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ABSTRACT. We offer a general-equilibrium economic approach to Zipf ’s Law or, more
generally, the rank-size distribution—the striking empirical regularity concerning the size
distribution of cities. We provide some further understanding of Zipf ’s Law by incorporat-
ing negative feedbacks (congestion) in a popular model of economic geography and
international trade. This model allows the powers of agglomeration and spreading to be
in long-run equilibrium, which enhances our understanding of the existence of a rank-size
distribution of cities.

1. INTRODUCTION

Why do cities exist, and why do they vary in size? These fundamental
questions have received a considerable amount of attention from regional and
urban economists in recent years. Consequently, a large and growing body of
literature exists today in which many factors contributing to our understanding
of the role, existence, and growth of cities are examined. Cities are now thought
to arise, for example, to give consumers easy access to a large variety of goods
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(either public or private), or because of the “external” effects (such as closeness
to friends and relatives) of consumer location, or because of the advantage for
consumers of proximity to their workplace (Fujita, 1989). However, consumers
who live and work in cities are also confronted with competition for space,
environmental problems, etc. The trade-off between the pros and cons of cities
determines the location choice of consumers. The existence of spillovers may also
play a role in their location decision of the producers. Cities provide firms with
a large clientele, an efficient location for knowledge spillovers or technological
externalities, maintenance services, financial services, and legal aid (Fujita and
Thisse, 1996; Glaeser et al., 1992; Henderson, 1977). Political systems can also
be important in the formation of cities; Ades and Glaeser argue that an urban
giant may “ultimately stem from the concentration of power in the hands of a
small cadre of agents living in the capital,” (1997, p. 224).

The factors above are no doubt important but they only give a rationale for
the existence of single cities. In general, they do not explain why cities are spread
unevenly across space nor do they explain why systems of cities exist. However,
the latter is studied in Central Place Theory (Christaller, 1933; Lösch, 1940;
Stewart, 1948; Henderson, 1974; Eaton and Lipsey, 1982; Fujita, Ogawa, and
Thisse,1988;Abdel-Rahman and Fujita,1993;Abdel-Rahman,1994;Quinzii and
Thisse, 1990; see Mulligan, 1984, for a survey). For a long time it proved difficult
to provide a sound economic rationale for systems of cities. It was up to Eaton
and Lipsey (1982) to develop a model with multipurpose shopping that creates
a demand externality causing clustering. It remained analytically difficult to
determine the optimal geographic pattern of agglomeration,so Eaton and Lipsey
verified whether the equilibrium is consistent with a central place structure.
Such hierarchical systems can be shown to be socially optimal given some
specific conditions (Quinzii and Thisse, 1990; Suh, 1991). Subsequent research
showed that systems of cities may also evolve due to differences in fixed costs
or variations in industrial structure, that is, specialization versus diversification
(Abdel-Rahman and Fujita, 1993; Abdel-Rahman, 1994) or differences in the
type of goods produced, that is, substitutability (Fujita, Ogawa, and Thisse,
1988).

Although the aforementioned studies have clearly contributed to our un-
derstanding  of systems of cities “it  is fair to  say that the  microeconomic
underpinnings of central place theory are still to be developed,” (Fujita and
Thisse, 1996, p. 343). Sometimes the hierarchical structure is assumed before-
hand, and the purpose of the study is to show that such a system is “optimal” or
an “equilibrium” outcome in some sense. Sometimes there is no interaction
between location decisions, market structure, and price-setting behavior to
determine the evolution of the system of cities. In particular this state of our
theoretical knowledge about the size-distribution of cities is not very satisfying
because we still do not have a proper understanding of the outstanding empirical
regularity concerning city-size distributions: the so-called rank-size distribu-
tion.The rank-size distribution states that there is an inverse linear relationship
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between the logarithmic size of a city and its logarithmic rank. A special case of
the rank-size distribution is known as Zipf ’s Law. Even though the rank-size
distribution does not hold exactly in reality, it does perform surprisingly well for
the (historical) size distribution of cities in most industrialized countries. None-
theless, a convincing theoretic microeconomic foundation for its existence is still
lacking, so it seems that the rank-size distribution is an empirical regularity in
search of a theory in which it can be grounded on the behavior of the individual
consumers and producers.1 As Mulligan put it “At this scale of analysis, research
emphasizes the behavior of the central place system, rather than the motivations
and actions of economic agents,” (1984, p. 25).

Zipf ’s Law can be derived from a stochastic or self-organizational approach,
sometimes borrowed from physics (Simon, 1955; Read, 1988; Bura et al., 1996;
Krugman, 1996a, 1996b; Roehner, 1995). Haag and Max (1995) explicitly intro-
duced “push” and “pull” factors, which are, however, simply assumed to exist and
not derived from microeconomic principles. Eaton and Eckstein (1997) further
extended this approach by identifying the push and pull factors, for example,
distance and human capital. The purpose of this paper is to show how the
rank-size distribution can be derived from a general-equilibrium economic
model based on microeconomic principles. The model we use is developed in
Brakman et al. (1996). It incorporates negative feedbacks (congestion) in Krug-
man’s (1991a, 1991b) geography model. The presence of negative feedbacks
explains the simultaneous existence of large and small cities. This is crucial
because the rank-size distribution only makes sense in a world in which cities
of various sizes coexist. We show that the model can generate a size distribution
of cities that meets the requirements of the rank-size distribution.

The paper is organized as follows. In Section 2 we describe the rank-size
distribution and discuss the influence of some economic variables on the size
distribution of cities using The Netherlands as an example. In Section 3 we
introduce the model and show how changes in parameters, such as transporta-
tion costs, the degree of industrial activity, returns to scale or congestion costs,
influence the rank-size distribution. In Sections 4 and 5 we investigate some
structural aspects of the model and summarize our conclusions.

