Other mixed white 19,239  Arab 20,256
Other white, white 
unspecified 

171,744  North African 11,218

White and Black Caribbean 70,093  Middle Eastern (excluding 
Israeli, Iranian and 'Arab') 

20,537

White and Black African 33,282  Israeli 2,304
White and Asian 57,561  Iranian 16,494
Black and Asian 3,946  Kurdish 9,659
Black and Chinese 590  Moroccan 4,133
Black and White 4,226  Latin American 9,188
Chinese and White 4,871  South and Central American 15,607
Asian and Chinese 660  Multi-ethnic islands 15,952
Other Mixed, Mixed 
unspecified 

35,027  Any other group 29,469

Indian or British Indian 429,877    
Pakistani or British Pakistani 140,888  Total 7,171,959
Bangladeshi or British 
Bangladeshi 

153,021   
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Appendix 3: CEL Taxonomy 

List of 185 CEL Types and their characteristics and proposed aggregations, 

including the final 66 CEL Subgroups 

 



CEL Type 
Code CEL Group CEL Subgroup CEL Type

People GB 
2004

Geographical 
Area Religion Major Language

Major 
Language SIL 
Code Major Language Family Tree

1991 Census Ethnic 
Group 2001 Census Ethnic Group

2001 Census 
Religion 2001 Census COB

AF110 AFRICAN AFRICAN AFRICA 3316 AFRICA CHRISTIAN: PROTESTANT Not Applicable Not Applicable Not Applicable 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF429 AFRICAN AFRICAN BENIN 7 AFRICA MUSLIM French FRN Indo-European;Italic;Romance;Italo-Western 2- Black - African N) Black or Black British - African MUSLIM COB_Elsewhere

AF212 AFRICAN AFRICAN BOTSWANA 8 AFRICA CHRISTIAN: PROTESTANT Tswana TSW Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF322 AFRICAN AFRICAN BURUNDI 18 AFRICA CHRISTIAN Rundi RUD Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF430 AFRICAN AFRICAN CAMEROON 72 AFRICA CHRISTIAN Fulfulde FUB Niger-Congo;Atlantic-Congo;Atlantic;Northern 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF431 AFRICAN AFRICAN GAMBIA 11 AFRICA MUSLIM Wolof WOF Niger-Congo;Atlantic-Congo;Atlantic;Northern 2- Black - African N) Black or Black British - African MUSLIM COB_Elsewhere
AF433 AFRICAN AFRICAN GUINEA 15 AFRICA MUSLIM French FRN Indo-European;Italic;Romance;Italo-Western 2- Black - African N) Black or Black British - African MUSLIM COB_Elsewhere
AF434 AFRICAN AFRICAN IVORY COAST 122 AFRICA MUSLIM BaoulŽ BCI Niger-Congo;Atlantic-Congo;Volta-Congo;Kwa 2- Black - African N) Black or Black British - African MUSLIM COB_Elsewhere

AF324 AFRICAN AFRICAN KENYAN AFRICAN 1197 AFRICA CHRISTIAN: PROTESTANT Gikuyu KIU Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF435 AFRICAN AFRICAN LIBERIA 5 AFRICA MUSLIM Kpelle KPE Niger-Congo;Mande;Western;Central-Southwestern 2- Black - African N) Black or Black British - African MUSLIM COB_Elsewhere
AF214 AFRICAN AFRICAN MADAGASCAR 2 AFRICA CHRISTIAN: CATHOLIC Malagasy PLT Austronesian;Malayo-Polynesian;Barito;East 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere

AF215 AFRICAN AFRICAN MALAWI 23 AFRICA CHRISTIAN: PROTESTANT Nyanja NYJ Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF216 AFRICAN AFRICAN NAMIBIA 1 AFRICA CHRISTIAN: CATHOLIC Afrikaans AFK Indo-European;Germanic;West;Low Saxon-Low Franconian 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere
AF217 AFRICAN AFRICAN OTHER AFRICAN 1575 AFRICA CHRISTIAN Not Applicable Not Applicable Not Applicable 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF325 AFRICAN AFRICAN RWANDA 18 AFRICA CHRISTIAN Rwanda RUA Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF437 AFRICAN AFRICAN SENEGAL 37 AFRICA MUSLIM Wolof WOL Niger-Congo;Atlantic-Congo;Atlantic;Northern 2- Black - African N) Black or Black British - African MUSLIM COB_Elsewhere

AF218 AFRICAN AFRICAN SWAZILAND 5 AFRICA CHRISTIAN: PROTESTANT Swati SWZ Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere

AF327 AFRICAN AFRICAN TANZANIA 104 AFRICA CHRISTIAN: PROTESTANT English ENG Indo-European;Germanic;West;English 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere

AF219 AFRICAN AFRICAN ZAIRE 41 AFRICA CHRISTIAN: PROTESTANT Luba-Kasai LUB Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere

AF220 AFRICAN AFRICAN ZAMBIA 274 AFRICA CHRISTIAN: PROTESTANT Bemba BEM Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere

AF221 AFRICAN AFRICAN ZIMBABWE 991 AFRICA CHRISTIAN: PROTESTANT Shona SHD Creole;French based 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere

AF211 AFRICAN
BLACK SOUTHERN 
AFRICA

BLACK SOUTHERN 
AFRICA 5198 AFRICA CHRISTIAN: PROTESTANT Zulu ZUU Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere

AF213 AFRICAN CONGOLESE CONGO 1164 AFRICA CHRISTIAN Luba-Kasai LUB Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF323 AFRICAN ETHIOPIAN ETHIOPIA 1238 AFRICA CHRISTIAN: OTHER Amharic AMH Afro-Asiatic;Semitic;South;Ethiopian 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF432 AFRICAN GHANAIAN GHANA 46095 AFRICA CHRISTIAN Akan TWS Niger-Congo;Atlantic-Congo;Volta-Congo;Kwa 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF436 AFRICAN NIGERIAN NIGERIA 88243 AFRICA CHRISTIAN Yoruba YOR Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere
AF438 AFRICAN SIERRA LEONIAN SIERRA LEONE 6155 AFRICA MUSLIM English ENG Indo-European;Germanic;West;English 2- Black - African N) Black or Black British - African MUSLIM COB_Elsewhere

AF328 AFRICAN UGANDAN UGANDA 1018 AFRICA CHRISTIAN: PROTESTANT Ganda LAP Niger-Congo;Atlantic-Congo;Volta-Congo;Benue-Congo 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere

CL110 CELTIC IRISH CELTIC 45653 BRITISH ISLES CHRISTIAN English ENG Indo-European;Germanic;West;English 0- White A) White - British CHRISTIAN COB_Republic of Ireland

CL211 CELTIC IRISH IRELAND 3172876 BRITISH ISLES CHRISTIAN: CATHOLIC English ENG Indo-European;Germanic;West;English 0- White B) White - Irish CHRISTIAN COB_Republic of Ireland
CL212 CELTIC IRISH NORTHERN IRELAND 223988 BRITISH ISLES CHRISTIAN English ENG Indo-European;Germanic;West;English 0- White A) White - British CHRISTIAN COB_Northern Ireland

CL213 CELTIC SCOTTISH SCOTLAND 4749864 BRITISH ISLES CHRISTIAN: PROTESTANT English ENG Indo-European;Germanic;West;English 0- White A) White - British CHRISTIAN COB_Scotland

CL314 CELTIC WELSH WALES 3065041 BRITISH ISLES CHRISTIAN: PROTESTANT Welsh WLS Indo-European;Celtic;Insular;Brythonic 0- White A) White - British CHRISTIAN COB_Wales

EA212 EAST ASIAN CHINESE CHINA 21185 EAST ASIA BHUDDIST Chinese, Mandarin CHN Sino-Tibetan;Chinese 7- Chinese R) Other Ethnic Groups - Chinese BHUDDIST COB_Elsewhere
EA218 EAST ASIAN CHINESE MALAYSIAN CHINESE 3238 EAST ASIA BHUDDIST Chinese, Min Nan CFR Sino-Tibetan;Chinese 7- Chinese R) Other Ethnic Groups - Chinese BHUDDIST COB_Elsewhere

EA327 EAST ASIAN EAST ASIAN CAMBODIA 59 EAST ASIA BHUDDIST Khmer, Central KHM Austro-Asiatic; Mon-Khmer; Eastern Mon-Khmer; Khmer 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group BHUDDIST COB_Elsewhere

EA110 EAST ASIAN EAST ASIAN EAST ASIA 627 EAST ASIA BHUDDIST Chinese, Mandarin CHN Sino-Tibetan;Chinese 7- Chinese R) Other Ethnic Groups - Chinese BHUDDIST COB_Elsewhere

EA213 EAST ASIAN EAST ASIAN EAST ASIAN CARIBBEAN 2 AMERICAS BHUDDIST Chinese, Mandarin CHN Sino-Tibetan;Chinese 7- Chinese R) Other Ethnic Groups - Chinese BHUDDIST COB_Elsewhere

EA414 EAST ASIAN EAST ASIAN FIJI 10 EAST ASIA HINDU Hindustani HIF Indo-European;Indo-Iranian;Indo-Aryan;East Central zone 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group HINDU COB_Elsewhere

EA429 EAST ASIAN EAST ASIAN HAWAII 2 EAST ASIA CHRISTIAN
Hawaii Creole 
English HWC Creole; English based; Pacific 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group CHRISTIAN COB_Elsewhere

EA316 EAST ASIAN EAST ASIAN INDONESIA 116 EAST ASIA MUSLIM Javanese JAN Austronesian;Malayo-Polynesian;Western Malayo-Polynesian;Sundic 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

EA328 EAST ASIAN EAST ASIAN LAOS 120 EAST ASIA BHUDDIST Lao LAO Tai-Kadai; Kam-Tai; Be-Tai; Tai-Sek; Tai; Southwestern; Lao-Phutai 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group BHUDDIST COB_Elsewhere

EA430 EAST ASIAN EAST ASIAN MAORI 1 EAST ASIA CHRISTIAN Maori MRI
Austronesian; Malayo-Polynesian; Central-Eastern; Eastern Malayo-
Polynesian 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group CHRISTIAN COB_Elsewhere

EA431 EAST ASIAN EAST ASIAN MAURITIUS 2 EAST ASIA HINDU Hindi HND Indo-European;Indo-Iranian;Indo-Aryan;Central zone 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group HINDU COB_Elsewhere

EA319 EAST ASIAN EAST ASIAN MYANMAR 1601 EAST ASIA BHUDDIST Burmese BMS Sino-Tibetan;Tibeto-Burman;Lolo-Burmese;Burmish 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group BHUDDIST COB_Elsewhere

EA420 EAST ASIAN EAST ASIAN POLYNESIA 54 EAST ASIA CHRISTIAN Tahitian TAH

Austronesian; Malayo-Polynesian; Central-Eastern; Eastern Malayo-
Polynesian; Oceanic; Central-Eastern Oceanic; Remote Oceanic; 
Central Pacific; East Fijian-Polynesian; Polynesian; Nuclear; East; 
Central; Tahitic 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group CHRISTIAN COB_Elsewhere

EA432 EAST ASIAN EAST ASIAN SAMOA 10 EAST ASIA CHRISTIAN Samoan SMO
Austronesian; Malayo-Polynesian; Central-Eastern; Eastern Malayo-
Polynesian 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group CHRISTIAN COB_Elsewhere

EA221 EAST ASIAN EAST ASIAN SINGAPORE 583 EAST ASIA BHUDDIST Chinese, Min Nan CFR Sino-Tibetan;Chinese 7- Chinese R) Other Ethnic Groups - Chinese BHUDDIST COB_Elsewhere

EA422 EAST ASIAN EAST ASIAN SOLOMON ISLANDS 8 EAST ASIA CHRISTIAN English ENG Indo-European;Germanic;West;English 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group CHRISTIAN COB_Elsewhere
EA211 EAST ASIAN EAST ASIAN SOUTH EAST ASIA 371 EAST ASIA BHUDDIST Chinese, Min Nan CFR Sino-Tibetan;Chinese 7- Chinese R) Other Ethnic Groups - Chinese BHUDDIST COB_Elsewhere

EA324 EAST ASIAN EAST ASIAN THAILAND 407 EAST ASIA BHUDDIST Thai THJ Tai-Kadai;Kam-Tai;Be-Tai;Tai-Sek 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group BHUDDIST COB_Elsewhere

EA225 EAST ASIAN EAST ASIAN TIBET 13 EAST ASIA BHUDDIST Tibetan BOD Sino-Tibetan;Tibeto-Burman;Himalayish;Tibeto-Kanauri 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group BHUDDIST COB_Elsewhere

EA433 EAST ASIAN EAST ASIAN TONGA 9 EAST ASIA CHRISTIAN Tongan TON
Austronesian; Malayo-Polynesian; Central-Eastern; Eastern Malayo-
Polynesian 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group CHRISTIAN COB_Elsewhere
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EA434 EAST ASIAN EAST ASIAN TUVALU 2 EAST ASIA CHRISTIAN Tuvaluan TVL
Austronesian; Malayo-Polynesian; Central-Eastern; Eastern Malayo-
Polynesian 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group CHRISTIAN COB_Elsewhere

EA215 EAST ASIAN HONG KONGESE HONG KONG 119566 EAST ASIA BHUDDIST Chinese, Cantonese YUH Sino-Tibetan;Chinese 7- Chinese R) Other Ethnic Groups - Chinese BHUDDIST COB_Elsewhere

EA323 EAST ASIAN KOREAN SOUTH KOREA 2315 EAST ASIA BHUDDIST Korean KKN Language Isolate; 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group BHUDDIST COB_Elsewhere

EA317 EAST ASIAN MALAYSIA MALAYSIA 2092 EAST ASIA MUSLIM Malay MLI Austronesian;Malayo-Polynesian;Western Malayo-Polynesian;Sundic 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

EA326 EAST ASIAN VIETNAM VIETNAM 15723 EAST ASIA BHUDDIST Vietnamese VIE Austro-Asiatic;Mon-Khmer;Viet-Muong;Vietnamese 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group BHUDDIST COB_Elsewhere

EN315 ENGLISH BLACK CARIBBEAN BLACK CARIBBEAN 23665 AMERICAS CHRISTIAN: PROTESTANT English ENG Indo-European;Germanic;West;English 1- Black - Caribbean M) Black or Black British - Caribbean CHRISTIAN COB_Elsewhere

EN314 ENGLISH ENGLISH BRITISH SOUTH AFRICA 45 AFRICA CHRISTIAN: PROTESTANT English ENG Indo-European;Germanic;West;English 0- White A) White - British CHRISTIAN

