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ABSTRACT. Zipf’s law for cities is one of the most conspicuous and ro-
bust empirical facts in the social sciences. It says that for most coun-
tries, the size distribution of cities must fit the power law: the number
of cities with populations greater than S is inversely proportional to S.
The present paper answers three questions related to Zipf’s law: (1)
does the Danish case refute Zipf’s law for cities?, (2) what are the im-
plications of Zipf’s law for models of local growth?, and (3) do we
have a Zipf’s law for firms? Based on empirical data on the 61 largest
Danish cities for year 2000, the answer to (1) is NO—the Danish case
is not the exception which refutes Zipf’s law. The consideration of (2)
then leads to an empirical test of (3). The question of the existence of
Zipf’s law for firms is tested on a sample of 14,541 Danish production
companies (the total population for 1997 with 10 employees or more).
Based on the empirical evidence, the answer to (3) is YES in the sense
that the growth pattern of Danish production companies follows a
clean rank-size distribution consistent with Zipf’s law.

PREDICTION IN ECONOMICS, and in the social sciences generally, is a rather
scarce commodity (Reder 1999) and perhaps an unattainable ideal
(Aumann 2000). According to Aumann, the value of a good theory lies
in its usefulness in structuring reasoning and, therefore, one empirical
fact to be cited in favour of a theory is its diffusion in some population
of scientists. In other words, the more use of a particular theory, the
better. As Reder notes, economists tend to place higher value on tech-
nique than content; clever theoretical ideas are valued over the assidu-
ous gathering and careful presentation of data. And since mainstream
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economics, in any case, has a sufficiently flexible theoretical basis to ra-
tionalize contrary empirical facts also, data do not play the prominent
role they do in the natural sciences. As important reasons for the gap be-
tween theory and applied work, Reder points to the rather low status of
empirical facts and the tendency to use the term “prediction” when
“retrodiction” would be more suitable (pp. 27–29). In contrast to this
generally disappointing state of affairs (see, e.g., Reder 1999), there ex-
ists one exceptional case, a notable empirical success story in which
theory must bow to facts. This case is Zipf’s law for cities, which has im-
portant implications for the admissibility of theoretical growth models.
In economics one very rarely finds empirical relationships which de-
serve to be called laws. Zipf’s law for cities, however, is one of the most
conspicuous empirical facts in economics and in the social sciences in
general (Brakman et al. 1999). It is surely an outstanding empirical regu-
larity deserving the status of an experimental law (Gabaix 1999).

According to Zipf’s law, the growth pattern of cities almost every-
where follows the power law—the number of cities with populations
greater than S is proportional to 1/S. Put differently, if we rank a sam-
ple of cities according to population size, and then place the log of the
size on the X-axis and the corresponding log of the rank on the Y-axis,
there should appear a straight line with slope –1. Should the numeri-
cal value of the slope exceed 1, cities are more dispersed than pre-
dicted whereas a slope less than one indicates that cities are more
even sized than the prediction. Suprisingly, we actually see a slope of
about 1 when data on American metropolitan areas are used. Both
Gabaix (1999) and Krugman (1996) obtained a slope of –1.005
(std.dev. 0.010) and an R2 of .986 for the 135 American metropolitan
areas listed in the Statistical Abstract of the United States for 1991. Sim-
ilar results have been reported for most countries in contemporary
times (Rosen and Resnick 1980). The support of Zipf’s law for previ-
ous periods has included samples of cities in India (Zipf 1949), China
(Rozman 1990), the Netherlands (Brakman et al. 1999) and the United
States (Krugman 1996; Zipf 1949).

Although most evidence corroborates Zipf’s law, some evidence has
been reported which seems to refute the prediction of a slope of –1.
Thus, Brakman et al. (1999) compare data from the Netherlands in
1600, 1900, and 1990 and, despite a very good fit for all three regres-
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sion models (R2= 0.96 or better), obtain estimates that deviate from the
slope of –1 predicted by Zipf’s law. In their study, only data for 1900
fit this prediction. Both the estimates for 1600 and 1990 obtain a lower
value, indicating that cities are more even-sized than predicted. In-
spired by this deviation, we have sampled data to test the Danish case
for the year 2000. Since Denmark and the Netherlands are both small
countries and to some extent comparable in development, it is inter-
esting to ask if the Danish case will show yet another deviation from
Zipf’s law for cities.