2. THE RANK-SIZE DISTRIBUTION

Although there seems to be some confusion in the use of terminology (see
Read, 1988, for a short survey of the literature) Zipf ’s Law (Zipf, 1949) was
initially stated as in Equation (1), in which Rj is the rank of city j, Mj is its size,

1In other words “taking an even longer view the growth of cities in increasingly integrated
markets raises another intriguing possibility. In the US, cities follow the so-called rank-size rule . . .
No  one knows quite why this is,” (The Economist, Survey of Cities, July 29th 1995, p. 18).
Furthermore, there is a fractal aspect to the rank-size distribution as it also applies at different
levels of aggregation.
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and Co is a constant. This elementary version can be generalized (as suggested
by Zipf) to Equation (2), in which q is a (positive) constant.2

(1) RjMj = Co ; j = 1,..,r

(2) Mj = Co

Henceforth we refer to Equation (1) as Zipf ’s Law and Equation (2) as the
rank-size distribution. Thus, using this terminology Zipf ’s Law is a special case
of the rank-size distribution with the parameter q, which plays an important
role in the sequel, equal to one.3 The size of each city is measured by its
population, and the  city with the largest  population is  given rank  1, the
second-largest city rank 2, and so on. Under Zipf ’s Law (q=1) the largest city is
precisely k times as large as the kth largest city; the graph of Equation (1) is a
rectangular hyperbola. In empirical tests the log-linear version of Equation (2)
is estimated

(3) log(Mj) = log(Co) – q log(Rj)

Under Zipf ’s Law q = 1 and Figure 1 results. If 0 < q < 1 the slope of the
curve would be flatter and a more even distribution of city sizes results than
predicted by Zipf ’s Law. If q > 1 large cities are larger than Zipf ’s Law predicts,
resulting in a wider dispersion of city sizes.

In general the various estimations of the rank-size distribution for the
city-size distribution of individual countries fit the data remarkably well (see
Read, 1988). The following critical remarks are worth mentioning.

First, the rank variable is a transformation of the size variable, which
inevitably creates a (negative) correlation between the two variables.

Second, a distribution pattern as predicted by the rank-size distribution is
often found only when very small cities are excluded from the sample. If the size
of the city drops below a certain level (which is neither constant through time
nor the same for every country) there is hardly any negative correlation between
size and rank left for this group of small cities. For instance, Krugman argues
that the rank-size distribution works best for US cities “over a range of two
orders of magnitude from cities of around 200,000 up to metropolitan New York,
with almost 20,000,000” (1996a, p. 95). A possible rationale for this procedure is
that very small cities are indistinguishable from rural areas and can be omitted
from the data. In other word, there is a threshold value for urbanization, see

Rj
q

2Equation (2) is the Lotka form, see Parr (1985) or Roehner (1995). These authors also show
that the problem has been considered prior to Zipf ’s contribution, for example by Auerbach (1913),
Goodrich (1925), and Lotka (1925).

3As pointed out by an anonymous referee ‘rank-size rule’ or ‘Zipf ’s Law’ is now standard usage
if q = 1, whereas ‘rank-size function’ or ‘rank-size distribution’ is used if q may differ from unity.
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FIGURE 1: Rank-Size Rules for The Netherlands.
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Roehner (1995) for a discussion. Various methods are used to determine this
threshold (Parr, 1985).

Third, for the city-size distribution in some countries (notably the USA at
present) Zipf ’s Law holds because q is not statistically different from 1. However,
for most other countries and at different times, q is often found to be different
from 1. Therefore unnecessary attention to the value q = 1, is unwarranted (see
Krugman (1996b).

Fourth and most importantly, Equation (2) does not deal with the compara-
tive static effects of Zipf ’s Law. The value of q in Equation (2) is not constant over
time.That is,urban growth is not proportional.Sometimes, the urban population
becomes more concentrated in the larger cities (which increases q) whereas
during other periods the urban population becomes more evenly distributed
across the various cities (which decreases q).4 We now illustrate this point.

A Brief Look at Urbanization and Economic Change

What causes cities to become larger or smaller relative to one another, or
what accounts for changes in q over time? If one believes, as we do, that the
reason for these changes is not necessarily to be found in random growth, but
instead in structural economic changes,a model that links these changes to Zipf ’s
Law is called for. This is the topic of the next section. Parr (1985) investigates
the size-distribution of cities for various countries since about 1900 and argues
that over time a nation tends to display an n-shaped pattern in the degree of
interurban concentration.5 This also holds for The Netherlands, one of the
earliest intensively urbanized countries in Europe, which we use as an illustra-
tion. The discussion is based on Kooij (1988), who distinguishes three stylized
periods:6

1. Pre-industrialization (ca. 1600–1850) characterized by high transportation
costs and production dominated by immobile farmers.

2.Industrialization (ca.1850–1900) characterized by declining transportation
costs and the increasing importance of “footloose” industrial production
with increasing returns to scale.

3. Post-industrialization (ca. 1900–present) characterized by a declining im-
portance of industrial production and an increased importance of negative
feedbacks such as congestion.

As early as 1600 The Netherlands contained 20 cities with more than 10,000
inhabitants. In terms of the rank-size distribution the size distribution of these

4It must also be emphasized that the ranking of individual cities is not constant over time.
The history of urban development is very much a story of the rise and fall of particular cities.

5Parr (1985) finds a U-shaped pattern for the variable 1/q, which therefore translates into an
n-shaped pattern for q.

6De Vries (1981, pp. 96–104; 1984) gives additional supporting historical data on Europe as
a whole.
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cities was relatively even. There was no integrated urban system at the national
level until halfway through the nineteenth century, which marks the start of the
era  of industrialization in The Netherlands. Apart from  the fact that the
industrialization process had by and large yet to begin, the relatively high
transportation costs between cities is thought to have provided an additional
important economic reason for the lack of a truly national urban system.