EN213 ENGLISH ENGLISH CHANNEL ISLANDS 23995 BRITISH ISLES CHRISTIAN: PROTESTANT English ENG Indo-European;Germanic;West;English 0- White A) White - British CHRISTIAN COB_England

EN211 ENGLISH ENGLISH CORNWALL 107068 BRITISH ISLES CHRISTIAN: PROTESTANT English ENG Indo-European;Celtic;Insular;Brythonic 0- White A) White - British CHRISTIAN COB_England

EN110 ENGLISH ENGLISH ENGLAND 31118965 BRITISH ISLES CHRISTIAN: PROTESTANT English ENG Indo-European;Germanic;West;English 0- White A) White - British CHRISTIAN COB_England

EU215 EUROPEAN AFRIKAANS AFRIKAANS 7805 AFRICA CHRISTIAN: PROTESTANT Afrikaans AFK Indo-European;Germanic;West;Low Saxon-Low Franconian 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU734 EUROPEAN ALBANIA ALBANIA 3440
EASTERN 
EUROPE

CHRISTIAN: GREEK 
ORTHODOX Albanian ALS Indo-European;Albanian;Tosk; 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU727 EUROPEAN BALKAN BALKAN 16274
EASTERN 
EUROPE CHRISTIAN Serbian SDD Indo-European;Slavic;South;Western 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU839 EUROPEAN BALKAN BULGARIA 109
EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Bulgarian BLG Indo-European;Slavic;South;Eastern 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU733 EUROPEAN BALKAN CROATIA 1362
EASTERN 
EUROPE CHRISTIAN: CATHOLIC Croatian CRX Indo-European;Slavic;South;Western 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU731 EUROPEAN BALKAN MACEDONIA 371
EASTERN 
EUROPE

CHRISTIAN: GREEK 
ORTHODOX Macedonian MKJ Indo-European;Slavic;South;Eastern 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU730 EUROPEAN BALKAN MONTENEGRO 44
EASTERN 
EUROPE MUSLIM Serbian SDD Indo-European;Slavic;South;Western 0- White C) White - Any other White background MUSLIM COB_Elsewhere

EU728 EUROPEAN BALKAN SERBIA 5279
EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Serbian SDD Indo-European;Slavic;South;Western 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU732 EUROPEAN BALKAN SLOVENIA 1282
EASTERN 
EUROPE CHRISTIAN: CATHOLIC Slovenian SLV Indo-European;Slavic;South;Western 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU624 EUROPEAN BALTIC ESTONIA 778
EASTERN 
EUROPE CHRISTIAN: PROTESTANT Estonian EST Uralic;Finno-Ugric;Finno-Permic;Finno-Cheremisic 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU625 EUROPEAN BALTIC LATVIA 1559
EASTERN 
EUROPE CHRISTIAN: CATHOLIC Latvian LAV Indo-European; Baltic; Eastern 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU626 EUROPEAN BALTIC LITHUANIA 1790
EASTERN 
EUROPE CHRISTIAN: CATHOLIC Lithuanian LIT Indo-European;Baltic;Eastern 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU836 EUROPEAN CZECH & SLOVAKIAN CZECH REPUBLIC 4357
EASTERN 
EUROPE CHRISTIAN: CATHOLIC Czech CZC Indo-European;Slavic;West;Czech-Slovak 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU837 EUROPEAN CZECH & SLOVAKIAN SLOVAKIA 524
EASTERN 
EUROPE CHRISTIAN Slovak SLO Indo-European;Slavic;West;Czech-Slovak 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU212 EUROPEAN DUTCH BELGIUM (FLEMISH) 4417
CENTRAL 
EUROPE CHRISTIAN: PROTESTANT Vlaams VLS Indo-European;Germanic;West;Low Saxon-Low Franconian 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

EU214 EUROPEAN DUTCH NETHERLANDS 20495
CENTRAL 
EUROPE CHRISTIAN Dutch DUT Indo-European;Germanic;West;Low Saxon-Low Franconian 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

EU523 EUROPEAN ENGLISH MALTA 8027
SOUTHERN 
EUROPE CHRISTIAN: CATHOLIC Maltese MLS Afro-Asiatic;Semitic;Central;South 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU110 EUROPEAN EUROPEAN OTHER EUROPEAN 31341
CENTRAL 
EUROPE CHRISTIAN German GER Indo-European;Germanic;West;High German 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

EU211 EUROPEAN FRENCH BELGIUM 815
CENTRAL 
EUROPE CHRISTIAN French FRN Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

EU213 EUROPEAN FRENCH BELGIUM (WALLOON) 618
CENTRAL 
EUROPE CHRISTIAN: CATHOLIC French WLZ Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

EU317 EUROPEAN FRENCH BRETON 640
CENTRAL 
EUROPE CHRISTIAN: CATHOLIC French FRN Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

EU318 EUROPEAN FRENCH CANADA 299 AMERICAS CHRISTIAN: PROTESTANT English ENG Indo-European;Germanic;West;English 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU316 EUROPEAN FRENCH FRANCE 125754
CENTRAL 
EUROPE CHRISTIAN: CATHOLIC French FRN Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

EU319 EUROPEAN FRENCH FRENCH CARIBBEAN 3 AMERICAS CHRISTIAN: CATHOLIC French FRN Indo-European;Italic;Romance;Italo-Western 1- Black - Caribbean M) Black or Black British - Caribbean CHRISTIAN COB_Elsewhere

EU420 EUROPEAN GERMAN GERMANY 129190
CENTRAL 
EUROPE CHRISTIAN German GER Indo-European;Germanic;West;High German 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

EU421 EUROPEAN GERMAN SWITZERLAND 128
CENTRAL 
EUROPE CHRISTIAN SchwyzerdŸtsch GSW Indo-European;Germanic;West;High German 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU838 EUROPEAN HUNGARIAN HUNGARY 11768
EASTERN 
EUROPE CHRISTIAN: CATHOLIC Hungarian HNG Uralic;Finno-Ugric;Ugric;Hungarian 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU522 EUROPEAN ITALIAN ITALY 229931
SOUTHERN 
EUROPE CHRISTIAN: CATHOLIC Italian ITN Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

EU729 EUROPEAN MUSLIM
BOSNIA AND 
HERZEGOVINA 1034

EASTERN 
EUROPE MUSLIM Bosnian BWF Indo-European;Slavic;South;Western 0- White C) White - Any other White background MUSLIM COB_Elsewhere

EU835 EUROPEAN POLISH POLAND 155743
EASTERN 
EUROPE CHRISTIAN: CATHOLIC Polish PQL Indo-European;Slavic;West;Lechitic 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU840 EUROPEAN ROMANIAN ROMANIA 744
EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Romanian RUM Indo-European;Italic;Romance;Eastern 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU841 EUROPEAN ROMANIAN ROMANIA BANAT 29
EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Romanian RUM Indo-European;Italic;Romance;Eastern 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU842 EUROPEAN ROMANIAN ROMANIA DOBREGA 28
EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Romanian RUM Indo-European;Italic;Romance;Eastern 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU843 EUROPEAN ROMANIAN
ROMANIA 
MANAMURESCRIANA 331

EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Romanian RUM Indo-European;Italic;Romance;Eastern 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere
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EU844 EUROPEAN ROMANIAN ROMANIA MOLDOVA 200
EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Romanian RUM Indo-European;Italic;Romance;Eastern 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU845 EUROPEAN ROMANIAN ROMANIA MUNTENIA 364
EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Romanian RUM Indo-European;Italic;Romance;Eastern 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU846 EUROPEAN ROMANIAN ROMANIA TRANSILVANIA 835
EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Romanian RUM Indo-European;Italic;Romance;Eastern 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU950 EUROPEAN RUSSIAN AZERBAIJAN 12 CENTRAL ASIA MUSLIM Azerbaijani, North AZE Altaic;Turkic;Southern;Azerbaijani 0- White C) White - Any other White background MUSLIM COB_Elsewhere

EU948 EUROPEAN RUSSIAN BELARUS 27
EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Belarusan RUW Indo-European;Slavic;East; 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU951 EUROPEAN RUSSIAN GEORGIA 185 CENTRAL ASIA
CHRISTIAN: RUSSIAN 
ORTHODOX Georgian GEO South Caucasian;Georgian 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU947 EUROPEAN RUSSIAN RUSSIA 11118
EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Russian RUS Indo-European;Slavic;East; 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

EU949 EUROPEAN UKRANIAN UKRAINE 3948
EASTERN 
EUROPE

CHRISTIAN: RUSSIAN 
ORTHODOX Ukrainian UKR Indo-European;Slavic;East; 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

GR110 GREEK GREEK GREECE 29134
SOUTHERN 
EUROPE

CHRISTIAN: GREEK 
ORTHODOX Greek GRK Indo-European;Greek;Attic; 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

GR211 GREEK GREEK GREEK CYPRUS 79304
SOUTHERN 
EUROPE

CHRISTIAN: GREEK 
ORTHODOX Greek GRK Indo-European;Greek;Attic; 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

GR212 GREEK GREEK GREEK ORTHODOX 932
SOUTHERN 
EUROPE

CHRISTIAN: GREEK 
ORTHODOX Greek GRK Indo-European;Greek;Attic; 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

HI213 HISPANIC PORTUGUESE ANGOLA 458 AFRICA CHRISTIAN: CATHOLIC Portuguese POR Indo-European;Italic;Romance;Italo-Western 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere

HI212 HISPANIC PORTUGUESE BRAZIL 1949 AMERICAS CHRISTIAN: CATHOLIC Portuguese POR Indo-European;Italic;Romance;Italo-Western 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group CHRISTIAN COB_Elsewhere
HI214 HISPANIC PORTUGUESE GOA 990 SOUTH ASIA CHRISTIAN: CATHOLIC Portuguese POR Indo-European;Italic;Romance;Italo-Western 4- Indian H) Asian or Asian British - Indian CHRISTIAN COB_Elsewhere

HI211 HISPANIC PORTUGUESE PORTUGAL 86930
SOUTHERN 
EUROPE CHRISTIAN: CATHOLIC Portuguese POR Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

HI419 HISPANIC SPANISH BASQUE 1568
SOUTHERN 
EUROPE CHRISTIAN: CATHOLIC Basque BSQ Basque; 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

HI316 HISPANIC SPANISH CASTILLIAN 10775
SOUTHERN 
EUROPE CHRISTIAN: CATHOLIC Spanish SPN Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

HI520 HISPANIC SPANISH CATALAN 3105
SOUTHERN 
EUROPE CHRISTIAN: CATHOLIC Catalan CLN Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

HI621 HISPANIC SPANISH GALICIAN 511
SOUTHERN 
EUROPE CHRISTIAN: CATHOLIC Galician GLN Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

HI110 HISPANIC SPANISH HISPANIC 6084
SOUTHERN 
EUROPE CHRISTIAN: CATHOLIC Spanish SPN Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

HI317 HISPANIC SPANISH LATIN AMERICA 3644 AMERICAS CHRISTIAN: CATHOLIC Spanish SPN Indo-European;Italic;Romance;Italo-Western 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group CHRISTIAN COB_Elsewhere

HI318 HISPANIC SPANISH PHILIPPINES 1976 EAST ASIA CHRISTIAN: CATHOLIC Filipino FIL Austronesian;Malayo-Polynesian;Meso Philippine;Central Philippine 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group CHRISTIAN COB_Elsewhere

HI315 HISPANIC SPANISH SPAIN 80180
SOUTHERN 
EUROPE CHRISTIAN: CATHOLIC Spanish SPN Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

IN110 INTERNATIONAL INTERNATIONAL INTERNATIONAL 15799 UNCLASSIFIED Not Applicable Not Applicable Not Applicable Not Applicable 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group
NOT 
APPLICABLE COB_Elsewhere

JP110 JAPANESE JAPANESE JAPAN 6335 EAST ASIA BHUDDIST Japanese JPN Japanese;Japanese 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group BHUDDIST COB_Elsewhere

JA313
JEWISH AND 
ARMENIAN ARMENIAN ARMENIAN 4353 CENTRAL ASIA

CHRISTIAN: 
ORTHODOX_CALCEDONI
AN Armenian ARM Indo-European;Armenian 0- White C) White - Any other White background CHRISTIAN COB_Elsewhere

JA211
JEWISH AND 
ARMENIAN JEWISH JEWISH 80522 DIASPORIC JEWISH Hebrew HBR Afro-Asiatic;Semitic;Central;South 0- White C) White - Any other White background JEWISH COB_Elsewhere

JA110
JEWISH AND 
ARMENIAN JEWISH JEWISH AND ARMENIAN 72 DIASPORIC Not Applicable Not Applicable Not Applicable Not Applicable 0- White C) White - Any other White background

NOT 
APPLICABLE COB_Elsewhere

JA212
JEWISH AND 
ARMENIAN JEWISH SEPHARDIC JEWISH 821 DIASPORIC JEWISH Ladino LAD Indo-European;Italic;Romance;Italo-Western 0- White C) White - Any other White background JEWISH COB_Elsewhere

ML427 MUSLIM BANGLADESHI BANGLADESH 179401 SOUTH ASIA MUSLIM Bengali BNG Indo-European;Indo-Iranian;Indo-Aryan;Eastern zone 6- Bangladeshi K) Asian or Asian British - Bangladeshi MUSLIM COB_Elsewhere
ML640 MUSLIM ERITREAN ERITREA 1397 AFRICA CHRISTIAN: OTHER TigrŽ TIE Afro-Asiatic;Semitic;South;Ethiopian 2- Black - African N) Black or Black British - African CHRISTIAN COB_Elsewhere

ML212 MUSLIM IRANIAN IRAN 10312 MIDDLE EAST MUSLIM Farsi PES Indo-European;Indo-Iranian;Iranian;Western 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML216 MUSLIM LEBANESE LEBANON 3107 MIDDLE EAST MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML743 MUSLIM MUSLIM BALKAN MUSLIM 10
EASTERN 
EUROPE MUSLIM Bosnian BWF Indo-European;Slavic;South;Western 0- White C) White - Any other White background MUSLIM COB_Elsewhere

ML431 MUSLIM MUSLIM MALAYSIAN MUSLIM 220 EAST ASIA MUSLIM Malay MLI Austronesian;Malayo-Polynesian;Western Malayo-Polynesian;Sundic 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere
ML639 MUSLIM MUSLIM SUDAN 468 AFRICA MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 2- Black - African N) Black or Black British - African MUSLIM COB_Elsewhere
ML637 MUSLIM MUSLIM WEST AFRICAN MUSLIM 2399 AFRICA MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 2- Black - African N) Black or Black British - African MUSLIM COB_Elsewhere