At this point it should be noted that Zipf’s law is a special case of
what is known as the rank-size distribution, which states an inverse
linear relationship between the logarithmic size of a city and its loga-
rithmic rank without any constraints on the slope. In the study of size
distributions of firms, the term “Pareto distribution” is often used syn-
onymously with the term rank-size distribution (see, e.g., Ijiri and Si-
mon 1977). Furthermore, Zipf’s law, or rather the rank-size distribu-
tion, applies to a much wider number of phenomena than size
distributions of cities (Zipf 1949). For example, rank-size distributions
have been shown to fit empirical observations of relative income (Zipf
1949), the relative size of business firms (Ijiri and Simon 1977), the
number of biological species per genus (Zipf 1949) and the relative
frequency of a word (Estoup 1916; Zipf 1935, 1949; Irmay 1997).
Moreover, Irmay (1997) showed that Zipf’s law is approximately equal
to Benford’s (1938) logarithmic distribution of first significant digits in
a table of numbers. That Zipf’s law fits size distributions of cities and
business firms, relative frequencies of large texts of words (in several
languages) and can account for first digits in various tables of numbers
begs a second question: What is the explanation for Zipf’s law and
why do we see it in the case of cities?

The present paper suggests that, in view of the great success of
Zipf’s law in accounting for the growth of cities, it is not only possi-
ble but also plausible that the growth of firms may follow Zipf’s law
or at least a modified version of it. Note that the related proposition
that size-distributions of firms can be explained by the Gibrat as-
sumption has previously met strong criticism (Schmalensee 1989;
Sutton 1999) and has, perhaps wrongly, been rejected. Thus, the
third question to be addressed in the present paper is: Does the em-

Zipf’s Law for Cities and Beyond 125



pirical evidence on asset distributions of business firms follow Zipf’s
law?

We address all three questions in turn. Due to the importance of the
third question, we test it on data for what is a complete sample of all
Danish production firms with 10 or more employees for 1997.

Zipf’s Law for Cities: The Danish Case

WILL THE DANISH CASE SHOW yet another deviation from Zipf’s law for cit-
ies? As noted by Brakman et al. (1999), this question may, due to its at-
tention to a specific member of the the family of rank-size distribu-
tions (with slope –1), obscure the more interesting question whether
some rank-size distribution will fit the city-size distribution of Den-
mark. Nevertheless, it is a curious fact that Zipf’s law at present holds
true in the United States. Clearly, it would be interesting if this were
the case also in Denmark, since that would indicate some generality in
the underlying dynamics of city growth across countries.

In accordance with Brakman et al.’s reservations, we expect some
rank-size distribution to hold for the case of Denmark but would be
surprised if Zipf’s law was supported. That is, when the log of the size
is placed on the X-axis and the corresponding log of the rank is
placed on the Y-axis, there should appear a straight line. However, it
would be surprising if its slope turned out to be –1, at least if we con-
sider that the geographical size of Denmark is comparable to the
Netherlands where Brakman et al. estimated a slope well below –1 as
predicted by Zipf’s law.1

Contradicting Brakman et al.’s scepticism, Gabaix (1999) has
showed that Zipf’s law can be viewed as the unique steady state distri-
bution arising from Gibrat’s law (originally stated in Gibrat 1931).
Gabaix further showed that city size processes may converge to Zipf’s
law within a relatively short period of time (100 years) in dynamic ur-
ban systems. Thus, even very young urban systems may satisfy Zipf’s
law as, for example, empirical evidence on U.S. cities in 1790 has
shown (Zipf 1949, cf. Gabaix 1999). So, if Gabaix is right, the Dutch
case is an exception, and we should therefore expect Zipf’s law with
an exponent close to 1 to hold in the Danish case.

The more fundamental issue that the empirical evidence on Zipf’s
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law and other rank-size distributions point to is the underlying cause
for variation in the size of cities. Thus, for regional economists, the
question of why cities vary in size is a fundamental one. There has
been much progress in understanding the role, existence and growth
of cities (Brakman et al. 1999) and Zipf’s law plays an important role
as a very tight constraint on the admissible models of local growth
(Gabaix 1999). In short, any theoretical explanation for the growth of
cities should, according to Gabaix, be consistent with Zipf’s law or, ac-
cording to Brakman et al., at the very least satisfy some rank-size dis-
tribution. In the following section, we shall address this issue. In the
present section, we now turn to the Danish case as illustration of
Zipf’s law.