The estimation of Equation (3) for The Netherlands reveals that q increases
from 0.55 in 1600 to 1.03 in 1900 (per our own calculations, see also Figure 1).7

In the second half of the nineteenth century an integrated urban system was
formed. Two interdependent economic changes were mainly responsible for this
formation. First, the development of canals, a railroad network, and, to a lesser
extent, roads significantly lowered transportation costs between cities which
enhanced trade between cities. Second, due to lower transportation costs, the
industrialization process really took off and cities often became more specialized
which stimulated trade between cities. Although the industrialization process
did not lead to dramatic changes in the overall rank-size order, it can be
concluded nevertheless that as time went by the initially large cities gained a
relatively larger share of the urban population.

Structural changes in the rank-size distribution take decades to material-
ize, so it is only well into the twentieth century that most Western industrialized
countries, including The Netherlands, gradually entered the post-industrializa-
tion era. The share of the services sector in total employment becomes ever more
important at the expense of the industrial sector.Comparing the Dutch rank-size
distribution for 1900 with 1990 it is evident that the size distribution of cities
has become more “flat.” In 1900 q was 1 compared to 0.7 in 1990. The declining
importance of industry (and hence of production characterized by increasing
returns to scale) may be one factor contributing to this change in the size
distribution. Increased congestion, especially in the large cities, is thought to
have stimulated the decline of such cities as Amsterdam, Rotterdam, and The
Hague.

From the above discussion we conclude that Period 2, the industrialization
period, was special in its power of agglomeration, as also noted by Kooij “. . this
was the era of the large cities,” (1988, p. 363). However, for all three periods the
rank-size distribution holds. This is illustrated in Figure 1 which shows the
results of estimating Equation (3) for our sample of Dutch cities in 1600, 1900,
and 1990: at least 96 percent of the variance in city size is explained by the
rank-size distribution. Industrialization apparently leads to an increase of q and
it is during this period (around 1900) that the Dutch rank-size distribution
mimics Zipf ’s Law (q = 1). Finally, these three periods in which changes in
economic variables demonstrably have an impact on the rank-size distribution
enable us to simulate the impact of such changes in the sequel of the paper.

7Standard errors are 0.026 and 0.042 and R2s are 0.96 and 0.96, respectively. The sample
consisted of 19 cities for 1600 and 23 cities for 1900.
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3. A GENERAL EQUILIBRIUM MODEL OF INDUSTRIAL LOCATION
AND ZIPF’S LAW

The Model

In Brakman et al. (1996) we extend Krugman’s (1991a, 1991b) general
equilibrium location model. Krugman’s basic location model usually produces
only a few industrial cities of equal size,or even monocentric (one city) industrial
production, and it is therefore not suited to derive the rank-size distribution.
The extension we offer is the possibility of negative feedbacks or negative
externalities.8 By doing so we can explain the viability of small cities or small
industrial clusters and thus in principle are able to derive rank-size distribu-
tions.

There are N cities producing manufactured goods that consist of many
individual varieties, nj in city j, and a homogeneous agricultural good, which
serves as numeraire. The production of manufactured goods is characterized by
firm-specific increasing returns to scale, and is assumed to be of the so-called
“footloose” type: firms are able to change their production location without costs.
The increasing (internal) returns to scale are responsible for the fact that each
variety is only produced by a single firm. Concentration of production reinforces
further concentration because total city income grows if workers decide to move
to that specific city. This pecuniary externality or growth of city income then
attracts more industrial firms and so on. Agricultural production is not mobile,
is characterized by perfect competition and, for simplicity, zero transport costs.9

The existence of a local, immobile labor force is an important spreading factor
because it ensures that there is always a positive demand in each region. If all
industrial production is concentrated in just one location a firm may still
consider relocation to another city in the hope of gaining a large part of that
city’s local market by not having to charge transportation costs.

On the demand side it is assumed that each city spends a fixed amount of
its income on both types of goods. This is the outcome of the well-known nested
Cobb-Douglas or CES utility function given in Equations (4) and (5), where α is
the share of income spent on manufactured goods and σ is the elasticity of
substitution between different varieties of manufactured goods. If we let γ denote
the share of industrial workers in the total work force and λj the share of these
in city j, then the total number of industrial workers in city j, Lj, is given in
Equation (6). Finally, let QAj denote production of agricultural goods in city j and
φj the share of agricultural workers in city j, then normalization of the production
of agricultural goods, which takes place under constant returns to scale, leads
to Equation (7)

8The properties of this model and a complete description can be found in Brakman et al. (1996).
9Positive transport costs for the agricultural sector are investigated in Fujita and Krugman

(1995).
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(4) U =

(5) Cm =

(6) Lj = λjγ L

(7) Qaj = φj(1 – γ )L

To analyze location aspects, positive transportation costs of the “iceberg”
type are introduced in the manufacturing sector. That is, if one unit of manufac-
tured goods is shipped from city j to i only 0 < tij < 1 units arrive in city i. An
increase in the parameter tij implies a reduction in transport costs from city j to
city i.

It is  important in this model  that industrial workers (and hence the
associated demand for manufactured products) are located where the production
of manufactured products is located, and vice versa. The agglomeration process
is fueled by the interaction of increasing returns, transportation costs, and the
mobility of the industrial workers. Increasing returns are responsible for indus-
trial concentration. However, the  fact that some factors  of  production  are
immobile provides for the spreading forces in the model: there is always demand
for manufactures in the periphery, that is in the rural areas.

So far the model is simply a summary of Krugman (1991a, 1991b). Our
model differs from his because of the role of negative feedbacks, external
diseconomies, or congestion costs. These costs provide an additional spreading
force and thereby enable an equilibrium outcome with not only a few cities, but
a reasonable number of cities of different sizes—a necessary condition for a
theoretical foundation of Zipf ’s Law. The importance of negative feedbacks was
noted by Balassa (1961, pp. 202–204); although economies of scale tend to
concentrate production in centrally located cities, there can still be a “spreading”
effect towards rural cities. In modern times external diseconomies may arise
because of limited physical space, limited local resources (such as water for
cooling processes), environmental pollution (which may require extra invest-
ment), and other congestion effects such as heavy usage of roads, communication
channels, and storage facilities.