ML213 MUSLIM MUSLIM MIDDLE EAST IRAQ 262 MIDDLE EAST MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML214 MUSLIM MUSLIM MIDDLE EAST JORDAN 55 MIDDLE EAST MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML215 MUSLIM MUSLIM MIDDLE EAST KUWAIT 3 MIDDLE EAST MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML211 MUSLIM MUSLIM MIDDLE EAST MIDDLE EAST 672 MIDDLE EAST MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML110 MUSLIM MUSLIM MIDDLE EAST MUSLIM 103514 MIDDLE EAST MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML217 MUSLIM MUSLIM MIDDLE EAST OMAN 5 MIDDLE EAST MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML218 MUSLIM MUSLIM MIDDLE EAST SAUDI ARABIA 186 MIDDLE EAST MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML219 MUSLIM MUSLIM MIDDLE EAST SYRIA 142 MIDDLE EAST MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML220 MUSLIM MUSLIM MIDDLE EAST UNITED ARAB EMIRATES 14 MIDDLE EAST MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere
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ML221 MUSLIM MUSLIM MIDDLE EAST YEMEN 6 MIDDLE EAST MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML532 MUSLIM
MUSLIM 
NORTHAFRICAN ALGERIA 2585 AFRICA MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML533 MUSLIM
MUSLIM 
NORTHAFRICAN EGYPT 479 AFRICA MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML535 MUSLIM
MUSLIM 
NORTHAFRICAN LIBYA 38 AFRICA MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML536 MUSLIM
MUSLIM 
NORTHAFRICAN MOROCCO 572 AFRICA MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML534 MUSLIM
MUSLIM 
NORTHAFRICAN TUNISIA 39 AFRICA MUSLIM Arabic ARB Afro-Asiatic;Semitic;Central;South 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML428 MUSLIM MUSLIM SOUTH ASIAN MUSLIM INDIA 25704 SOUTH ASIA MUSLIM Punjabi PNJ Indo-European;Indo-Iranian;Indo-Aryan;Central zone 4- Indian H) Asian or Asian British - Indian MUSLIM COB_Elsewhere

ML326 MUSLIM MUSLIM STANS AFGHANISTAN 3687 CENTRAL ASIA MUSLIM Farsi PRS Indo-European;Indo-Iranian;Iranian;Western 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML322 MUSLIM MUSLIM STANS KAZAKHSTAN 11 CENTRAL ASIA MUSLIM Kazakh KAZ Altaic;Turkic;Western;Aralo-Caspian 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML323 MUSLIM MUSLIM STANS KYRGYZSTAN 2 CENTRAL ASIA MUSLIM Kirghiz KDO Altaic;Turkic;Western;Aralo-Caspian 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML324 MUSLIM MUSLIM STANS TURKMENISTAN 8 CENTRAL ASIA MUSLIM Turkmen TUR Afro-Asiatic;Chadic;Biu-Mandara;A 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML325 MUSLIM MUSLIM STANS UZBEKISTAN 3 CENTRAL ASIA MUSLIM Uzbek UZB Altaic;Turkic;Eastern; 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere
ML429 MUSLIM PAKISTANI PAKISTAN 508699 SOUTH ASIA MUSLIM Punjabi PNB Indo-European;Indo-Iranian;Indo-Aryan;Northwestern zone 5- Pakistani J) Asian or Asian British - Pakistani MUSLIM COB_Elsewhere
ML430 MUSLIM PAKISTANI KASHMIR PAKISTANI KASHMIR 91472 SOUTH ASIA MUSLIM Kashmiri KSH Indo-European;Indo-Iranian;Indo-Aryan;Northwestern zone 5- Pakistani J) Asian or Asian British - Pakistani MUSLIM COB_Elsewhere
ML638 MUSLIM SOMALIAN SOMALIA 33260 AFRICA MUSLIM Somali SOM Afro-Asiatic;Cushitic;East;Somali 2- Black - African N) Black or Black British - African MUSLIM COB_Elsewhere

ML741 MUSLIM TURKISH TURKEY 50706 MIDDLE EAST MUSLIM Turkish TRK Altaic;Turkic;Southern;Turkish 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ML742 MUSLIM TURKISH TURKISH CYPRUS 1205 MIDDLE EAST MUSLIM Turkish TRK Altaic;Turkic;Southern;Turkish 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group MUSLIM COB_Elsewhere

ND211 NORDIC DANISH DENMARK 20561
NORTHERN 
EUROPE CHRISTIAN: PROTESTANT Danish DNS Indo-European;Germanic;North;East Scandinavian 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

ND315 NORDIC FINNISH FINLAND 5685
NORTHERN 
EUROPE CHRISTIAN: PROTESTANT Finnish FIN Uralic;Finnic 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

ND212 NORDIC NORDIC ICELAND 115
NORTHERN 
EUROPE CHRISTIAN: PROTESTANT Icelandic ICE Indo-European;Germanic;North;West Scandinavian 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

ND110 NORDIC NORDIC NORDIC 6377
NORTHERN 
EUROPE CHRISTIAN: PROTESTANT Not Applicable Not Applicable Not Applicable 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

ND214 NORDIC NORWEGIAN NORWAY 186375
NORTHERN 
EUROPE CHRISTIAN: PROTESTANT Norwegian NNO Indo-European;Germanic;North;West Scandinavian 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

ND213 NORDIC SWEDISH SWEDEN 19090
NORTHERN 
EUROPE CHRISTIAN: PROTESTANT Swedish SWD Indo-European;Germanic;North;East Scandinavian 0- White C) White - Any other White background CHRISTIAN COB_Other EU countries

SK110 SIKH SIKH INDIA SIKH 283657 SOUTH ASIA SIKH Punjabi PNJ Indo-European;Indo-Iranian;Indo-Aryan;Central zone 4- Indian H) Asian or Asian British - Indian SIKH COB_Elsewhere
SA211 SOUTH ASIAN HINDI INDIAN INDIA HINDI 319677 SOUTH ASIA HINDU Hindi HND Indo-European;Indo-Iranian;Indo-Aryan;Central zone 4- Indian H) Asian or Asian British - Indian HINDU COB_Elsewhere
SA213 SOUTH ASIAN HINDI INDIAN INDIA SOUTH 302 SOUTH ASIA BHUDDIST Hindi HND Indo-European;Indo-Iranian;Indo-Aryan;Central zone 4- Indian H) Asian or Asian British - Indian BHUDDIST COB_Elsewhere
SA316 SOUTH ASIAN HINDI NOT INDIAN BANGLADESH HINDU 2974 SOUTH ASIA HINDU Bengali BNG Indo-European;Indo-Iranian;Indo-Aryan;Eastern zone 6- Bangladeshi K) Asian or Asian British - Bangladeshi HINDU COB_Elsewhere
SA214 SOUTH ASIAN HINDI NOT INDIAN HINDU NOT INDIAN 22106 SOUTH ASIA HINDU Hindi HND Indo-European;Indo-Iranian;Indo-Aryan;Central zone 4- Indian H) Asian or Asian British - Indian HINDU COB_Elsewhere
SA212 SOUTH ASIAN INDIA NORTH INDIA NORTH 75282 SOUTH ASIA HINDU Hindi HND Indo-European;Indo-Iranian;Indo-Aryan;Central zone 4- Indian H) Asian or Asian British - Indian HINDU COB_Elsewhere

SA522 SOUTH ASIAN SOUTH ASIAN OTHER ASIAN CARIBBEAN 581 AMERICAS HINDU Hindi HND Indo-European;Indo-Iranian;Indo-Aryan;Central zone 4- Indian
L) Asian or Asian British - Any other Asian 
background HINDU COB_Elsewhere

SA317 SOUTH ASIAN SOUTH ASIAN OTHER BHUTAN 3 SOUTH ASIA BHUDDIST Dzongkha DZO Sino-Tibetan;Tibeto-Burman;Himalayish;Tibeto-Kanauri 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group BHUDDIST COB_Elsewhere

SA523 SOUTH ASIAN SOUTH ASIAN OTHER GUYANA 911 AMERICAS HINDU Hindi HND Indo-European;Indo-Iranian;Indo-Aryan;Central zone 4- Indian
L) Asian or Asian British - Any other Asian 
background HINDU COB_Elsewhere

SA421 SOUTH ASIAN SOUTH ASIAN OTHER KENYAN ASIAN 1121 AFRICA HINDU Hindi HND Indo-European;Indo-Iranian;Indo-Aryan;Central zone 4- Indian
L) Asian or Asian British - Any other Asian 
background HINDU COB_Elsewhere

SA318 SOUTH ASIAN SOUTH ASIAN OTHER NEPAL 150 SOUTH ASIA HINDU Nepali NEP Indo-European;Indo-Iranian;Indo-Aryan;Northern zone 8- Any other ethnic group
L) Asian or Asian British - Any other Asian 
background HINDU COB_Elsewhere

SA420 SOUTH ASIAN SOUTH ASIAN OTHER SEYCHELLES 71 SOUTH ASIA CHRISTIAN: CATHOLIC
Seselwa Creole 
French CRS Creole;French based 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group CHRISTIAN COB_Elsewhere

SA110 SOUTH ASIAN SOUTH ASIAN OTHER SOUTH ASIA 12699 SOUTH ASIA BHUDDIST Hindi HND Indo-European;Indo-Iranian;Indo-Aryan;Central zone 8- Any other ethnic group S) Other Ethnic Groups - Any other ethnic group BHUDDIST COB_Elsewhere

SA315 SOUTH ASIAN SRI LANKAN SRI LANKA 53919 SOUTH ASIA BHUDDIST Sinhala SNH Indo-European;Indo-Iranian;Indo-Aryan;Sinhalese-Maldivian 4- Indian
L) Asian or Asian British - Any other Asian 
background BHUDDIST COB_Elsewhere

ZU110 UNCLASSIFIED VOID UNCLASSIFIED 21826 UNCLASSIFIED Not Applicable Not Applicable Not Applicable Not Applicable 9- Unknown Y) Unclassified
NOT 
APPLICABLE COB_Elsewhere

ZZ316 VOID VOID NOT FOUND 110049 Not Applicable Not Applicable Not Applicable Not Applicable 9- Unknown Y) Unclassified
NOT 
APPLICABLE COB_Elsewhere

ZZ110 VOID VOID VOID 12118 UNCLASSIFIED Not Applicable Not Applicable Not Applicable Not Applicable 9- Unknown Y) Unclassified
NOT 
APPLICABLE COB_Elsewhere

ZZ211 VOID VOID VOID   SURNAME 819 UNCLASSIFIED Not Applicable Not Applicable Not Applicable Not Applicable 9- Unknown Y) Unclassified
NOT 
APPLICABLE COB_Elsewhere

ZZ212 VOID VOID VOID INITIAL 94621 UNCLASSIFIED Not Applicable Not Applicable Not Applicable Not Applicable 9- Unknown Y) Unclassified
NOT 
APPLICABLE COB_Elsewhere

ZZ213 VOID VOID VOID OTHER 56 UNCLASSIFIED Not Applicable Not Applicable Not Applicable Not Applicable 9- Unknown Y) Unclassified
NOT 
APPLICABLE COB_Elsewhere

ZZ214 VOID VOID VOID PERSONAL NAME 5464 UNCLASSIFIED Not Applicable Not Applicable Not Applicable Not Applicable 9- Unknown Y) Unclassified
NOT 
APPLICABLE COB_Elsewhere

ZZ215 VOID VOID VOID TITLE 1858 UNCLASSIFIED Not Applicable Not Applicable Not Applicable Not Applicable 9- Unknown Y) Unclassified
NOT 
APPLICABLE COB_Elsewhere
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Appendix 4: Automated Classification Algorithms 

Structured Query Language (SQL) queries developed to build the automated 

classification of names. 

 

See chapter 6 for detailed explanation of the functionality of each of these queries 
that relate to the steps described in the chapter 
 
SQL colour and fonts used here follow the convention used by the editor PL/SQL 
Developer v.7 for Oracle 10. 
 

- Comments to the SQL code are preceded by ‘-- ‘ and appear in red and 
italics. 

- SQL statements appear in black and highlighted in bold 
- Table names, field names or any other variable name appear in normal black 

not highlighted  
- User imputed values appear in blue 
- Individual queries are separated by a black line 
 

 

1) Sample dataset of Non British forenames is created 

 
-- Create a table of Non British Forenames freq >10 and freq<4000 

 
create table tbl_cel_forename_sample as 
 
--select count(*) from 
( 
select t.id_nr, 
       t.forename, 
       t.cel, 
       lu.cel_subgroup, 
       lu.cel_group, 
       fq.freq, 
       fq.gender 
  from tbl_cel_forename t 
  left join tbl_cel_lookup lu on t.cel = lu.cel_type 
  left join tbl_uk_er_firstname_freq2 fq on t.forename = fq.firstname 
 where t.cel_group <> 'ENGLISH' 
   and t.cel_group <> 'CELTIC' 
   and t.cel_group <> 'IRISH' 
   and fq.freq > 10 
) 
 
 

 
 

2) Query to create a Surname-Forename Matrix for Non-British Forenames 

 
-- This query creates a new table of surname-firstname frequencies. 
-- It is based on the 2004 Electoral Roll individual records 
-- It is restricted to consider only those records with Forenames considered of 
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a'Non-British' CELs 
-- Non-British FCEL is reduced to forenames with frequency between 10 and 4000,  
-- contained in table tbl_cel_forename_sample  
 
 
create table tbl_uk_er_aa_sur_fore_matrix as 
 
select er.surname, er.firstname, count(distinct(er.id)) freq 
from tbl_cel_forename_sample f, tbl_uk_elec_roll er 
where er.firstname = f.forename 
group by er.surname, er.firstname 
order by er.surname, er.firstname 
 
 
3) Calculations to cleanse the previous table 

 
3.1) Remove ‘VOID’ Surnames in Master CEL (Personal Names, Invalid Entries, etc. 
 
delete from tbl_uk_er_aa_sur_fore_matrix t 
 
 where exists (select * 
          from tbl_cel_surname cel 
         where t.surname = cel.surname 
           and cel.cel_group = 'VOID') 
--8,500 rows removed 
 
3.2) Remove Surnames with numeric characters 
delete from tbl_uk_er_aa_sur_fore_matrix t 
where REGEXP_LIKE(t.surname, '[[:digit:]]') 
--55 rows deleted 

 
3.3) Remove Surnames with strange characters 
 
delete from tbl_uk_er_aa_sur_fore_matrix t 
where REGEXP_LIKE(t.surname, '&') 
--9 rows deleted 
 
select * from tbl_uk_er_aa_sur_fore_matrix t 
where REGEXP_LIKE(t.surname, '''') 
--878 rows deleted 
 
delete from tbl_uk_er_aa_sur_fore_matrix t 
where REGEXP_LIKE(t.surname, '#') 
--1 row deleted 
 