To avoid terminological confusion, we use Brakman et al.’s (1999)
useful distinction between Zipf’s law and rank-size distributions. Thus,
equation (1), below, shows Zipf’s law for cities and equation (2)
shows the more general rank-size distribution.2 The log-linear version
shown in equation (3) was used for empirical estimation reported in
the present paper. Rj refers to the rank of city j and Sj is its size. C and
K are country-specific parameters to be estimated and E is the er-
ror-term.

(1) RjSj= C, j= 1, 2, ..., N

(2) (Rj)KSj= C, j= 1, 2, ..., N

(3) ln(Rj)= C – K ln(Sj) + Ej j = 1, 2, ..., N

We obtained a sample for of the 61 largest cities in Denmark for
2000 from the Danish Statistical Bureau. Equation four shows the esti-
mates obtained for the Danish sample.

(4) ln(Rj) = 13.82 – 1.056 ln(Sj) + Ej j = 1, 2, ..., 61

(0.027)

The standard error of the estimate is in parentheses and the R2 is
0.962, a value that indicates a good fit. Additionally, the estimated
slope is reasonably close to –1.3 According to equation (2), a useful in-
terpretation of this finding is that the observed distribution for Danish
cities is a specific instance of the rank-size distribution where the
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probability that the size of a given city is larger than some S is propor-
tional to 1/SK with K approximately 1 (Gabaix 1999). However, as can
be seen in Figure 1, the largest Danish town, Copenhagen, as well as
some mid-range towns deviate from the linear prediction. A plausible
explanation is simply that capitals are peculiar objects driven by
unique political forces (Ades and Glaeser 1995; Gabaix 1999). There-
fore, the deviation of the Danish capital Copenhagen from the linear
prediction is the exception to be expected.

As can be seen from Figure 1, there is a smaller deviation which lies
in the range of about 10.2 to 10.9 for ln(Sj). Thus there are more me-
dium-sized cities in Denmark than predicted by Zipf’s law and it is this
effect which is responsible for raising the exponent K slightly above 1.
A further but even smaller deviation is that (the many) Danish cities
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The 61 largest Danish cities, year 2000: X: ln(size), Y: ln(rank).



with a population less than 27,000 (ln(Sj)<10.2) has an exponent less
than 1. So, according to Zipf’s law, there are too few small Danish cit-
ies (with 27,000 inhabitants or less), a finding that is consistent with
data for the United States (Gabaix 1999). In the following sections, we
shall return to an explanation provided by Gabaix (1999) for this phe-
nomenon.

The important point to convey here is that the empirical data for
the size distribution of Danish cities for 2000 provides yet another
reasonable fit with Zipf’s law. This statement must be supplemented
with the observation that two of the three most important deviations
from the linear prediction observed in the Danish case have also
been reported to be present in other studies (Gabaix 1999). In sum,
according to the Danish case of Zipf’s law for cities for year 2000,
there is no grounds for concluding that we have encountered a re-
futing case.4

Explaining Zipf’s Law for Cities

ZIPF’S LAW IS ONE OF THE OUTSTANDING EMPIRICAL success stories in econom-
ics and in the social sciences in general. We have seen that the Danish
case is consistent with its prediction. Not only is Zipf’s law an empiri-
cal success story, it also has a rather surprising empirical regularity.
What could be the explanation for the large number of empirical stud-
ies that arrive at these results? Or is the attention to Zipf’s law as a spe-
cific realization of the rank-size distribution, as Brakman et al. suggest,
unwarranted since the exponent is likely to reflect both time- and
sample-specific variation?

From the viewpoint of social theory, the problem with Zipf’s law is
its experimental character. As Brakman et al. note, we still do not have
a proper understanding of the underlying explanation for its observed
empirical regularities. Many explanations can produce Zipf’s law and
many have been proposed (Carroll 1982). This is not the place to re-
view the wide range of explanations given for Zipf’s law. Rather, we
shall concentrate on the most important ones. According to Gabaix
(1999), arguably the two most successful models have been Steindl’s
(1965) and Simon’s (1955) path-breaking and now classic works. We
shall therefore briefly consider the rationale for Zipf’s law offered by
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these models as well as some difficulties which have been pointed out
as limits to their plausibility.