Our aim is to analyze the consequences of congestion rather than its origin.
We capture the essence of negative feedbacks in Equation (8), where lij repre-
sents the amount of labor necessary to produce xij units of a particular variety
i in city j

(8) lij = fj(nj) + βj (nj)xij ; with , βj ≥ 0

Note that, in contrast to the more commonly used formulation in imperfect
competition models, the fixed costs  (fj)  and the  variable  costs (ßj) depend

C Cm a
α α1−

cij
j

N

i
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1 1
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positively on the number of firms in the city of location (nj).10 Although a novel
feature in this type of model, Mulligan (1984, pp. 22-23) discusses models with
similar characteristics, and a justification is in Arnott and Small (1994). Firms
located in city j take both the fixed and variable costs as given and thus do not
take congestion externalities into account when maximizing their objective
function (profit). Note that these costs can be different for different cities. This
may be used to model differences between cities, such as differences in produc-
tion technology (Brakman and Garretsen, 1993).

Consumers maximize utility, taking income and prices of manufactured
goods as given. Producers maximize profits by setting the price of their good (i.e.,
their variety) in a monopolistically competitive environment, taking factor
prices, congestion externalities and production functions as given. The price
elasticity of demand for a manufactured variety is constant so, provided the
number of varieties is large, this gives rise to the familiar pricing rule in
Equation (9) that price is a constant mark-up over marginal cost, where Pj is
the price of a variety produced in city j. If Pij denotes the price charged in city i
for a variety produced in city j this price is given in Equation (10). Given the
distribution of the industrial workers over the various cities and applying a
zero-profit condition, the production of a representative manufacturing firm in
city j, xj, is derived in Equation (11)

(9) Pj = β j (nj) wj

(10) Pij =

(11) xj = (σ – 1)

First, the short-run model is solved for the real wages in the various cities
given the distribution of the labor force. Second, the cities with high real wages
will attract mobile workers from the cities with lower real wages, up to the point
where either (a) real wages are equal for those cities with mobile workers, or (b)
all mobile workers are concentrated in only one city. The central equations [see
Appendix 1 for a derivation of Equation (14)] are

(12) Yj = φ j (1 – γ)L + λjγ Lwj

(13) Ij =

σ
σ −

F
HG

I
KJ1

P

t
j

ij

f n

n

j j

j j

d i
d iβ

n Pk jk
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P
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10In the simulations the specific functional form is f = anτ.
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(14) wj =

Equation (12) defines income in city j as the sum of income from agriculture
(the numeraire) and income from the mobile work force. Equation (13) defines
the exact price index of manufactures needed to determine the real wage.
Equation (14) gives the nominal wage in terms of the numeraire in city j. It
follows from the condition that demand equals supply in all markets. The
left-hand side of Equation (14) represents the cost of producing in city j. The
right-hand side determines demand for varieties from city j, which is a function
of the other cities’ income, their exact price indices, and the cost of transporting
goods from city j to the city in question. Given the distribution of the labor force
(λj) the number of varieties produced in each city (nj) can be determined. Prices
(Pjk) depend on wages (wk) and transport costs (tjk), so that Equations (12) to (14)
may be solved simultaneously for income, wages, and price indices of manufac-
tures in all cities.11 The price indices and wages can be used to determine the
real wages ωj and the average real wage ϖ. The distribution of the mobile labor
force is adjusted until the real wage of each city is close to the average real wage
of all cities (see also Appendix 1). In our simulations below all cities are located
on a circle at equal distances. Thus space is one dimensional and neutral: it does
not inherently favor any specific location. Therefore, if the rank-size distribution
results in the long-run equilibrium it is a feature of the model and not of the
preassumed spatial structure. In principle workers can move anywhere, not only
to the next city. This means in the case of 24 cities, for example, that the distance
between cities 1 and 23 is 2, etc. For ease of reference we call this the “equidistant-
circle.”

Due to its nonlinear nature the model cannot be solved analytically and we
have to use computer simulations to derive the equilibrium distribution of cities
for a given set of parameters. Different initial conditions may lead to a different
long-run equilibrium. In this sense our rank-size distribution (see Section 4) will
be path-dependent. The simulations below show that negative feedbacks are of
crucial importance in explaining industrial location and the economic viability
of small industrial centers. In general,monocentric equilibria are not an outcome
of our model. These results may be explained as follows. Other things being
equal, agglomerating forces become stronger without congestion, such that the
initially largest city generally attracts all industrial workers. With congestion
the forces of agglomeration and spreading  are in balance in the long-run
equilibrium. Zipf also believed that the balance between two opposing powers,
which he called the Force of Unification and the Force of Diversification, is crucial

ασ σ βσ σ σ
σ

σ σ σ σ
− −
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−
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1 1 1
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1

b g d i d i d ij j j j i
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11Thus, in the simulations below where we analyze 24 or 25 cities, one short-run equilibrium
is the solution to 72 or 75 simultaneous nonlinear equations. Such a solution has to be found for a
number of iterations until a long-run equilibrium is reached.
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for understanding the rank-size distribution, for example to economize on
transport costs of materials

“One course is to move the population to the immediate sources of raw materials
in order to save the work of transporting the materials to the persons; the effect
of this economy, which we shall call the Force of Diversification, will be to split
the population into a larger n number of small, widely scattered and largely
autarchic communities that have virtually no communications or trade with
one another.

The other course of economical action, which we shall call the Force of Unifica-
tion, operates in the opposite direction of moving the materials to the popula-
tion, with the result that all production and consumption will take place in one
big city where the entire population of C persons will live. In practice, therefore,
the actual location of the population will depend upon the extent to which
persons are moved to materials and materials to persons in a given system”
(Zipf, 1949, p. 352).

Simulating Zipf

To mimic the relationship between economic parameters and the level of
agglomeration illustrated in Section 2 we start with 24 cities located on an
equidistant-circle.12 Initially each city receives a random share of the industrial
labor force. In the subsequent analysis (Figure 2) we only include cities with a
long-run industrial sector; pure agricultural areas are left out as they do not
represent a city. In this respect the number of cities is endogenous. Based on the
stylized periods distinguished by Kooij (1988) for The Netherlands (discussed
in Section 2), we now discuss changes in economic parameters for each of these
three periods.