4) Operations to filter the tbl_uk_er_aa_sur_fore_matrix (MT) table 

 
 
4.1) Remove surnames in MT with national UK frequency of 1 or 2 
 
delete from tbl_uk_er_aa_sur_fore_matrix mt 
 where exists (select * 
          from tbl_uk_er_surname_freq fq 
         where mt.surname = fq.surname 
           and fq.uk_frequency < 3) 
 
179136 rows deleted 
 
 
4.2) Delete Surnames and Forenames with short Names <4 characters 
 
delete from tbl_uk_er_aa_sur_fore_matrix t 
where LENGTH (t.firstname) <4 
 
delete from tbl_uk_er_aa_sur_fore_matrix t 
where LENGTH (t.surname) <4 
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4.3) Remove surnames in MT with Forename types per Surname = 1 AND Surname-Forename 
Freq = 1 
 
delete from tbl_uk_er_aa_sur_fore_matrix mt 
where exists 
( 
select * from tbl_uk_er_aa_sur_forefreq ff 
where mt.surname = ff.surname 
and ff.fore_typ = 1 
and ff.surfore_freq = 1 
) 
 
 

5) Selection of the top CEL subgroup for each forename 

 
 
--This query assigns a CEL SUBGROUP to each FORENAME in the sample 
-- selecting the Top CEL SUBGROUP other than English of their surnames in the Total 
ER  
create or replace view vw_uk_er_full_fore_subgrp as 
 
select distinct oq.forename, oq.cel_subgroup, oq.sbgr_sur_tok, oq.sbgr_sur_typ, 
oq.perc_subgrp 
  from -- This first query reports 1 row per FORENAME-SUBGROUP pair, 
       --calculating the share of each SUBGROUP in the forename 
        
        (select distinct fs.firstname forename, 
                         lu.cel_subgroup, 
                         sum(mt.pair_tok) sbgr_sur_tok, 
                         count(mt.surname) sbgr_sur_typ, 
                         (sum(mt.pair_tok) / min(fs.surfore_freq)) perc_subgrp 
           from tbl_uk_er_aa_for_surfreq fs 
           left join tbl_uk_er_full_fore_sur_matrix mt on fs.firstname = 
                                                          mt.firstname 
           left join tbl_cel_surname st on mt.surname = st.surname 
           left join tbl_cel_lookup lu on lu.cel_type = st.cel 
          where lu.cel_type is not null 
            and lu.cel_subgroup <> 'ENGLISH' 
          group by fs.firstname, lu.cel_subgroup) oq, 
        
       -- This second nested queries report the max FORENAME-SUBGROUP pair, 
       --based on the MAX the share of each SUBGROUP in the forename 
        
       (select distinct ir.forename, max(ir.perc_subgrp) max_sbgrp 
          from (select distinct fs.firstname forename, 
                                lu.cel_subgroup, 
                                sum(mt.pair_tok) sbgr_sur_tok, 
                                count(mt.surname) sbgr_sur_typ, 
                                (sum(mt.pair_tok) / min(fs.surfore_freq)) perc_subgrp 
                  from tbl_uk_er_aa_for_surfreq fs 
                  left join tbl_uk_er_full_fore_sur_matrix mt on fs.firstname = 
                                                                 mt.firstname 
                  left join tbl_cel_surname st on mt.surname = st.surname 
                  left join tbl_cel_lookup lu on lu.cel_type = st.cel 
                 where lu.cel_type is not null 
                   and lu.cel_subgroup <> 'ENGLISH' 
                 group by fs.firstname, lu.cel_subgroup) ir 
         group by ir.forename) mx 
 
 -- This links the two queries  
  
 where oq.forename = mx.forename 
   and oq.perc_subgrp = mx.max_sbgrp 
 
--But it creates a problem of forenames with several CEL Subgroups  
--Which gets removed by the following query 
 
-- Creates a table with a unique Subgroup per FORENAME 
create table tbl_uk_er_aa_fore_subgrp_freq as 
( 
select distinct * from 
-- The view that creates the MAX Subgroups 
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vw_uk_er_full_fore_subgrp vw 
        -- This query makes sure that only forenames with ONE UNIQUE MAX Subgroup are 
used  
where exists (select * from 
              ( 
              select tf.forename, count(tf.cel_subgroup) cnt 
               from vw_uk_er_full_fore_subgrp tf 
               group by tf.forename 
               ) q 
               where cnt =1 
               and  vw.forename= q.forename) 
) 
 
 
-- This query joins vw_uk_er_aa_fore_subgrp_diag with tbl_uk_er_aa_fore_subgrp_freq 
and creates a new summary table 
 
 
create table tbl_uk_er_aa_fore_subgrp_all as 
( 
select sa.forename, sa.samp_for_tok, sa.tot_fore_tok, sa.subgrp_fore_tok, 
sa.subgrp_sur_typ, sa.samp_sur_typ, sa.tot_sur_typ, 
sa.sur_cel_subgroup sam_subgroup, 
tt.cel_subgroup tot_subgroup, tt.sbgr_sur_tok, tt.sbgr_sur_typ 
from vw_uk_er_aa_fore_subgrp_diag sa 
left join tbl_uk_er_aa_fore_subgrp_freq tt on tt.forename = sa.forename 
) 
 
 
 

6) Standardisation of percentages by z-scores, averaging z_typ and z_tok and 

truncating them 

 
 
-- This set of queries calculates the final SCORE for each FORENAME and its 
association with a SUBGROUP 
create table tbl_uk_er_aa_fore_z_scores as 
( 
-- This query averages the Z-SCORES and adds a value of one to create the final score 
for a FORENAME 
-- at the end there is a filter to select only positive values of the final_score 
(>0) 
select z.*, (((z.z_tok+z.z_typ)/2)+1) final_score 
from 
( 
-- This query links two subqueries of stats and calculates Z-SCORES 
select pr.*, 
       case 
         when st.std_tok = 0 then 
          0 
         else 
          ((pr.subgrp_tok_perc - st.avg_tok) / st.std_tok) 
       end z_tok, 
       case 
         when st.std_typ = 0 then 
          0 
         else 
          ((pr.subgrp_typ_perc - st.avg_typ) / st.std_typ) 
       end z_typ 
from 
-- This query calculates percentages of tok and typ by FORENAME  
--based on tbl_uk_er_aa_fore_subgrp_all table 
( 
select t.forename, 
       t.tot_subgroup, 
       (t.sbgr_sur_tok / t.tot_fore_tok) subgrp_tok_perc, 
       (t.sbgr_sur_typ / t.tot_sur_typ) subgrp_typ_perc 
  from tbl_uk_er_aa_fore_subgrp_all t 
 where t.tot_subgroup is not null 
) pr, 
 
-- This query calculates the average and stddev of the above query 
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(select q.tot_subgroup, 
       avg(q.subgrp_tok_perc) avg_tok, 
       stddev(q.subgrp_tok_perc) std_tok, 
       avg(q.subgrp_typ_perc) avg_typ, 
       stddev(q.subgrp_typ_perc) std_typ 
  from -- This is the same query as above 
       (select t.forename, 
               t.tot_subgroup, 
               (t.sbgr_sur_tok / t.tot_fore_tok) subgrp_tok_perc, 
               (t.sbgr_sur_typ / t.tot_sur_typ) subgrp_typ_perc 
          from tbl_uk_er_aa_fore_subgrp_all t 
         where t.tot_subgroup is not null) q 
 group by q.tot_subgroup 
 ) st 
 --This joins the two subqueries 
 where pr.tot_subgroup = st.tot_subgroup 
) z 
-- This is a filter to select only positive values of the final_score (>0) 
where (((z.z_tok+z.z_typ)/2)+1)> 0 
) 
 
 
 

7) Cycle 1: Forename-Surname-Clustering (FSC) 

 
This query reports all the possible CEL subgroups per surname. 
It links the main Forename-Surname Matrix (tbl_uk_er_full_fore_sur_matrix) with the 
Forename seed list (tbl_uk_er_aa_fore_z_scores) and the gender weighting table ( 
tbl_uk_er_gender_weight) 
 
create table tbl_uk_er_sur_subgrp_score 
as 
( 
select distinct surname, 
                tot_subgroup, 
                sum(pair_tok) fore_tok, 
                count(pair_tok) fore_typ, 
                sum(fs_pair_score) subgrp_cumm_score         
 
  from (select distinct mt.surname, 
                        zs.tot_subgroup, 
                        zs.final_score z_f_score, 
                        sx.gender, 
                        mt.pair_tok, 
                       (gd.weight* zs.final_score * mt.pair_tok) fs_pair_score 
          from tbl_uk_er_full_fore_sur_matrix mt 
          left join tbl_uk_er_aa_fore_z_scores zs on mt.firstname = 
                                                     zs.forename 
          left join tbl_uk_er_firstname_freq2 sx on mt.firstname = 
                                                    sx.firstname 
        left join tbl_uk_er_gender_weight gd on sx.gender = gd.gender 
        ) 
group by surname, tot_subgroup 
) 
 
 
 
--This is the second query that selects the SUBGROUP with MAX value of subgroup SCORE 
from the previous table (tbl_uk_er_sur_subgrp_score) 
--and calculates final SCORE 
 
create table tbl_uk_er_sur_subgrp_lookup as 
( 
select distinct  
       sc.surname,  
       sc.tot_subgroup,  
       (sc.subgrp_cumm_score/sc.fore_tok) subgrp_score_pp, 
       (sc.fore_tok/stok.uk_frequency) subgrp_tok_tot_perc 
 
from  
tbl_uk_er_sur_subgrp_score sc,  
tbl_uk_er_surname_freq stok, 
 
--this query selects Non-British surnames 
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(select distinct heu.surname from 
tbl_cel_surname heu, tbl_cel_lookup lu 
where heu.cel = lu.cel_type 
and lu.cel_subgroup <> 'ENGLISH' 
and lu.cel_subgroup <>  'IRISH' 
and lu.cel_subgroup <>  'WELSH' 
and lu.cel_subgroup <>  'SCOTTISH') nuk 
, 
-- This query gets the MAX score 
( 
select sc.surname, max(sc.subgrp_cumm_score) max_score 
  from tbl_uk_er_sur_subgrp_score sc 
 where sc.tot_subgroup is not null 
   and sc.tot_subgroup <> 'ENGLISH'    
   and sc.tot_subgroup <> 'IRISH' 
   and sc.tot_subgroup <> 'SCOTTISH' 
   and sc.tot_subgroup <> 'WELSH'  
   group by sc.surname) mx 
-- This links the two queries with two tables together 
 where sc.surname = mx.surname 
   and sc.subgrp_cumm_score = mx.max_score 
   and sc.surname = nuk.surname 
   and sc.surname = stok.surname 
); 
 
   -- Create/Recreate indexes  
create index IDX_UK_ER_SUR_SBGR_LU_SBGR on TBL_UK_ER_SUR_SUBGRP_LOOKUP (TOT_SUBGROUP) 
  tablespace USERS 
  pctfree 10 
  initrans 2 
  maxtrans 255 
  storage 
  ( 
    initial 64K 
    minextents 1 
    maxextents unlimited 
  ); 
create index IDX_UK_ER_SUR_SBGR_LU_SU on TBL_UK_ER_SUR_SUBGRP_LOOKUP (SURNAME) 
  tablespace USERS 
  pctfree 10 
  initrans 2 
  maxtrans 255 
  storage 
  ( 
    initial 64K 
    minextents 1 
    maxextents unlimited 
  ); 
 
 
 
 
-- Creates a table summarising stats for the relationship between F_CEL and S_CEL 
subgroup pairs 
create table tbl_uk_er_full_fore_sur_pair as 
select q.f_subgrp, 
       q.s_subgrp, 
       count(*) pair_typ, 
       avg(q.f_score) avg_f_score, 
       avg(q.s_score) avg_s_score, 
       avg(q.subgrp_tok_tot_perc) avg_tok_perc 
 
  from (select distinct mt.firstname, 
                        fs.tot_subgroup f_subgrp, 
                        fs.final_score f_score, 
                        mt.surname, 
                        ss.tot_subgroup s_subgrp, 
                        ss.subgrp_score_pp s_score, 
                        ss.subgrp_tok_tot_perc 
          from tbl_uk_er_full_fore_sur_matrix mt 
         inner join tbl_uk_er_aa_fore_z_scores fs on mt.firstname = 
                                                     fs.forename 
         inner join tbl_uk_er_sur_subgrp_lookup ss on mt.surname = 
                                                      ss.surname) q 
 group by q.f_subgrp, q.s_subgrp 
 order by q.f_subgrp, q.s_subgrp 



 
An Ontology of Ethnicity based upon Personal Names 410 

 

 
 
 

8) Second round of Forename-Surname-Clustering (FSC) 

 
-- Creates a table with new FORENAME_SUBGROUP pairs and new score 
-- This is the second round of the F_S_C tecnique going from 90k surnames back to all 
forenames 
create table tbl_uk_er_aa_fore_subgr_dtld as 
 
select q.forename, q.s_subgrp, sum(q.pair_tok) fore_tok , sum(q.pair_tok*q.s_score) 
cum_score 
from 
( 
select distinct mt.firstname forename, 
                mt.pair_tok, 
                fs.tot_subgroup f_subgrp, 
                fs.final_score f_score, 
                mt.surname, 
                ss.tot_subgroup s_subgrp, 
                ss.subgrp_score_pp s_score, 
                ss.subgrp_tok_tot_perc 
  from tbl_uk_er_full_fore_sur_matrix mt 
  left join tbl_uk_er_aa_fore_z_scores fs on mt.firstname = fs.forename 
 inner join tbl_uk_er_sur_subgrp_lookup ss on mt.surname = ss.surname) q 
 group by q.forename, q.s_subgrp 
 order by q.forename, q.s_subgrp 
; 
 -- Create/Recreate indexes  
create index IDX_UK_ER_AA_FOR_SBG_DT_FOR on TBL_UK_ER_AA_FORE_SUBGR_DTLD (FORENAME) 
  tablespace USERS 
  pctfree 10 
  initrans 2 
  maxtrans 255 
  storage 
  ( 
    initial 64K 
    minextents 1 
    maxextents unlimited 
  ); 
create index IDX_UK_ER_AA_FOR_SBG_DT_SG on TBL_UK_ER_AA_FORE_SUBGR_DTLD (S_SUBGRP) 
  tablespace USERS 
  pctfree 10 
  initrans 2 
  maxtrans 255 
  storage 
  ( 
    initial 64K 
    minextents 1 
    maxextents unlimited 
  ); 
 