We first consider Steindl’s model (1965) in which existing cities
grow at a rate G and new cities are born at a rate V. Accordingly, the
size distribution of cities will follow a power law with exponent
K=V/G such that the number of cities with size greater than S will be
proportional to S-K (Gabaix 1999). This explanation is clearly problem-
atic since it demands the implausible condition V=G to be satisfied.
For example, this condition is clearly violated in the Danish case as
well as for most other mature urbane systems where we observe V<G
(Gabaix 1999).

Simon’s (1955) model is, according to Gabaix (1999), the most suc-
cessful stochastic growth model for Zipf’s law; however, it is not with-
out its difficulties. Briefly, in Simon’s model, migrants will form a new
city with probability P and will go to an existing one with probability
(1-P). Since P is proportional to the size of the city, this model gener-
ates the familiar power law but now with the steady state exponent K=
1/(1-P). There are two major difficulties with this model. As pointed
out by Krugman (1996), the speed of convergence to Zipf’s law is infi-
nitely slow (since this requires P very close to 0, which again requires
that existing cities are infinite at the limit). The second problem,
pointed out by Gabaix (1999), is the model’s implication that the rate
of growth of the number of cities has to be larger than the growth rate
of the population of the existing cities, a consequence which is re-
futed by empirical data.

Were it not that empirical data repeatedly show an exponent close
to 1, both Steindl’s and Simon’s models would be possible contenders
as an explanation for size distributions of cities. Note here that Simon’s
model, as Gabaix points out, may be viewed as a special case of
Steindl’s model, with the steady state exponent K= V/G= 1/(1-P). The
two models, however, imply competing empirical predictions. Ac-
cording to Steindl’s model, K<1 (since V<G for most urban systems)
whereas Simon’s model suggests K>1. One solution is the approach
taken by Brakman et al. who view the exponent of 1 as a special case.
Arguably, a more attractive solution is the one provided by Gabaix’s
model, which delivers Zipf’s law as the limit of a stochastic process
whose assumptions are consistent with empirical observations.
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Now, consider Gabaix’s (1999) model, which has a number of young
migrants deciding in which city (populated by a number of seasoned
agents) to locate. The agents maximize wage wt and amenities at

(which are independent and identically distributed), so the equilibrium
of “utility adjusted” wages will be the same across cities (wt at = ut).
Given that the increase in population of city i is DNt and that agents die
with probability Pd, the normalized growth Gt of city i will be:

(5a) Gt = DNt /Nt = f 9–1(ut /at) – Pd,

As can be seen, Gabaix’s model of city growth is an expression of
what is commonly known as Gibrat’s law, which simply states that
growth is scale-invariant and independent of initial size, i.e., Gt+1 = St+1

/St. Since Gabaix’s model implies a common and size-independent
variance, it is necessary to justify this implication. This is done by as-
suming that the total variance of the growth rate q2(S) can be broken
down into three components of which only one is size-dependent:

(5b) q2(S) = q2
policy + q2

region + q2
industries/S,

It is thus assumed that the variance (but not the level) of the
city-specific provision of public goods is size-independent and that re-
gional shocks affect all cities of the region equally. Whereas policy
and regional shocks are seen as size-independent, the shocks experi-
enced by a city’s industries should, according to Gabaix, depend on
size. Again, this assumption seems reasonable because larger cities
may hedge the industry-specific growth risk by diversifying their in-
dustrial portfolio. All this boils down to the needed justification that
the variance of the growth process is size-independent at least for
large cities (since for a large S, q2

industries /S tends to 0). Thus, cities in
the upper tail of the size distribution should follow Zipf’s law whereas
small cities should deviate from it, a point which, according to the pre-
vious section, was supported by the data on Denmark.