1. Pre-industrialization. The small industrial sector in this period produces
close substitutes and production is dominated by immobile farmers. We simu-
late the small industrial sector by choosing a relatively high value for the share
of agricultural workers in the total labor force (γ = 0.5) and the almost
homogeneous industrial sector by choosing a relatively high value for the
elasticity of substitution between varieties (σ = 6,which simultaneously implies
that increasing returns to scale are relatively unimportant). The low level of
regional integration (high transportation costs) is described by choosing t = 0.5.
Negative feedbacks are not very important in this period, but they are not

12Unless otherwise indicated parameter values are identical to the base-run values given in
Table 1. Although arbitrary in principle, the variables are reasonable; for example, the share of
mobile workers in the labor force equals 0.60, the elasticity of substitution equals 4, the share of
income spend on manufacturing equals 0.60, and so on. The chosen parameter values not only give
rise to the rank-size distribution, but also allow us to vary them within a reasonable range and thus
analyze the effects of these changes (see Section 4 and Appendix B). We emphasize throughout the
paper that parameters change over time and thus affect the size distribution of cities. Moreover,
interactions between parameters (mutual dependence) are likely to determine the final outcome,
see Brakman et al. (1996).
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absent (think of the disease-ridden large cities in the Middle Ages) which is
simulated by choosing a moderate value for τ , τ = 0.25.

2. Industrialization. The basic characteristic in this period is the spectacular
decrease in transportation costs and the increasing importance of footloose
industrial production with increasing returns to scale. At the same time
negative feedbacks are not absent, but also not very important in the sense that
they prevent large cities becoming even larger. In the model we simulate these
factors by lowering transport costs to t = 0.8 (remember, a high value of t implies
a low level of transportation costs) and increasing the share of the industrial
labor force in total employment, γ = 0.6. The increased importance of economies
of scale and differentiated industrial products are represented by choosing
σ = 4. In this period the strong industrialization leads to the disappearance of
small cities.This corresponds with the idea that agglomerating forces dominate
during the era of big-city growth.

3. Post-industrialization. In this period transportation costs remain low and
as before the industrial sector is characterized by differentiated products and
increasing returns to scale. The notable difference with earlier periods is
congestion, such as the growing traffic jams, air pollution, and rising land rents
in cities. Smaller cities are less troubled by such effects and therefore have a
tendency to grow faster. In the model we simulate this by increasing the
congestion parameter τ to 0.5.

Figure 2 presents some simulation results for the above three periods. At
least 93 percent of the variance in city size is explained by the rank-size
distribution. More importantly, these simulations suggest that the n-shaped
pattern of q over time, identified by Parr (1985), depends on the economic
parameter changes. Thus, in principle, we can reproduce rank-size distributions
by varying those parameters that have been identified in the literature to be
relevant for understanding the changes in the size distribution of cities.

4. STRUCTURAL ANALYSIS

In Section 3 we demonstrate that it is possible to derive a size distribution
of cities generating the rank-size distribution based on an explicit general-equi-
librium location model. The question arises whether or not rank-size distribu-
tions are a structural outcome of our model. First, we analyze the migration
dynamics inherent in the adjustment process of the model for a particular
example using the base-run parameter values and a random initial distribution
of the mobile labor force. Second, we analyze whether the economic model is
important in increasing the explanatory power of the rank-size distribution.
Third, we investigate the impact of changes in economic parameters on q and
the power of agglomeration. Finally, the complex nature of the  impact  of
transportation costs on agglomeration induces us to analyze a somewhat more
general spatial structure.
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FIGURE 2: Simulating Zipf.
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Adjustment

Analyzing more closely the adjustment over time of a typical simulation
example is the best way to get an intuitive feel for the adjustment process.13

Figure 3a depicts a random initial distribution of city size over the 24 cities on
the equidistant circle.14 Given this initial distribution we solve for the short-run
equilibrium. The real wages for industrial workers differ between the 24 cities
which starts a migration process of workers from cities with low real wages to
cities with high real wages according to Equation (23) in Appendix 1. The
redistribution of workers determines a new short-run equilibrium and starts a
second migration process because the real wages are still not equal for all cities.
The process continues until the long-run equilibrium is reached, in this simula-
tion example, after 16 migration process. Figure 3b depicts the final distribution
of city size over the 24 cities at the long-run equilibrium. Ultimately there are
two agglomeration centers of economic activity: one center around City 1 and
one center around City 12.

Inspecting both panels of Figure 3 shows that the two final centers of
economic agglomeration are close to the initial centers of high economic activity.
At the same time, the two final centers are rather evenly spread over the
equidistant circle, that is they are not too close to each other. This is also clear
from Figure 4a, showing the evolution of size over time as a result of the
migration process for Cities 1, 2, 11, and 12 (ultimately ranked number 1–3 and
5 in size). After two migration processes, Cities 2 and 11 are the largest cities.
However, as agglomeration centers these two cities are too close to each other;
therefore City 2 ultimately becomes smaller than City 1 and City 12 becomes
substantially larger than City 11. As demonstrated by City 11, the adjustment
process is not monotone over time.15 The prosperity of individual cities does not
depend only on its own size,but also on that of its neighbors. City 14, for example,
is initially the largest city. However, it is surrounded by smaller cities so it
ultimately drops in the rankings to number 7. Nonetheless, initial size does
matter: eight out of the ten ultimately largest cities were in the initial top ten
list.

Finally, Figure 4b suggests that the model increases the predictive power
of the rank-size distribution: as the city size distribution is adjusting to the
long-run equilibrium the share of the variance explained by the rank-size
distribution is increasing (until the level R2 = 0.95 is reached). Simultaneously,
the level of agglomeration as measured by the q-value is increasing over time

13This approach was suggested to us by an anonymous referee. The parameter values we use
are given in Table 1.