 
-- This query selects the MAX SCORE and SUBGROUP for each NON-BRIT FORENAME 
-- with a match in the previous 90k surname-subgrp file 
 
create table tbl_uk_er_fore_subgrp_lookup as 
select qm.*, 
       (qm.cum_score / qm.fore_tok) avg_score_pp, 
       (qm.fore_tok / fq.freq) sbgrp_tok_tot_perc 
  from  
  tbl_uk_er_firstname_freq2 fq, 
  (select distinct * 
          from tbl_uk_er_aa_fore_subgr_dtld dt 
         where dt.forename <> ' ') qm, --removes blank forenames 
       -- this query selects the record with max score non Brit 
       (select d2.forename, max(d2.cum_score) max_score 
          from tbl_uk_er_aa_fore_subgr_dtld d2 
         where d2.s_subgrp <> 'ENGLISH' 
           and d2.s_subgrp <> 'IRISH' 
           and d2.s_subgrp <> 'WELSH' 
           and d2.s_subgrp <> 'SCOTTISH' 
         group by d2.forename) mx, 
       --this query selects Non-British forenames only 
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       (select distinct heu.forename 
          from tbl_cel_forename heu, tbl_cel_lookup lu 
         where heu.cel = lu.cel_type 
           and lu.cel_subgroup <> 'ENGLISH' 
           and lu.cel_subgroup <> 'IRISH' 
           and lu.cel_subgroup <> 'WELSH' 
           and lu.cel_subgroup <> 'SCOTTISH') nuk 
-- Links the table and three queries 
 where qm.forename = mx.forename 
   and qm.cum_score = mx.max_score 
   and qm.forename = nuk.forename 
   and qm.forename = fq.firstname 
   -- Limits the results by removing weakest assignments 
   -- in terms of low scores (>0.8) and low perc over total freq (<0.2) 
   and (qm.cum_score / qm.fore_tok)>= 0.8 
   and (qm.fore_tok / fq.freq)>= 0.2 
 
--End of queries 
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Appendix 5: Sample of CEL Classified Names in the Automated 

Approach 

Sample of forenames seed list (see section 6.3 for full details) 

FORENAME CEL SUBGROUP SCORE FORENAME CEL SUBGROUP SCORE
ABUDUL PAKISTANI 1.24 ADIL PAKISTANI 0.53
ABUL BANGLADESHI 0.36 ADILA PAKISTANI 1.35
ACACIO PORTUGUESE 1.80 ADILIA PORTUGUESE 2.75
ACHAL HINDI_INDIAN 1.78 ADILSON PORTUGUESE 0.85
ACHALA HINDI_INDIAN 0.79 ADINA SCOTTISH 0.72
ACHHAR SIKH 1.08 ADIO NIGERIAN 0.34
ACHILLE ITALIAN 1.61 ADISA NIGERIAN 0.49
ACHILLEAS GREEK 1.72 ADITI HINDI_INDIAN 0.28
ACHILLES GREEK 2.03 ADJEI GHANAIAN 2.30
ACHIM GERMAN 2.03 ADJOA GHANAIAN 2.26
ACHLA HINDI_INDIAN 1.26 ADLIN SCOTTISH 1.35
ADAEZE NIGERIAN 0.10 ADMAN WELSH 0.45
ADAIR SCOTTISH 1.87 ADNAAN PAKISTANI 2.10
ADAKU NIGERIAN 0.34 ADNAN PAKISTANI 0.53
ADAL PAKISTANI 0.84 ADOLF POLISH 0.16
ADALAT PAKISTANI 2.52 ADOLFO ITALIAN 0.51
ADALBERTO ITALIAN 0.55 ADOLPHINE WELSH 1.36
ADALET TURKISH 0.95 ADONIS GREEK 0.27
ADALGISA ITALIAN 1.12 ADORACION SPANISH 0.63
ADAMA SIERRA LEONIAN 0.43 ADREES PAKISTANI 2.68
ADAMANTIA GREEK 1.08 ADRI DUTCH 1.93
ADAMANTIOS GREEK 1.04 ADRIANO ITALIAN 1.30
ADAMINA SCOTTISH 4.58 ADRIANUS DUTCH 1.41
ADAMO ITALIAN 2.31 ADRIE WELSH 0.80
ADAMOS GREEK 2.37 ADRIS PAKISTANI 1.63
ADANNA NIGERIAN 0.95 ADUA ITALIAN 0.78
ADAOBI NIGERIAN 0.44 ADUKE NIGERIAN 0.94
ADAORA NIGERIAN 1.30 ADUL PAKISTANI 0.85
ADARSH HINDI_INDIAN 0.54 ADUNNI NIGERIAN 1.54
ADBUL PAKISTANI 0.58 ADUNOLA NIGERIAN 2.08
ADDO GHANAIAN 2.95 ADWOA GHANAIAN 1.73
ADDOLORATA ITALIAN 1.46 AEDAN IRISH 2.33
ADDUL PAKISTANI 1.09 AEJAZ PAKISTANI 2.68
ADEBAMBO NIGERIAN 1.61 AESHA PAKISTANI 2.49
ADEBANKE NIGERIAN 2.48 AEYSHA PAKISTANI 0.67
ADEBAYO NIGERIAN 1.76 AFAF MUSLIM_MIDDLE EAST 2.51
ADHAM MUSLIM_MIDDLE EAST 1.80 AFAM NIGERIAN 1.58
ADIBA PAKISTANI 1.36 AFAN WELSH 3.66
ADIJAT NIGERIAN 1.16 AFAQ PAKISTANI 2.33  
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Name-based ethnicity classification systems
have a great potential to overcome data
scarcity issues in a wide variety of key topics
in population studies, as is proved by the 13
papers analysed. Their current limitations are
mainly due to a restricted number of names
and a partial spatio-temporal coverage of the
reference population data-sets used to produce
name reference lists. Improved classifications
with extensive population coverage and
higher classification accuracy levels will be
achieved by using population registers with
wider spatio-temporal coverage. Furthermore,
there is a requirement for such new
classifications to include all of the potential
ethnic groups present in a society, and not just
one or a few of them. Copyright © 2007 John
Wiley & Sons, Ltd.
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INTRODUCTION

In the last decade and a half, there has been an 
explosion of interest in issues of ethnicity, 
nationalism, race and religion, around a

renewed preoccupation with the question of
defining and asserting collective identities in an
increasingly globalised world (Castells, 1997).
Governments and social scientists have struggled
to keep track of the reality of rapidly changing
populations that are constantly redefining their
self-perceptions of their collective identities
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ABSTRACT

Several approaches have been proposed to
classify populations into ethnic groups using
people’s names, as an alternative to ethnicity
self-identification information when this is
not available. These methodologies have been
developed, primarily in the public health and
population genetics literature in different
countries, in isolation from and with little
participation from demographers or social
scientists. The objective of this paper is to
bring together these isolated efforts and
provide a coherent comparison, a common
methodology and terminology in order to
foster new research and applications in this
promising and multidisciplinary field. A
systematic review has been conducted of the
most representative studies that develop new
name-based ethnicity classifications, extracting
methodological commonalities, achievements
and shortcomings; 13 studies met the
inclusion criteria and all followed a very
similar methodology to create a name
reference list with which to classify
populations into a few most common ethnic
groups. The different classifications’
sensitivity varies between 0.67 and 0.95, their
specificity between 0.80 and 1, their positive
predicted value between 0.70 and 0.96, and
their negative predicted value between 0.96
and 1.
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(Skerry, 2000). Although highly contested, the
practice of classifying the population into dis-
crete groups according to race, ethnicity or reli-
gion has made a strong reappearance in many
countries’ recent national censuses (Nobles, 2000;
Kertzer and Arel, 2002; Howard and Hopkins,
2005). Such questions in the censuses not only
quantify the size and geographical extent of 
collectively pre-perceived racial, ethnic and 
religious groups, but more interestingly helps to
reinforce the self-identity of those groups or
accelerate the emergence of new identities
(Christopher, 2002) by solidifying transient labels
(Howard and Hopkins, 2005).

Due to the subjective nature of collective iden-
tities, its categorisation process, that is, the prob-
lematic definition of ethnic groups’ boundaries
and labels, has been a significant issue in social
science (Peach, 1999). Following an impassioned
debate around the essentialism of ethnicity labels
(Modood, 2005), there seems to be a consensus,
at least in the demographic and public health lit-
erature, that the classification of populations into
ethnic groups has proven useful to fight discrim-
ination and entrenched health and social inequal-
ities (Mitchell et al., 2000; Bhopal, 2004). There is
a vast literature that demonstrates the persistence
of stark inequalities between ethnic groups, espe-
cially in health outcomes, access to housing 
and labour markets, educational outcomes and
socioeconomic status (for a review in Britain, see
Mason, 2003). As long as these inequalities
between population subgroups persist, no matter
how these are defined or perceived, the use of
ethnic group definitions and labels will be useful
to identify them and combat their causes.
However, several of the current ethnicity classifi-
cation practices have proved inappropriate for
uncovering the true nature of specific factors of
ethnic minorities’ inequalities. This paper sum-
marises these issues, before reviewing an alter-
native methodology of classifying populations
into ethnic groups using the origins of people’s
names.

The basic hypothesis of this methodology is
that the classification of surnames and forenames
into ancestral groups of origin provides a viable
alternative to subdivision of populations or clas-
sifications of neighbourhoods into groups of
common origin. This is of particular importance
when ethnicity, linguistic or religious data are not
available at appropriate temporal, spatial or

nominal (number of categories) resolutions. The
paper reviews the different theoretical and
methodological approaches that have developed
independently in the fields of public health/
epidemiology, population genetics, linguistics
and statistics. The purpose is to bring together
these isolated efforts from very different research
angles, so far reduced to the study of a small
number of ethnic groups in a few migration 
destination countries, and provide a coherent
comparison, a common methodology and termi-
nology. The final aim is to foster new research
and applications in this promising multidiscipli-
nary field.

DEFINING AND MEASURING ETHNICITY
AND RACE

The term ‘ethnicity’ is derived from the Greek
‘ethnos’ meaning ‘nation’, and thus is closely
related to the concept of ‘peoples’ that share a
perceived common ancestry or descent (Weber,
1997 [1922]). Therefore, at the core of the concept
of ethnicity is the question of an individual’s
identity, which is defined by the characteristics of
the ethnic group he or she considers herself to
belong to, usually understood in a contextual
rather than in an essentialist way (Peach, 1996).
Ethnicity is a multi-faceted concept comprising
the different dimensions that makes a person’s
identity, usually summarised as kinship, religion,
language, shared territory, nationality and phys-
ical appearance (Bulmer, 1996).

Due to the subjective, multi-faceted and chang-
ing nature of ethnic identification and because
there is not a clear consensus on what constitutes
an ‘ethnic group’ (Coleman and Salt, 1996; Office
for National Statistics, 2003), the measurement of
ethnicity is even more contentious than its defin-
ition. This paper will not go any further in the
dense debate over the definition of ethnicity and
race and its measurement as scientific research
variables. Literature reviews are available in
public health (Senior and Bhopal, 1994; Bhopal,
2004), genetics (Cavalli-Sforza, 1997), geography
(Coleman and Salt, 1996), sociology (Banton,
1998; Brubaker, 2004) and anthropology (Eriksen,
2002). For a review of how ethnicity has been
measured by recent population censuses in 141
countries, see Morning (2008).

There are three major problems with the way
ethnicity is currently officially measured in most
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developed countries. Firstly, ethnicity is usually
measured as a single variable, that of an ‘ethnic
group’ into which the individual self-assigns 
his- or herself from a classification of a reduced
number of classes, which restricts the ability to
represent the characteristics of the multi-faceted
nature of self-identity exposed above. This
problem was partially addressed in the US 2000
Census in which respondents were able to choose
from more than one ‘race/ethnic group’.

A second problem is that pre-conceived ethnic
group classifications are used, as opposed to just
an open question whose responses are then
arranged according to the more meaningful
common identities. This is of course justified by
the need to facilitate the reproduction and com-
parison of the resulting statistics over time and
between different sources (Office for National
Statistics, 2003). However, these categories have
proved not to reflect the complex heterogeneity
found within each group (Rankin and Bhopal,
1999; Connolly and Gardener, 2005), for example,
‘Black African’ (Agyemang et al., 2005), ‘Asian’
(Aspinall, 2003), ‘White’ (Peach, 2000) or ‘His-
panic’ (Choi and Sakamoto, 2005). Efforts made
to reach a consensus between the major stake-
holders of government statistics on a set of 
meaningful ethnic categories comprise a highly
contested issue in the arena of identity politics
(Skerry, 2000). Furthermore, such categories are
always contextual to a country and a moment in
time (Peach, 2000), according to each society’s
response to their own particular historical
processes of ethnogenesis (Eriksen, 2002).

A third problem comes with the current con-
sensus in the method of self-assessment of eth-
nicity (Bhopal, 2004), as opposed to it being
assigned by a third person or a computer. As a
result of this, the classification of the same person
can vary in time and space, since perceptions of
individual and social identity change over time
(Aspinall, 2000) and are influenced by the type of
ethnicity question asked (Arday et al., 2000), the
definitions of categories offered (Olson, 2002), 
the country and method of data collection, and
the time or generations passed since migration
(degree of ‘assimilation’).

In addition to these three major issues, there is
a recognised problem of lack of routine collection
of ethnicity data in most government or public
service data-sets, which is especially critical in
population registers, such as birth, death, 

electoral and primary healthcare registrations
(Nanchahal et al., 2001; London Health 
Observatory, 2003). Even when ethnicity infor-
mation is routinely collected, such as in UK hos-
pital admissions, its quality, consistency and
coverage is very poor (London Health 
Observatory, 2005), despite its critical importance
in public policy decisions (Department of Health,
2005). As a result, the only major trustworthy
source of ethnicity information is usually cen-
suses of population, which are generally only
carried out every ten years and results dissemi-
nated only in aggregated form.

Taken together, the issues of lack of reflection
upon the multidimensional nature of ethnicity,
the use of a limited range of pre-defined coarse
categories, the variability of self-assignment of
ethnicity, and the lack of routine collection of eth-
nicity information, present major shortcomings
for researchers and public policy-makers. As a
consequence of these issues, they are frustrated
in measuring socioeconomic inequalities, equity
of access to and uptake of public services, and
demonstration of compliance with anti-discrimi-
nation and equal opportunities legislation. These
are each important issues in increasingly multi-
cultural populations.