Armed with the justification for constant variance of the growth pro-
cess, Gabaix then develops a stochastic version of the equation for
city growth simply by taking the continuous limit of equation (5a),
which gives

(5c) dSt/St = mdt + qdBt,
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Here Bt is reflected Brownian motion (random walk with a barrier)
which depends on the model parameters shown in equation 5(a) (ut,
at, Pd,). The expected growth in normalized size m is the difference
between the growth rate G(S) of city with size St and the mean growth
rate (m = G(S)-Gmean). We are now in a position to convey Gabaix’s
central result, which is that Zipf’s law necessarily emerges as the
steady state size distribution. In terms of the above model (5c), for St>
Smin and dSt = st max[mdt +qdBt,0], Gabaix shows that the distribution
converges to a Zipf distribution with exponent K = 1/(1-Smin /Smean).
Thus, when the minimal allowable city size tends to 0, K tends to 1
from above. According to this result, the existence of some lower bar-
rier will induce city size to be distributed according to the power law.
All that is needed for the emergence of Zipf’s law, then, is the exis-
tence of some repelling force that keeps cities from becoming too
small. Having presented the core of Gabaix’s model, we shall briefly
note that the problem of slow convergence and the possibility of devi-
ations from an exponent of 1 is explicitly dealt with. Thus, Gabaix
shows how the convergence to a steady state will be reasonably fast if
the variance q2(S) is not too low and further provides an elaborate and
useful analysis of the two possible causes of deviation from an expo-
nent of 1, the mean and the standard deviation of the growth process.

In sum, Gabaix’s paper presents a very useful and convincing sto-
chastic explanation for Zipf’s law and the necessary emergence of an
exponent of 1 within a reasonably short time frame. The model is
driven by the condition that the ratio of wages and amenities
equilibrate across cities and the (infinitesimal) lower barrier to city
size, which helps a size-invariant random walk converge to a power
distribution with an exponent of 1 at the limit. It should be noted that
Gabaix shows this result to hold for other stochastic processes as well.
The crucial point is that a wide range of stochastic growth models may
produce Zipf’s law from the Gibrat assumption. This result is also
surely important for growth models of business firms where Gibrat’s
law plays an important role (Sutton 1999). We shall return to this issue
in the ensuing section, where a complete sample of Danish produc-
tion companies for 1997 is used to test Zipf’s law for business firms.
However, first we shall briefly consider Brakman et al.’s model and
how it relates to Gabaix’s result.
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Brakman et al.’s claim that the time-distribution of the exponent will
follow an n-shaped pattern is clearly at odds with Gabaix’s result. So,
how does Brakman et al. arrive at this conclusion? Their main point is
that the reported structural economic changes rather than random
growth underlies the size distribution of cities. This size distribution
might well follow the rank-size distribution; however, we should ex-
pect the exponent to change over time according to an n-shaped pat-
tern. The reason for this shape is that the force of agglomeration has
its strongest effect in the industrialization period. For different reasons,
spreading forces have relatively higher effects in both the pre- and
post-industrialization periods, with the result that small cities will have
a tendency to grow more quickly. Therefore, the exponent of the
rank-size distribution will peak in the industrialization period.
Brakman et al. support this claim with data from the Netherlands
which show an exponent of 0.55 in 1600, 1.03 in 1900 and 0.72 for
1990 and further refer to Parr’s (1985) results as support for the
n-shaped time-pattern of the exponent. Then, based on Krugman’s
(1991a, 1991b) general equilibrium location model, Brakman et al.
proceed to develop an equilibrium model of industrial location which
can mimic the data observed for the Netherlands. The model is built
on reasonable assumptions and, based on simulations, quite success-
fully reconstructs the historical trends observed for the Dutch case.
The value of this simulation exercise lies in its ability to use the param-
eters found important by economic historians to reproduce the ex-
pected effects in terms of the rank-size distribution as a structural out-
come of the modelling exercise. A major drawback, however, is that
the parameter settings, although plausible, are completely arbitrary.
Nevertheless, the question remains whether an exponent of 0.72 pres-
ents an unsurmountable difficulty for stochastic models as Brakman et
al. claim.

As indicated above, Gabaix’s stochastic model has no difficulty in
handling this problem. Gabaix’s general explanation for an exponent
of 0.72 would be that either the mean or the variance of the growth
process deviates from Gibrat’s law. Thus, Gabaix shows that if a range
of cities has a high growth rate, its distribution will decay more slowly
than in the pure Zipf case (the exponent will decrease) because small
cities constantly feed the stock of big cities. The second cause for a
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small exponent Gabaix gives is that the variance of the growth process
is size-dependent. The data reported by Brakman et al. for the Nether-
lands does not allow evaluation of these possible alternative explana-
tions for the observed low exponent for 1990. The point is that, at
least in principle, Gabaix’s stochastic model can account for these de-
viations as deviations from Gibrat’s law.