14The uniform random distribution is used to determine the industrial labor force for the 24
cities.However,note that Figure 3 depicts total city size, that is the sum of industrial and agricultural
workers.

15The size of Cities 1, 12, 13, and 24 is monotone increasing; of Cities 5, 6, 8, 14, 15, 18, 19, 20,
21, and 23 is monotone decreasing; and of the remaining ten cities is first increasing and then
decreasing.
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FIGURE 3: Change in City Sizes.
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FIGURE 4: Stepwise Evolution.
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after a small initial drop. However, this is only one example. We know that in
this type of nonlinear model initial conditions may be very important in deter-
mining the final equilibrium. We now examine this in more detail.

Does the Model Matter?

We first test the rank-size distribution without using the model, that is by
drawing (10,000 times) a random distribution of the mobile labor force for each
of the 24 cities from the uniform distribution and calculating the q value for each
draw.16 This experiment results in a single-peaked distribution of q values with
a wide range (from 0.3 to 1.7), an average fit (R2) of only 0.54 and an average
t-value of 5.3, see Table 1. Second, we repeatedly draw (240 times for the base
scenario) an initial random distribution of the mobile labor force (also using the
uniform distribution) to derive the concomitant long-run equilibrium for each
draw applying the model. This procedure allows us to estimate the rank-size
distribution, that is, we derive 240 q’s. The resulting frequency distribution of q
is depicted in Figure 5, which leads us to distinguish between two possible sets
of spatial outcomes: agglomeration (q > 0.725) and spreading (q < 0.725). See
below for a discussion of this criterion. Remarkably, the economic model gener-
ates the rank-size distribution fairly adequately both if agglomeration or spread-
ing occurs, although the former slightly outperforms the latter. See Table 1 for
these results and the selected base-run values for the parameters. More specifi-
cally, under agglomeration the average share of the explained variance in city
size (i.e., R2) equals 0.94 with an average t-value of 19.8, whereas if spreading
occurs the explained variance in city size equals 0.88 with an average t-value of
14.5. Thus, inclusion of the model considerably increases the explanatory power
of the rank-size distribution. As we observed in Figure 2, the model is able to
explain changes in q, which is not the case with the stochastic approach.

Figure 5 illustrates three main points regarding the sensitivity of the
rank-size distribution with respect to changes in initial conditions. First, a large
range of long-run equilibrium outcomes is possible (q ranges from 0.24 to 0.88).17

Second, the simulated density function is double-peaked. The lower peak at the
left for low values of q, and thus relatively equally-sized cities, arises if the initial
distribution of the mobile labor force is relatively even.18 The much higher peak

16Alternative initial random distributions, with the obvious exception of the Pareto distribu-
tion (see Read, 1988), may also be used to investigate whether our model adds to the explanatory
power of the rank-size distribution. No alternative initial distribution, not even the Pareto distribu-
tion, can be used for more fundamental questions, such as the changes in the distribution resulting
from parameter changes.

17As noted in Appendix A, the range of long-run equilibrium outcomes is affected by the
variable ε in Table 1. In the simulations a long-run equilibrium is reached if the relative deviation
of the real wage does not exceed the value ε for each city.

18The reader should keep in mind that an exactly even distribution of the mobile labor force
over the 24 cities of the equidistant-circle is a long-run equilibrium for all parameter settings in the
sequel.
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at the right arises if the initial distribution is more uneven, which triggers a
process of agglomeration. Third, Figure 5 suggests there is a dominant under-
lying value of q characteristic of the base-run parameter setting (approximately
q = 0.87). These three features do not depend on the specific base-run parameter
values but also apply for other parameter values (see Appendix 2 for some of the
corresponding simulated density functions). The double-peak and narrow range
of Figure 5 is a reflection of the underlying economic structure of our model and
a reminder of the interaction between economic parameter values and path-
dependency.

After inspection of the double-peaked density functions we decided to
subdivide all simulation experiments into two groups: agglomeration  and
spreading. Henceforth, agglomeration takes place if the predicted value of the
largest city is at least ten times as large as the smallest city. This, admittedly
arbitrary, rule translates into a value of q = 0.725 and is based on the bi-modal
feature of Figure 5. However, the value q = 0.725 is an intermediate value for q
found in empirical studies (Parr, 1985; De Vries, 1981). In short, if q exceeds
0.725 we will say agglomeration takes place, otherwise spreading occurs. For
example, the mean q-value for the agglomeration subgroup of the base scenario
(q = 0.853, see Table 2) leads to an average predicted value of the largest city
equal to fifteen times the smallest city if agglomeration takes place. In contrast,
the mean q-value for the spreading subgroup of the base scenario (q = 0.437, see
Table 3) leads to an average predicted value of the largest city equal to only four
times the smallest city if spreading occurs.

FIGURE 5: Histogram of Base-Run Scenario.
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Tables 2 and 3 summarize the statistical information on estimated q-values
for the base-run parameter setting and some interesting alternative parameter
settings. Table 2 focuses on agglomeration (q > 0.725) and Table 3 on spreading
(q < 0.725). If spreading occurs the variance (standard error for the mean of
0.010) is larger than if agglomeration occurs (standard error for the mean of
0.004) for the base-run scenario, see Figure 5. The base-run simulated prob-
ability of agglomeration, defined as the number of times agglomeration occurs
divided by the total number of simulations, is approximately equal to the
simulated probability of spreading (0.48 and 0.52, respectively)

Changes in Economic Parameters

Investigating the influence of changes in economic parameters, it is clear
from Tables 2 and 3 that the probability of agglomeration increases if the
elasticity of substitution between varieties (σ) decreases because the importance
of the positive externality associated with varieties becomes more important.
This makes it more attractive to locate where everyone else is located. Similarly,
and not surprisingly, the simulated probability of agglomeration also increases
if the mobile sector is more important, or if the costs of congestion are lower.
Finally, a reduction in transport costs (an increase in t) also seems to increase
the probability of agglomeration.