Due to these issues, other proxies such as
country of birth have been used to ascribe a
person’s ethnicity when it is not appropriately
known for the purpose of analysis (Marmot et al.,
1984; Wild and McKeigue, 1997). Despite the
utility of country of birth to classify migrants’
origins, with growing numbers of second-
generation ethnic minorities born in the ‘des-
tination’ or ‘host’ country (e.g. 50% of ethnic
minority members in the UK 2001 Census), the
proportion of people of the ‘majority ethnicity’
born abroad, and migrants born in ‘intermediate’
countries (e.g. East African Indians), this method
has become increasingly inappropriate (Harding
et al., 1999; Gill et al., 2005). In some countries,
such as Spain or France, an alternative variable
used is nationality, which is not recorded in many
countries (such as in the UK Census of Popula-
tion). This proxy is also problematic since it can
change over time, there are people with more
than one nationality, and usually second- or
third-generation migrants acquire the host
country’s nationality. A third option is the analy-
sis of name origins (surname and forename),
which in particular has been used to identify
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South Asian, Chinese and Hispanic populations
with a relatively high degree of accuracy; this
will be the focus of the rest of this paper.

As already mentioned, ethnicity is a multidi-
mensional concept reflecting kinship, religion,
language, shared territory, nationality and phys-
ical appearance (Bulmer, 1996). In principle one
could accurately classify a person into an ethnic
group if these six dimensions were to be mea-
sured separately, which is the preferred way
forward proposed by several researchers in
health and ethnicity (McAuley et al., 1996;
Gerrish, 2000; Bhopal, 2004). However physical
appearance seems to be a much more sensitive
aspect to ask about, and even more to classify,
than the other five dimensions. Name origin
analysis has the potential to provide embedded
information about several of these dimensions of
a person’s origins, when no other ethnicity infor-
mation is available, since names are usually
unique to a language, a religion, a geographical
area, a cultural tradition, a group of kin, a migra-
tion flow, and so on (Tucker, 2003). Although name
analysis does not completely overcome the three
major problems with the way ethnicity is currently
officially measured, mentioned in this section, it
does have the potential to improve the situation
substantially at a fraction of the cost of other
alternatives, as will be explained in this paper.

LANGUAGES, NAMES, GENES AND
HUMAN ORIGINS

Charles Darwin’s On the Origin of Species (1859)
included a parallelism between the evolution of
languages and humans, suggesting that the
genealogical arrangement of the ‘races of man’
necessarily had to follow a taxonomy of 
languages:

‘It may be worth while to illustrate this view
of classification, by taking the case of lan-
guages. If we possessed a perfect pedigree of
mankind, a genealogical arrangement of the
races of man would afford the best classifica-
tion of the various languages now spoken
throughout the world.’ (Darwin, 1859: 422)

With subsequent advances in modern genetic
techniques, population geneticists have demon-
strated the existence of such a relationship in
human evolution, mapping human origins, gene
evolution, and geographical spread and 

intermixing across the planet and comparing it
with language evolution and the archaeological
record (Piazza et al., 1987; Cavalli-Sforza and
Cavalli-Sforza, 1995).

Moreover, in order to analyse the genetic 
linkages between human groups, the Human
Genome Diversity Project has defined those
human groups, called ‘populations’, by the
common mother language of the subjects to be
studied (M’charek, 2005), avoiding cases where
there is known to have been a historic language
replacement (e.g. Spanish imposed on Native
Americans, or Finno-Urgic language on Hungar-
ians: Cavalli-Sforza, 1997). They then compare
the genetic linkages between such populations
(i.e. an evolutionary tree) with the language tax-
onomy most widely accepted, that of Greenberg
and Ruhlen (Ruhlen, 1987), to corroborate the
geographical spread or explain the differences
from historical data (Cavalli-Sforza et al., 1988).

Furthermore, due to a known relationship
between surname distribution and population
structure (Piazza et al., 1987), surnames have
been used since the 19th century to understand
the relationships between population subgroups
(Darwin, 1875) at regional or national levels (for
a review see Lasker, 1985). Today, surnames have
been demonstrated to correlate well with Y-
chromosomes, since both are patrilinearly inher-
ited (Jobling, 2001; McEvoy and Bradley, 2006),
and this is opening up a new era of genetic
genealogy (Shriver and Kittles, 2004). Moreover,
a recent extensive study of the surname distribu-
tion of the total population of eight European
countries has concluded that the present
surname structure of Western Europe is strictly
linked to local languages (Scapoli et al., 2007).

The combined facts that, firstly, surnames cor-
relate well with Y-chromosomes at the regional
and national level; that secondly, several genetic
markers also significantly correlate with lan-
guages at a continental and global scale; and
thirdly, there is an obvious link between names
and the languages from which they originate,
indicate that analysis of people’s names can offer
a reliable method to ascribe individuals to
common human groups, where such groups are
defined as having a common linguistic, geo-
graphical and ethnic origin. There is a vast liter-
ature on surnames and genetics, which has made
great advances in disentangling ancestral human
movements and distant historical settlement and
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migrations, as well as to study genetic structure,
endogamy and cultural evolution of populations
(for a full review see Colantonio et al., 2003;
Lasker, 1985). This paper will not cover these
aspects but will only focus on name origin analy-
sis to classify contemporary populations accord-
ing to recent migrations (their own or that of their
ancestors to three or four generations back).

The use of people’s name origins to subdivide
contemporary populations into ethnic groups
has been applied to population studies in the US
at least since the beginning of the twentieth
century (Rossiter, 1909). Initial applications
focused on calculating immigration quotas,
which were set according to the estimated ethnic
composition of the ‘original national stock’ of the
population of the US in the 1790 Census (US
Senate, 1928; American Council of Learned 
Societies, 1932). However, name origin analysis
has been more widely applied and indepen-
dently validated in the fields of public health and
genetics since the 1950s (US Bureau of the
Census, 1953; Winnie, 1960; Lasker, 1985). The
application of such techniques has grown very
rapidly through the past 20 years, following
increasing interest in research in international
migration, improvements in computer process-
ing power, and (most importantly) with the
wider availability of digital name data-sets cov-
ering entire populations at the individual person
level. Given this interest in name-based tech-
niques, and the known limitations to their accu-
racy (Choi et al., 1993), a few studies have
concentrated upon measuring the accuracy of
different name-based ethnicity classification
methods, a stream of research opened by Nicoll
et al. (1986) and with growing interest and rele-
vance today (Nanchahal et al., 2001).

Hereinafter two types of personal names will
be distinguished as follows: surnames (also
known as family names or last names), which
normally correspond to the components of a
person’s name inherited from his or her family;
and forenames (also known as first names, given
names or Christian names), which refer to the
proper name given to a person usually at birth.

A REVIEW OF NAME-BASED ETHNICITY
CLASSIFICATION METHODS

A literature search has been carried out to iden-
tify the most representative research papers that

specifically deal with the problem of classifying
lists of names of individuals into ethnic groups,
and that provide a full evaluation of their accu-
racy. This section presents a summary of this
review, the main characteristics of the studies
evaluated, and the results of the comparison.

Search Strategy

The literature search was carried out using three
databases of scholarly publications: PubMed
Medline, ISI Web of Knowledge (CrossSearch),
and Google Scholar. The keywords and search
string used to search these databases were:

(1) [ethnic* OR race OR racial OR minorit* OR
migrant* OR immigrant*] in the title, key-
words or abstract of the publication (abstract
not used for Google Scholar);
AND
(2) [name* OR surname* OR forename*] only
in the title or keywords of the publication (due
to the common use of the word ‘name’ in
abstracts).

This search retrieved 186 unique publications at
the time (January 2006). The inclusion criterion
was to select any study that developed or used a
name-based ethnicity classification method to
subdivide contemporary populations at the indi-
vidual level, and evaluated its accuracy. On the
other hand, the exclusion criteria were: (a)
studies that neither offered a new method of
name-based ethnicity classification, nor evalu-
ated a previously developed method that had not
been tested before; (b) studies that did not vali-
date the classification using an alternative eth-
nicity information source (i.e. non-name-based);
(c) studies that provided insufficient detail of
their research process and results as to support
this systematic review, for which at least the
method’s sensitivity and specificity needed to be
explicit; and (d) studies that were not published
in English.

The 186 publications retrieved by the search
were filtered through a three-tier process. Firstly,
potentially relevant publications were evaluated
against the inclusion criteria, using solely the
information offered in their title, with non-
relevant publications being rejected, most of
them using surnames in the genetic domain to
study ancient migrations or isonomy. In case of
doubt, the publication was left included in this
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phase. This reduced the number of publications
to 129. Secondly, these were then evaluated
against the exclusion criteria using the informa-
tion provided in their abstract, which reduced
the number of selected publications to 37. Finally,
the full text of these 37 publications was analysed
against the exclusion criteria, ending up with 11
publications that met all the selection criteria.
These 11 publications were analysed in-depth,
and all of their references were retrieved and also
checked against the inclusion and exclusion cri-
teria. This last step contributed two additional
publications that were not found by the original
search, one of them because the word ‘name’ or
its equivalents did not appear either in the title
or in the keywords (Sheth et al., 1999), and the

second because it is a government report only
published on-line (Word and Perkins, 1996).

The final selection of publications consisted of 
13 papers representing five countries (Canada,
Germany, Netherlands, UK and the US), and most
of them from the field of public health. Table 1
shows the key characteristics of these studies,
whose findings will be analysed in the following
sections. The subsets of ethnic minorities studied
represent the biggest and most recently arrived
groups in each country: (a) South Asians (Indian,
Pakistanis, Bangladeshis, Sri Lankans); (b) Chinese;
(c) other East and Southeast Asians (Vietnamese,
Japanese, Korean and Filipino); (d) Hispanics; (e)
Turks; and (f) Moroccans (see Table 1 for the corre-
spondence between these groups and each study).
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Table 1. Summary of the general characteristics of the 13 studies reviewed.

Name to ethnicity assignment

Name components:
Geographical area of Method: (Surname

study: Ethnic minorities (EM) (Automatic Forename
Paper reference country and (region) classified Manual) Middle name)

Choi et al. (1993) Canada (Ontario) Chinese A S
Coldman et al. Canada (British Chinese A F, S, M

(1988) Columbia)
Lauderdale and US (national) Chinese, Japanese, A S

Kestenbaum Filipino, Korean, Indian
(2000) and Vietnamese

Razum et al. (2001) Germany (Rhineland Turkish A F, S
Palatinate & Saarland)

Word and Perkins US (national) Hispanic A S
(1996)

Harding et al. (1999) UK South Asian and Hindu, A F, S
(Bradford & Coventry) Muslim and Sikh

Cummins et al. UK (Thames, Trent, South Asian A F, S
(1999) W.Midlands &

Yorkshire)
Nanchahal et al. UK (London, South Asian A F, S, M

(2001) W. Midlands, Glasgow)
Sheth et al. (1999) Canada (national) South Asian and Chinese A/M S
Martineau and UK (Newcastle; four Bangladeshi, Pakistani, M F, S and Gender

White (1998) general practices) Indian Muslims,
nonSouth Asian Muslims,
Sikh, Hindu, White, Other

Bouwhuis and Netherlands Turkish, Moroccan, M F, S
Moll (2003) (Rotterdam; one Surinamese

hospital)
Nicoll et al. (1986) UK (selected areas) South Asian M F, S
Harland et al. (1997) UK (Newcastle) Chinese M F, S

Method of name to ethnicity assignment: A, Automatic; M, Manual. Name components used in the classification: S, Surname; 
F, Forename; M, Middle Name.



Amongst the publications excluded in the last
phase of the selection strategy (n = 26), there were
some other interesting research papers in which
an independent name-based approach was
developed, although not explicitly explained nor
independently evaluated. However, some of
these studies are worth mentioning, since they
typically used telephone directories to select
names from a particular ethnic group as a sam-
pling strategy for their surveys, showing the use-
fulness of the name-based approach to classify
Vietnamese (Hinton et al., 1998; Rahman et al.,
2005), Korean (Hofstetter et al., 2004), Cambodian
(Tu et al., 2002), Chinese (Hage et al., 1990; Lai,
2004), South Asian (Chaudhry et al., 2003), 
Japanese (Kitano et al., 1988), Irish (Abbotts et al.,
1999), Jewish (Himmelfarb et al., 1983), Iranian
(Yavari et al., 2005) and Lebanese (Rissel et al.,
1999) names in the US, Canada, UK and Australia.

Structure of the Selected Studies

The 13 selected papers aimed to demonstrate a
satisfactory accuracy rate in separating individu-

als of either one, or just a few, ethnic minority
groups from the rest of the resident population
in some developed countries. None of them tried
to classify the whole population into all of the
potential ethnic groups in a country, something
that remains a research gap. The studies differ
substantially in the sizes of the target populations
to be classified (from 137 to 1.9 million people),
the numbers of unique forenames or surnames in
the reference list used in the search (from fewer
than 100 to 27,000 names), and hence the method
to allocate them (manual vs. automatic classifica-
tion). However, each of the studies includes a
number of common methodological processes
and research components: firstly, a name reference
list is independently built or sourced from
another study or from ‘an expert’; secondly, a
separate target population is manually or auto-
matically classified into ethnic groups; and
thirdly, the accuracy of the method is evaluated
against a previously known ‘gold standard’ for
ethnicity in the target population. These common
structures and processes are summarised
through a flow chart in Figure 1.
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Figure 1. Structure and processes of the name classifications evaluated.



Source Data, Reference and 
Target Populations

The primary source material for each of the
studies is a set of personal data at the individual
level that are usually sourced from population
administrative files, health registers or surveys.
Target population is the term given to the list of
individuals to be classified into ethnic groups
using their names, either manually or automati-
cally. Automatic classification methods require
an independent reference list of surnames or fore-
names with their predetermined ethnic origin,
which is used to perform the computerised
search and allocation of ethnicity for each indi-
vidual in the target population (in the manual
methods, the equivalent to the reference list is the
expert’s knowledge). This distinction between
reference and target lists of names is key to the
understanding of the methodologies here analysed.

Building Reference Lists

The first step thus involves building reference lists,
or borrowing them from previous studies, that
would finally include several hundreds or thou-
sands of surnames, each of one of them with 
a pre-assigned ethnic group (e.g. Nguyen – 
Vietnamese; Chang – Chinese). The characteris-
tics of how the reference lists in the eight studies
that used automatic classification were devel-
oped are further detailed in Table 2. Two of these
studies used a software application already
developed to identify South Asian names in the
UK, Nam Pehchan (Cummins et al., 1999, Harding
et al., 1999), which contains 2995 unique South
Asian surnames, and was derived from the 
Linguistic Minorities Project (1985). Another
study, Nanchahal et al. (2001), developed similar
software called SANGRA, but did not offer suffi-
cient information about how they built their ref-
erence list of 9422 South Asian names. In the
remaining five studies, purpose-built reference
lists were constructed, containing from 427 to
25,276 unique surnames. These reference lists were
typically built from an independent source to the
target population, a second population generally
described as the reference population (see the left
half of Table 2), except in Choi et al. (1993) and
Coldman et al. (1988), with important conse-
quences for their results, as will be mentioned later.