The advantage of having a general equilibrium economic model that can be
used for simulations in explaining agglomeration is the ability to change a
parameter without simultaneously changing the other parameters of the model.
In contrast, economic historians often point at a number of factors that change
simultaneously when evaluating changes in agglomeration over time, thereby
focusing primarily on the reduction in transport costs and the simultaneous
increase of the importance of returns to scale and the growth of the mobile sector.
The simulations reported in Table 2 seem to indicate that the reduction in
transport costs and the increase in returns to scale basically increase the
probability of agglomeration, whereas the increased importance of the mobile
sector affects the extent of agglomeration, that is, the average value of q
increases (from 0.825 to 1.038). This is in accordance with the special nature of
the industrialization period identified in Section 2 (see Figure 1.)

TABLE 1: Base-run Simulation Parameters and Statistics

Base-Run Values

α = 0.6 γ = 0.6 σ = 4 τ = 0.4 φj = 1/24
L = 1000 t = 0.8 a = 0.1 b = 0.2 ε = 0.00001

Goodness-of-Fit for Rank-Size Rule

Random Distribution Base-run Simulations
Agglomeration Spreading

Average R2 0.54 0.94 0.88
Average t-value 5.3 19.8 14.5
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Although economic historians generally argue that a reduction in transport
costs enables an increased level of agglomeration there is no a priori reason to
believe this is always true. After all, a reduction in transport costs also makes
it more attractive to produce at low cost in the periphery and (cheaply) transport
the products to the cluttered center. In this respect the effect of a reduction in
transport costs as reported in Table 2 seems to confirm the general perception
that this increases the probability of agglomeration. This perception needs to be
qualified. It is true that over a broad range of transport cost reductions there is
a general tendency to increase the probability of agglomeration (roughly from
zero at t = 0.25—not reported in Table 2—to 0.78 at t = 0.9) but it is also true
that the rise in the probability of agglomeration is not monotone and abruptly
reverses after reaching a peak.19 For t = 0.95 the simulated probability of
agglomeration equals zero (not reported in Table 2). The fact that both very high
and very low transport costs result in a spreading of economic activity over the
various cities confirms earlier findings, see Krugman and Venables (1995) and
Brakman et al. (1996). It is easy to understand because extremely high transport
costs make each city an almost autarkic entity that can only be served from

TABLE 2: Statistical Simulation Information on Rank-Size Distribution;
Agglomeration*

Base High Elasticity Low Elasticity Mobile Sector
of Substitution of Substitution More Important

(σ = 5 > 4) (σ = 3.5 < 4) (α = γ = 0.7 > 0.6)

Mean q .853 .825 .838 1.038
(.004) (.022) (.006) (.012)

Simulation
Probability of
Agglomeration

= 0.48 = 0.06 = 0.64 = 0.69

High Transport Low Transport Low Cost Manhattan Circle;
Costs Costs of Congestion Base

(t = 0.65 < 0.8) (t = 0.9 > 0.8) (τ = 0.25 < 0.4)

Mean q .840 .842 .884 .872
(.008) (.001) (.004) (.002)

Simulation
Probability of
Agglomeration

= 0.42 = 0.78 = 0.58 = 0.88

*Standard errors in parenthesis. The mean value of q is calculated for the agglomeration
subgroup of simulation outcomes (q > 0.725); the simulated probability of agglomeration is the
number of times agglomeration occurs divided by the total number of simulations.

115

240

3

50

32

50

35

51

25

59

39

50

59

102

44

50

19For example, if t rises from 0.75 to 0.8 the simulated probability of agglomeration slightly
drops from 0.52 (not reported in Table 2) to 0.48.
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within the city limits. On the other hand, for extremely low transport costs prices
more readily reflect production costs including the cost of congestion in crowded
areas. This makes the periphery more attractive and leads to spreading.

Manhattan Circles: Nonneutral Space

The occasionally ambivalent nature of a reduction in transport costs on
agglomeration makes it appealing to look at this variable from a different
perspective. In the equidistant-circle each city enters symmetrically and there
is no structural bias toward either agglomeration or spreading at any particular
location. In contrast, nature often provides specific locations which do favor
agglomeration, such as valleys or natural harbors. Perhaps the so-called “Man-
hattan circles,” introduced into spatial economics by Kuiper, Paelinck, and
Rosing (1990), are the most straightforward way to analyze such structures.
Figure 6 depicts a Manhattan circle with radius 2. The distance between any
two locations is measured stepwise; thus the distance between Locations 1 and
6 equals 2,and the distance between Locations 13 and 4 equals 3.By construction
Location 1 is the most favorable location for agglomeration as the average
distance to the other locations is minimal.

Tables 2 and 3 also report the agglomeration and spreading results for
simulations of a Manhattan circle with radius 3 that consists of 25 locations

TABLE 3: Statistical Simulation Information on Rank-Size Distribution;
Spreading*

Base High Elasticity Low Elasticity Mobile Sector
of Substitution of Substitution More Important

(σ = 5 > 4) (σ = 3.5 < 4) (α = γ = 0.7 > 0.6)

Mean q .437 .421 .389 .559
(.010) (.011) (.018) (.021)

Simulation
Probability of
Spreading

= 0.52 = 0.94 = 0.36 = 0.31

High Transport Low Transport Low Cost Manhattan Circle;
Costs Costs of Congestion Base

(t = .065 < 0.8) (t - 0.9 > 0.8) (τ = 0.25 < 0.4)

Mean q .524 .300 .480 .583
(.018) (.040) (.014) (.040)

Simulation
Probability of
Spreading

= 0.58 = 0.22 = 0.42 = 0.12

*Standard errors in parenthesis. The mean value of q is calculated for the spreading subgroup
of simulation outcomes (q < 0.725); the simulated probability of spreading is the number of times
spreading occurs divided by the total number of simulations.