Despite big differences in the sizes of the ref-
erence populations, the methods employed to

derive the name reference lists were broadly
similar. Generally, they all used some type of
‘ethnic origin information’ in the reference pop-
ulation, such as self-reported ethnicity, country of
birth or nationality, to classify individuals into
ethnic groups, and they then aggregated them by
surname and produced a frequency count for
each surname and ethnic group combination
(and the same for forenames when available).
Each surname or forename was then assigned to
the ethnic group with the highest frequency,
using a series of rules or thresholds in some 
cases (Word and Perkins, 1996; Lauderdale and
Kestenbaum, 2000), producing the final reference list.

In general, there are four factors affecting the
accuracy and coverage of the reference list, as will
be explained in the accuracy evaluation section:
the independence between reference and target
populations, the size of the reference population,
its spatio-temporal coverage (the countries and
regions where it was sourced and the time period
covered), and the method used to ascribe ethnic-
ity (using proxies vs. self-reported ethnicity).
Therefore, the desired qualities of the reference
list is to be large enough to maximise coverage in
the target population, and accurate enough to
minimise misclassifications (Coldman et al., 1988;
Nanchahal et al., 2001). These two qualities are
usually mutually exclusive, and there is a trade-
off to be made between extra coverage of a larger
number of names and marginal extra accuracy of
the classification, as each extra name tends to be
rarer than the last. The final decision will depend
on each specific type of application. A similar
issue arises regarding the nominal resolution of
the ethnic group categorisations used: the finer
the groups are defined (e.g. Hindu, Bengali,
Tamil, Urdu, Gujarati, Punjabi, vs. ‘Indian’ or
‘South Asian’), the less accurate the name classi-
fication becomes, and vice versa.

Minimum Size of the Reference List

For calculating the ideal size of the reference pop-
ulation, the best attempt has been proposed by
Cook et al. (1972: 40) using the following formula:

(1)

where n is the required minimum size of the 
reference population, x is the desirable level of

n
x

y
≥

−( )log
log

1
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confidence for the allocation of an individual to
his or her appropriate ethnic group, and y is the
required level of confidence that a particular
surname will perform as desired. For example,
for x = 80% and y = 95%, the minimum size of the
reference population required will be n ≥ 13.4,
meaning that for every surname to be classified,
a list of at least 13.4 individuals with that
surname and their ethnicity is required. The

minimum value of n (in the above example equal
to 13.4) refers to the unlikely situation that all
individuals with the same surname in the refer-
ence population had the same ethnicity, and
hence the size would have to be extended in pro-
portion to the ‘noise’ found in each specific ref-
erence population. Cook et al. (1972) proposed
multiplying n by a factor of 4 to obtain a 
workable reference population size. The actual
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Table 2. Characteristics of reference populations and name reference lists in automatic methods.

Reference population Reference list

No.
EM unique

Paper Total population Production EM EM people/
reference population identified % EM Source Dates method surnames surname

Choi et al. 270,139 1,899 0.7% Mortality 1982–1989 Country of 427 4.4 (Chinese)
(1993) database birth +

manual
cleansing

Coldman et al. 203,354 5,430 2.7% Death 1950–1964 Ethnicity 544 16 
(1988) registrations (family) (Chinese)/

1.7 (non-
Chinese)

Lauderdale 1,765,422 1,609,679 91.2% Social Born Country of 27,000 59.6 (avg.)
and security card <1941 birth
Kestenbaum applications
(2000) (MBR)

Razum et al. 4,000,000 108,500 2.7% Rhineland c.2000 Nationality + 12,188 12.8 (in
(2001) palatinate manual Germany)/

population cleansing 3.1 (in
register Turkey)

Sheth et al. 2,782,000 N/K N/K Canadian 1979–1993 Country of 4,271 N/K
(1999) (estimated) Mortality birth

Data Base (deceased &
(CMBD) parents)

Word and 5,609,592 597,533 10.7% 1990 US US Ethnicity 25,276 23.6 (avg.)
Perkins people; Census post Census (self-assigned)
(1996) 1,868,781 enumeration Day

households sample 1990
Harding et al. List of 2,995 surnames in Nam Nam 1981–1998 Experts’ 2,995 N/A

(1999) Pehchan program Pehchan knowledge
program

Cummins List of 2,995 surnames in Nam Nam 1981–1998 Experts’ 2,995 N/A
et al. Pehchan program Pehchan knowledge
(1999) program

Nanchahal List of 9,422 surnames in Surveys and 1995–1999 From list of 9,422 N/A
et al. SANGRA program hospital voluntary
(2001) records organisations

and ONS

EM, ethnic minority; N/K, not known; N/A, not applicable.
Reference population: ‘Total population’ is the input dataset used, of which ‘EM population identified’ is the ethnic minority pop-
ulation identified within the ‘total population’. Reference list: ‘Production method’ is the technique or piece of ethnicity infor-
mation in the reference population used to produce the reference list; ‘No. unique EM surnames’ is the final number of ethnic
minority surnames present in the reference list. ‘EM people/surname’ is the average number of people of the ethnic minority
sharing the same surname (column 3/column 8).



reference population sizes used in the five
studies evaluated here, that build their own 
reference lists, has been compared against these
two ‘Cook et al. criteria’: first criterion; n = 13.4
people per surname; and expanded criterion; n =
13.4 × 4 = 53.6 people per surname. It is surpris-
ing to find that only two of the five studies’ 
reference populations satisfy the ‘Cook first 
criterion’ (Word and Perkins, 1996; Lauderdale
and Kestenbaum, 2000), with the remaining three
below 75% of the required size. Moreover, only
one satisfies the ‘Cook expanded criterion’
(Lauderdale and Kestenbaum, 2000), with the
rest below 45% of the required minimum refer-
ence population size.

Classification of Target Populations

The second step in the 13 studies analysed con-
sisted of classifying the target population into
ethnic groups, using either a manual (by an
expert) or an automatic method (through com-
puter algorithms). The characteristics of the
target populations selected in each of the 13
studies are summarised in Table 3 (‘Target 
Population’ section).

Manual methods have the advantage of not
requiring a name reference list and also to
include a rich number of ‘fuzzy rules’ that the
experts performing the classification can apply in
order to decide the group into which an individ-
ual should be assigned. However, the manual
method has a series of major limitations, the main
one being that it is cumbersome and time-
consuming (Bouwhuis and Moll, 2003) and this
seriously constrains the size of the target popu-
lation to be coded. In order to increment the
number of individuals to be coded, additional
experts need to be recruited, which causes incon-
sistency in the subjective decisions taken by dif-
ferent human subjects. Additionally, most of 
the manual classification studies focus on a 
two-group classification problem, which only
requires a simple binary decision on whether the
individual belongs to a specific ethnic minority
group or not, but when more groups are intro-
duced, several experts from different cultural
backgrounds are required, and hence the number
of misclassifications quickly rises, especially
when names overlap across similar ethnic groups 
(Martineau and White, 1998). For these reasons,
no further specific attention will be given here to

those studies using manual methods (last four
papers in Table 3).

On the other hand, automatic methods to clas-
sify the target population rely on the availability
of an appropriate name reference list. The studies
analysed here applied an automated algorithm to
search for the name of each individual in the
target population against the reference list, and
then assign the pre-coded ethnic group for that
name to the individual. One of the main differ-
ences between the studies is whether they used
only one name component of the individual
(surname) or more (forename and surname, or
even middle name) (see last column of Table 1 for
details). Nam Pehchan includes a set of rules that
use name stems if the name has no match in the
reference list (Cummins et al., 1999), but this is
avoided by SANGRA since it is deemed to
produce an unacceptable number of false posi-
tives (Nanchahal et al., 2001).

A second difference between studies is
whether one or several ethnic groups are to be
classified. It must be emphasised that almost all
of the studies that used automatic classification
were designed to classify individuals with a
binary taxonomy in mind that seeks to identify
members of a particular minority group or macro
group (i.e. South Asians) from a general 
population. The exception is Lauderdale and
Kestenbaum (2000), classifying six substantially
different Asian ethnic groups (Chinese, 
Vietnamese, Japanese, Korean, Asian Indian and
Filipinos). A third difference is the use of certain
name scores or thresholds related to the strength
of the association between each name and the
ethnic group of origin (e.g. heavily Spanish, mod-
erate Spanish, etc.), to the final user’s advantage
when fine-tuning the classification to their spe-
cific target population and purpose. Only two
studies use such thresholds (Word and Perkins,
1996; Lauderdale and Kestenbaum, 2000).

EVALUATING NAME CLASSIFICATIONS

All of the studies measure the accuracy of the
name-based classification by comparing it to a
‘gold standard’ for the ethnicity of the individu-
als in the target population, which had to be 
previously known through an independent source
(the exception is Word and Perkins, 1996, but
another study that evaluates their method is used
here: Stewart et al., 1999). This ‘gold standard’ is
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Table 4. Explanation of measures of classification accuracy.

Classification
Gold standard (‘true’ ethnicity)

(predicted ethnicity) Ethnic group X Other ethnic groups

Ethnic group X a b
Other ethnic groups c d

Sensitivity = a/(a + c).
Specificity = d/(b + d).
Positive Predictive Value (PPV) = a/(a + b).
Negative Predictive Value (NPV) = d/(c + d).

either the person’s ethnicity (self-reported, by
next-of-kin or a third party), or a proxy for it such
as country of birth or nationality (of the person
or of his/her parents), all of which are assumed
to represent the individual’s ‘true ethnicity’.
However, we have to bear in mind that an objec-
tive entity such as ‘true ethnicity’ does not exist,
and hence ‘there can be no such thing as a com-
pletely correct method of classifying individuals
into ethnic groups’ (Cook et al., 1972: 39), but to
a certain extent a more appropriate one.

Accuracy Evaluation

The studies reviewed here self-evaluated their
accuracy using the epidemiological measures of
sensitivity, specificity, positive predictive value (PPV)
and negative predicted value (NPV). Sensitivity is
the proportion of members of ‘Ethnic Group X’
(gold standard) who were correctly classified as
such; specificity, the proportion of members of
‘Other Ethnic Groups’ (gold standard) who were
correctly classified as such; Positive Predictive
Value (PPV) is the proportion of persons classi-
fied as ‘Ethnic Group X’ (predicted) who were
actually from ‘Ethnic Group X’; while Negative
Predictive Value (NPV) is the proportion of
persons classified as ‘Other Ethnic Groups’ (pre-
dicted) who were actually from ‘Other Ethnic
Groups’. These concepts are better explained 
in Table 4 in a more visual fashion. Any classi-
fication’s objective is to maximise the number 
of correct classifications across the diagonal 
(‘a’ and ‘d’) and to minimise the number of 
misclassifications (false positives ‘b’ and false
negatives ‘c’).

The results for these four variables in the 13
studies are given in Table 3, and a range of values
is offered where the study evaluated different
populations, or made separate evaluations for

subpopulations (e.g. by gender). If certain iso-
lated outliers are excluded, the sensitivity varies
between 0.67 and 0.95, the specificity between 0.8
and 1, the PPV between 0.7 and 0.96, and the
NPV between 0.96 and 1 (only reported in four
studies).

It is striking to notice that there are no sub-
stantial differences between the accuracy of the
manual (bottom four in Table 3) and automatic
classification methods, removing the theoretical
advantage, in accuracy terms, of the former over
the latter. In general the studies tend to reach a
high specificity and NPV (near to 1), to the detri-
ment of a slightly lower sensitivity and PPV (e.g.
see Razum et al., 2001), a fact linked to the afore-
mentioned trade-off between the extra coverage
of a classification and its marginal extra accuracy.
The differences between the statistics of the 13
studies do not seem to imply substantial differ-
ences in the quality of the methods adopted.
Rather, they reflect variations between the degree
of distinctiveness of each subpopulation’s names
in the particular context of the general popula-
tion studied, as well as constraints imposed by
the characteristics of the data-sets used.

All authors read into these results a validation
of the name-based classification method to
ascribe ethnicity, when other data sources are not
available, giving further details of their advan-
tages and the limitations found which will be dis-
cussed below. However, one could argue the
factor of publication bias, by which studies that
did not achieve satisfactory results may have not
been published.

Limitations in the Methodology

The 13 studies list a series of issues and limita-
tions, many of them common between them,
which are summarised below complementing



them with other studies (Senior and Bhopal,
1994; Jobling, 2001) under the following eight
major themes:

(a) Temporal differences in name distribution
between the reference and target populations
because of different migration waves and
variations in geographical distribution 
patterns through time, which introduces
misclassification and low coverage in the
classification. For example, Lauderdale and
Kestenbaum (2000) used a list of people born
in Asia before 1941, which might misrepre-
sent today’s common Asian names in the 
US, and a similar problem is present in
Coldman et al. (1988) with Chinese names in
Canada.

(b) Regional differences in the frequency distribu-
tion of names, whether these are between the
origin and the host country, within either of
them, or between different host countries, due
to differential geo-historical processes and
migration flows. If this heterogeneity in
name distribution is ignored when sampling
the reference population, the subsequent
name reference lists will be biased and
names from a single region might not repre-
sent well the names present in other regions.
Some examples found are: different 
Pakistani names present in the north of
England, compared with the South East
(Cummins et al., 1999); Turkish names
between Germany and Turkey (Razum et al.,
2001); or Chinese migrant names between
Australia and Canada (Choi et al., 1993)

(c) Differences in the average ratio of people per
surname; between the ethnic minority
(higher) and the host population (lower),
and the ethnic minority in the host country
(higher) and in the origin country (lower)
(see last column in Table 2, ‘EM People/
Surname’). This asymmetry is caused by a
combination of the phenomenon of ‘family
autocorrelation’ in the data (Lasker, 1997),
and the uneven initial distribution of
migrant names due to selective migration (a
few initial names that can be rare in the
origin country grow rapidly because of intra-
group marriages in the host country). This
causes the false assumption that a common
name in the host country might also be
common in the origin country, which

together with item (b) above make a strong
case for sourcing name reference lists from
the whole population of both origin and host
countries.

(d) Name normalisation issues; data-entry mis-
spellings, forename and surname inversions,
and name corruptions, all need to be nor-
malised both in the reference and target pop-
ulations in order to cleanse the data-sets, but
while making the difficult decision to keep
the ones that might be accepted as official
names, even for several generations (Lasker,
1985). This could be due to different tran-
scriptions of a name into a different lan-
guage’s alphabet and/or pronunciation
(called transliteration), creating name dupli-
cations and long lists of name variants, pre-
senting a barrier to the accuracy of the
reference lists. This problem is linked to
other processes of name change, the ‘accul-
turation of a name’ in a host country, and the
degree of inter-marriages between groups,
which are all well documented for ‘older’
immigrant groups in the US such as 
Norwegians (Kimmerle, 1942), Finnish
(Kolehmainen, 1939), Italian (Fucilla, 1943)
or Polish (Lyra, 1966).

(e) Names usually only reflect patrilineal heritage;
and thus, the methodology assumes a high
degree of group endogamy, and is incapable
of identifying mixed ethnicity or women’s
ethnicity in mixed marriages (when maiden
names are unavailable) (Harland et al., 1997).
If exogamy increases, as is anticipated in the
near future, the method’s discriminatory
ability may decline. This has already hap-
pened in highly mixed populations such 
as the US or Argentina, where more than
three generations have passed since immi-
gration of the traditional European migrant
groups, their populations are assimilated
into the general population, and the male
surnames that are passed on do not normally
reflect a perceived ethnic identity (Petersen,
2001), although distinct naming practices do
survive after generations (Tucker, 2003).

(f) There are different histories of name adoption,
naming conventions and surname change
that vary from country to country (e.g.
Caribbeans have British surnames, Spanish
women do not change surname at marriage),
leading to the overlapping of certain names
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between ethnic groups (Martineau and
White, 1998) which is difficult to accommo-
date in a single classification.

All of the above issues result in differences in the
strength of association of a particular name with an
ethnic group, measured by the proportion of
people with a name ascribed to a certain ethnic
group that actually consider themselves from
that ethnic group. The effects of issues (a), (b) and
(c) can be mitigated by sourcing broad reference
populations from both the origin and host
country and from a wide enough time period,
using the Cook et al. (1972) formula mentioned
above to calculate its minimum size. This would
ensure that the name reference list would reflect
all of the potential names and true frequencies
from the regions of the origin and host countries
in more equal probability than the methods
analysed here have. Moreover, when aggregating
the reference population by household surname,
the issue of family autocorrelation can be
avoided (Word and Perkins, 1996). The effects of
issues (d) to (f) can be ameliorated by the use of
‘name scores’ to measure the strength of the asso-
ciation between a name and its ethnic group
(Lauderdale and Kestenbaum, 2000), and using
them in different ways sensitive to other context
information (e.g. such as address of residence,
which can be linked to census information on the
distribution of ethnic groups in an area).

Advantages of the Methodology

According to the authors of the studies analysed
here, name-based ethnicity classification
methods present a valid alternative technique for
ascribing individuals to ethnic groups, when self-
identification is not available. The criterion for
such validity is that the methodology makes it
possible to subdivide populations to a sufficient
degree of accuracy at the ethnic group aggregate
level, and not necessarily at the individual level
(i.e. it produces relatively accurate total figures
and orders of magnitude). In general, there is a
consensus in the literature that although this
methodology cannot entirely replace self-
assigned ethnicity information, it provides a suf-
ficient level of classification confidence to be used
in the measurement of inequalities and in the
design and delivery of services that meet the
needs of ethnic minorities. In predicting these

types of outcomes, name-based classifications
have proved a very cost-effective method 
compared with conventional collection of self-
assigned ethnicity information (e.g. projects
aiming to collect all patients’ self-reported eth-
nicity in the UK have had an average response
rate of 56%: Adebayo and Mitchell, 2005).

Some of the methods evaluated here also
provide a degree of strength in the assignment of
an ethnic group to each name (Word and Perkins,
1996; Lauderdale and Kestenbaum, 2000), and
others offer the probable religion and language
associated with each group of names (those using
Nam Pehchan or SANGRA). These efforts have
produced three computerised name classification
systems, Nam Pehchan (Cummins et al., 1999) and
SANGRA (Nanchahal et al., 2001), designed to
classify South Asian names in the UK, and
GUESS (Generally Useful Ethnicity Search
System) (Buechley, 1976) which identifies 
Hispanic names in the US. These computer
systems have been used in a wide variety of
studies in public health, having proved very
useful to identify areas of inequality and health
needs within populations (Coronado et al., 2002;
Honer, 2004).

Furthermore, name-based methods have been
successfully applied to sample members of par-
ticular ethnic groups using electoral registers or
telephone directories, presenting significant cost
advantages over other alternatives (Cook et al.,
1972). Moreover, this methodology has also
proved useful in combination with conventional
ethnicity classification information (Coronado et
al., 2002). When some degree of ethnicity infor-
mation is already available for a population,
name-based classification can provide comple-
mentary information to detect errors, complete
missing data, or correct bias introduced by
proxies of ethnicity used, such as country of birth
(e.g. second-generation migrants).

Despite having found some inconsistencies
between Nam Pehchan and SANGRA when trying
to classify the entire UK population (using the
electoral roll), Peach and Owen (2004) concluded
that name-based methods have a potential value
to health organisations, local authorities, com-
merce and academics, but further research to
improve the classifications is needed. Further-
more, a similar conclusion was reached by
Bhopal et al. (2004), who also used Nam Pehchan
and SANGRA in an extensive study linking
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census and health data in Scotland, highlight-
ing that name-based methods are valuable in 
the absence of alternative information sources,
and more crucially, they produce important
information at relatively low cost (Bhopal et al.,
2004).

PROMISING DEVELOPMENTS IN 
NAME-BASED CLASSIFICATIONS

The 13 research studies reviewed here have
demonstrated the advantages of name-based
methods as well as their current main limitations.
From the latter, three general needs for improve-
ment arise, as justified in the previous section: (a)
a need for a reference population with high
spatio-temporal coverage, including name fre-
quency data sourced both in the host and origins
countries; (b) the need to use name scores to
measure the probability of a name being associ-
ated with a particular ethnic group; and (c) the
need for a system that classifies the whole popu-
lation into all of the potential ethnic groups, and
not just one or a few.

These tasks are made much easier today by the
use of population registers that cover most of the
population, such as electoral registers or tele-
phone directories, providing very valuable name
frequency information, name spelling variants,
linkages between surnames and forenames,
precise addresses, and so on. A few of the studies
analysed make use of some of these resources,
although they only cover parts of a country, or
use manual methods such as counting names in
a paper telephone directory. Electronic versions
of such registers can today be accessed through
special requests or purchased from data
providers, making this type of analysis much
simpler.

The Cultural-Ethnic-Language Group 
(CELG) Technique

Directories or registers do not contain any eth-
nicity information associated with people’s
names. To be able to develop a name reference
list from such data-sets, an alternative method
has recently been introduced in the onomastics
field by Tucker (2003, 2005), who pre-classified
over 70,000 surnames into 44 ‘Cultural Ethnic
and Linguistic’ groups (CELG) for the Oxford 
Dictionary of American Family Names (DAFN)

(Hanks, 2003). Hanks and Tucker (2000) devel-
oped the Culural-Ethnic-Language Group (CELG)
technique in which a database of individuals
with both forenames and surnames is required.
To do this they used the US telephone directory
with 88 million subscribers.

Firstly, a set of ‘diagnostic forenames’ (good
predictors of ethnicity) is manually classified into
cultural-ethnic-linguistic groups (CELG) by ono-
mastic experts (Tucker, 2005). Secondly, this diag-
nostic list of forenames is applied to classify the
forenames of all the individuals in the telephone
directory by CELG. Thirdly, for each surname in
the database (1.75 million) the following calcula-
tion is done:

Surname X; % Forenames of CELG-1, 
% Forenames CELG-2 . . . etc:

So the relative frequency of people bearing that
surname is calculated for each of the ethnic
groups assigned to their forenames in the previ-
ous step. Finally, the surname is assigned to the
group of highest frequency other than ‘English’,
due to a ‘host-country’ assimilation effect. This
technique can be repeated iteratively to increase
the number of diagnostic forenames classified
and then the number of surnames and so forth.
The performance of the CELG technique is
deemed to have an accuracy of 88–94% (Tucker,
2005).

This method is very efficient because it lever-
ages on the difference in the asymmetry of the
name frequency distribution between that of
forenames (extremely positively skewed) and
surnames (positively skewed). To illustrate this
with an example, 10% of the surnames in the US
are sufficient to cover 91% of the population,
while 1% of forenames are sufficient to cover 95%
of the population. There are 1.25 million unique
forenames in the US, so concentrating on just 1%
of them (12,500 forenames) one can code the eth-
nicity of 95% of the US population, and hence
their surnames’ ethnicity (Tucker, 2001). Further-
more, by applying the CELG technique this 
population coverage can be increased to nearly
100%, while improving the overall accuracy of
the names classified. This is further eased by the
use of etymology dictionaries of forename
origins to code ‘diagnostic forenames’, with
larger coverage and availability than surname
dictionaries.
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Towards a Total Population Multi-ethnicity
Classification Method Based on Names

The CELG technique has not been used in any of
the studies reviewed in this paper, but it has great
potential for efficiently classifying hundreds of
thousands of names into all of the potential
ethnic groups present in a given population. Fur-
thermore, it makes it possible to create the
desired ‘surname scores’, measuring the degree
of association between a surname and an ethnic
group by setting thresholds to the ethnicity dis-
tribution of its bearers’ forenames. This approach
is being followed by the team of researchers at
University College London to which the author
belongs, where promising developments are
being evaluated in the same way as other studies
(see Mateos et al., 2007 for initial results).

Finally, in order to create an ethnicity classifi-
cation covering all of the potential ethnic groups
present in a population, the name reference list
has to be created using reference populations
originated in a large number of countries, which
is made possible today through the use of elec-
tronic telephone directories, population registers
and growing genealogical internet resources
(Hanks, 2003). Furthermore, a set of alternative
classification techniques, such as census area
information, text pattern mining, and so on,
which are discussed in detail in Mateos et al.
(2007), can be brought to the effort of improving
those name classification methods currently
available.

CONCLUSION

Name-based ethnicity classification methods
have been successfully applied, primarily in
public health, to subdivide populations into
groups of common origin, although they clearly
present room for improvement. Moreover, these
methods present great potential to be applied in
broader population studies on ethnicity, such as:
ethnic group population forecasting by small
area (Large and Ghosh, 2006), monitoring 
migration (Stillwell and Duke-Williams, 2005),
detecting census undercount (Graham and
Waterman, 2005), measuring residential segrega-
tion (Simpson, 2004), analysing the geography of
ethnic inequalities (Dorling and Rees, 2003) or of
mortality and morbidity (Boyle, 2004), evaluating
equal opportunity policies (Johnston et al., 2004)

and political empowerment processes (Clark and
Morrison, 1995), and improving public and private
services to ethnic minorities (Van Ryn and Fu,
2003). All of these research and public policy areas
present a lack of appropriate timely and detailed
data on ethnicity, a problem that is increasing 
as the last round of census data ages, and new
migration flows are changing the population’s
composition and the demands for public services.
Improved methods in these areas are thus of key
policy importance in today’s multicultural society.

The name-based ethnicity classification
methodology evaluated here, through 13 repre-
sentative studies, offers a few advantages over
traditional information sources such as censuses
of population. Amongst them, it can develop a
more detailed and meaningful classification of
people’s origins (finer categories based on a very
large number of languages, vs. just 10 to 20 ethnic
groups in the Census), it offers improved updat-
ing (annually through registers with substantial
population coverage, such as electoral or patient
registers), it better accommodates changing 
perceptions of identity than ethnicity self-
classification (through independent assignment
of ethnicity and or cultural origins according to
name), and is made available, subject to confi-
dentiality safeguards, at the individual or house-
hold level (rather than an aggregated Census
area). Moreover, according to the literature its
main advantage remains its capability to provide
an ethnicity classification when self-reported 
ethnicity is not available, which is the case in
most population registers and data-sets on 
individuals, and at a fraction of the cost of 
alternative methods. However, this advantage
will tend to disappear with time, as the record-
ing of self-reported ethnicity becomes routine,
and data linkage methods allow that this infor-
mation is only recorded once throughout popu-
lation registers (Blakely et al., 2000; Bhopal et al.,
2004).

However, this review has also revealed a series
of limitations that remain mostly unsolved,
which hinder the wider adoption of name-based
classifications. The comparative approach taken
here has enabled grouping of these common
issues, and proposes a few improvements to
overcome them. These issues are: spatio-
temporal differences in the frequency distribu-
tion of names; the selective process of migration;
family autocorrelation; differences in the strength
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of association between a name and an ethnic
group; name spelling errors and name normali-
sation issues; different transcriptions or translit-
eration of a name into a different alphabet or
pronunciation; names usually only reflecting
patrilineal heritage; different histories of name
adoption; naming conventions and surname
change; and that they currently only classify a
few ethnic groups.

In order to overcome or ameliorate these
issues, future name-based classifications will
have to use large enough reference populations
with wide spatio-temporal coverage sourced
both in the host and origin countries. They will
also necessarily require the development of
name-to-ethnicity probability scores, and they
will need to be able to classify complete popula-
tions into all of the potential ethnic groups
present in a society at any given time and place.
Two of the studies analysed here stand out from
the rest in that they manage to gather some of
these qualities (Word and Perkins, 1996; Laud-
erdale and Kestenbaum, 2000), and while the rest
present important shortcomings, they have all
demonstrated their value and sufficient accuracy
in classifying ethnicity in the context for which
they were designed. There is an important poten-
tial for future improvements to this methodology
(Bhopal et al., 2004; Peach and Owen, 2004), and
key advancements have already been proposed
by Hanks and Tucker (2000) and Tucker (2003,
2005), which are being adopted into new classifi-
cations aiming for complete population coverage
(Mateos et al., 2007). Finally, there are certain
uncertainties regarding the ethical and legal
implications of using names in this manner,
which also need to be assessed and clarified.

There is evidence today that names are unfor-
tunately still being used to discriminate against
people in access to the labour, housing and credit
markets (Williams, 2003; Carpusor and Loges,
2006), on the basis of people’s ancestry, language,
religion, culture or skin colour. Using the same
weapons as the ‘enemy’, in ‘The causes and con-
sequences of distinctively Black names’ Fryer
and Levitt (2004) presented a crude picture of
ethnic inequalities and discrimination in the US
through an innovative analysis using forenames.
A golden opportunity would be missed if
researchers in population studies were not 
creative enough to find alternative ways to
reduce persistent discrimination and inequalities

between ethnic groups in today’s increasingly
multicultural cities.
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