125

240

47

50

18

50

16

51

34

59

11

50

43

102

6

50
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using the base-run parameter setting.20 As expected, the structural bias toward
agglomeration considerably increases the simulated probability of agglomera-
tion (from 0.48 to 0.88, see Table 2). However, two aspects are more surprising.
First, agglomeration is not automatic because occasionally spreading occurs.
Second, despite its structural advantage in the center of the Manhattan circle
Location 1 is not always the largest location in the long-run equilibrium. This
is illustrated in Figure 7 where panel a depicts a typical outcome in which
Location 1 is the largest and panel b depicts a more exceptional outcome in which
an off-center location is the largest.21 It is a reminder of the fact that the
structural advantage of Location 1 is not always decisive in making it the largest
location; sometimes path-dependency may be more important. None of the
simulations with the Manhattan circle achieve the circular-like, transport-
cost–minimizing agglomeration results in which Location 1 is smaller than
equal-sized Locations 2, 3, 4, and 5 as reported in Kuiper, Kuiper, and Paelinck
(1993), not even if we start with an even distribution of the mobile labor force.

5. CONCLUSIONS

One rarely finds empirical relationships in economics which deserve to be
called “laws.” Zipf ’s Law is a noteworthy exception. Despite impressive progress
in the theory of city formation and city systems in recent decades, the theoretic
economic foundation is still poorly understood. In this paper we provide some
further understanding of Zipf ’s Law by incorporating congestion in an economic
location model. In our analysis economic parameters play an explicit role in
determining the rank-size distribution and describing its evolution over time.
The model is able to derive the rank-size distribution because the equality of

6

13 2 7

12 5 1 3 8

11 4 9

10

FIGURE 6: Manhattan Circle with Radius 2.

20The number of locations of a Manhattan circle with radius R equals 2 R(R + 1) + 1.
21Location 1 was the largest location in the long-run equilibrium in 42 of the 50 simulations.
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(a) Center Location is Largest

(b) Center Location is Not Largest

FIGURE 7: Simulations with Manhattan Circles.
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agglomerating and spreading forces allows for the simultaneous existence of
large and small cities.

Using historical data for The Netherlands as an illustration, we are roughly
able to reconstruct historical trends with respect to the rank-size distribution
by varying parameters that represent specific economic factors (such as the
share of the industrial labor force in total employment, the level of integration
between cities, congestion, and the type of goods). The parameters we use in our
simulations are found to be important by economic historians for describing
(changes in) the size distributions of cities. Simulations show that these parame-
ters have the expected effects.

Furthermore, we show that the rank-size distribution is a structural out-
come of our model. By repeatedly drawing an initial distribution of the mobile
labor force from a uniform distribution we determine simulated long-run equi-
librium density functions for q. This results in a double-peaked density function;
a lower peak if the initial distribution of the mobile labor force is relatively even
and a higher peak if the initial distribution is more uneven. It is demonstrated
that our model considerably increases the explanatory power of the rank-size
distribution. All in all, it seems possible to derive Zipf ’s Law from a general-
equilibrium location model.
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APPENDIX 1

We derive Equation (14) of the main text. Full employment of industrial
workers gives Equation (15). Given λj Equation (15) determines nj, which in turn
determines fj. Income in city j and the exact price index is given by Equations
(12) and (13) in the text. Let Cij denote the consumption in city i of a commodity
produced in city j; this gives Equation (16) the spending equilibrium. The
first-order conditions for two representative products for a city k is given in
Equation (17). Combining Equations (16) and (17) yields Equation (18)

(15) Lj = nj σ fj

(16) PijCij = αYi

(17)

(18) ClkPlk =

Furthermore, let slk represent expenditure in city l on commodities from
city k; using Equation (18) we arrive at Equation (19). The income of manufac-
turing labor in city i, given in Equation (20), must equal total sales so Equation
(21) follows, where city 1 is used as an example. After rearrangement Equation
(22) follows (similar equations hold for the other cities)
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Finally, we note that , where ωj is the real wage in location j. The
change in city j’s share of mobile labor is given in Equation (23) and driven by
the extent to which its wage deviates from the overall average . In

the simulations a long-run equilibrium is reached if the relative deviation of the
real wage does not exceed the value ε for each city.

(23) λj(s + 1) = λj(s) + ρλj(s)

APPENDIX 2. SIMULATED HISTOGRAMS

This appendix displays the simulated histograms of estimated q coefficients
for low costs of congestion, low transport costs, low elasticity of substitution, high
mobility, high elasticity of substitution, and high transport costs, respectively.

ω α
j j jw I= −

ω λ ω= ∑ j j
j

ω ωj s s+ −1b g b g
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FIGURE 8: Histograms for Other Parameters.
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APPENDIX 3. LIST OF VARIABLES

U = utility
L = total labor force
Ca = consumption of agriculture, which is the numeraire
Cm = consumption of manufactures (or industrial goods)
σ = elasticity of substitution between manufactures
α = share of income spent on manufactured goods
γ = share of labor force working in the industrial sector
λj = share of industrial labor force working in city j
lij = labor required to produce variety i in city j
N = number of cities
nj = number of varieties of manufactures in city j
xij = amount of variety i in city j
xj = total production of manufactures of a representative producer

in city j
fj = fixed labor cost in city j
βj = marginal labor cost in city j
ε = threshold value for real wage differences in simulations
Pj = price of a variety of manufactures in city j
wj = nominal wage in city j
Pij = Pj/tij
Cij = consumption in city i of a variety produced in j
Yj = income of city j
τj = congestion parameter with respect to nj in fixed cost functions

in city j
Rj = rank of city j
Mj = size of city j (size of total labor force in city j)
aj = constant in the fixed (labor) cost function for city j
φj = fraction of agricultural labor in city j
ωj = real wage in city j
ϖ = average real wage, Σλjωj

ρ = speed of adjustment of λj as a function of the real wage in j
compared to the average real wage

tij = transport cost (“iceberg” type) of a shipment from j to i (tii= 1)
Lj = manufacturing labor in city j
QAj = production of agricultural goods in city j
Ij = exact price index of manufactures in city j
ckj = consumption in k of manufactured goods produced in city j
sij = expenditures in city i on goods from city j
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