In sum, we have seen that the puzzling empirical regularity of Zipf’s
law with exponent 1 can be explained as the expression of the steady
state size distribution arising from Gibrat’s law. Given that the process
has had time enough to reach a steady state (which should be the case
for all mature urban systems), deviations from the exponent of 1 may
be explained as deviations from Gibrat’s law. Alternatively, one may
side with Brakman et al. and attempt to account for the expression of
power law rank-size distributions as the outcome of structural eco-
nomic changes. Although the latter approach is very attractive due to
its attempt to align with actual historical data, the equilibrium models
provided so far essentially rely on rather arbitrary parameter settings.
This is not the place to pass a verdict over the comparative value of
the two approaches, only to note the differences and some of the as-
sociated pros and cons. Having presented the most important expla-
nations for Zipf’s law, this paper’s next section examines the size-dis-
tribution of Danish production companies. Since Zipf’s law can be
viewed as the outcome of Gibrat’s law, it should be interesting to see
whether this also holds for the size-distribution of business firms and,
if not, whether a deviation from Zipf’s law may be explained within
the framework of Gabaix’s stochastic model.

I

Zipf’s Law for Firms?

SINCE ZIPF’S LAW TURNS OUT to be the steady state distribution of the fa-
miliar Gibrat’s law commonly used as a foundation for growth theory,
it would not be unreasonable to expect Zipf’s law also to hold for the
growth of firms. As Sutton (1999) notes however, the development of
the empirical literature since Gibrat (1931) has indicated that attempts
to make simple generalizations about the shape of firm size distribu-
tions have been rather dubious. Sutton’s reason for this is that a model
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of firm growth needs a rational basis. Therefore, a stochastic model
has no chance of mimicking an empirical size distribution of business
firms. Also, according to Gabaix (1999), the empirical question of size
distributions of firms is still unresolved.

Motivated by the insights presented about Zipf’s law and the need
to access a comprehensive data set of size distributions of firms, we
use a sample of Danish production companies for 1997. The sample is
made up of the total population of 14,541 firms with more than ten
employees. One suspicion regarding the failure of previous empirical
tests to support the Gibrat assumption, at least for some industries, is
that these failures were due to bias introduced by missing data and/ or
industry-specific samples. The obvious way to rule out this problem is
simply to use a sample that includes the total population rather than
some more or less arbitrarily chosen subset of firms. This is the ap-
proach we followed in the present study. Furthermore, in contrast to
most previous studies, we use data on assets rather than sales as a
proxy for firm size. The reason for this is that we think asset accumu-
lation comes much closer to agglomeration than sales growth does.
Again, we use equation (3) to obtain the empirical estimate on basis of
the full sample:

(6a) ln(Rj) = 14.98 – 0.669 ln(Sj) + Ej = 1, 2, ..., 14,541

(0.0013)

The standard error of the estimate is in parentheses and the R2 is
0.942, a value that indicates a reasonable fit. The estimated slope clearly
seems too far from –1 to warrant any speculation that we have stumbled
over yet another instance of Zipf’s law. The good fit, however, indicates
that the size distribution might well be a rank-size distribution that fol-
lows the power law. If we take a look on the plot of the size distribution
in Figure 2, below, we see that it has two very distinct parts.

As can be seen from Figure 2, the distribution consists of a first part
with almost even-sized small firms (across all industries) and a second
part (from about ln size 9.5), which portrays a straight line with negative
slope. The linear fit of the second part is striking, as can be seen from
the following regression which includes the 13,543 firms (93%) with as-
sets (measured in Danish kroner) equal to or higher than ln(9.5).
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(6b) ln(Rj) = 15.73 – 0.741 ln(Sj) + Ej = 1, 2, ..., 13,543

(0.0017)

Considering the sample size, the R2 of 0.985 indicates an extremely
good fit. There is no doubt whatsoever that the size distribution of
Danish production companies excluding the 7% of smallest firms fol-
lows a rank-size distribution with exponent 0.741.

This result is quite remarkable in view of the widespread scepticism
towards models of firm behaviour which are merely statistical and not
based on maximizing behaviour (Sutton 1999). Thus Schmalensee
(1989) notes the failure of statistical models such as Ijiri and Simon’s
(1977) to provide a satisfactory description of size distributions for
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The 1997 population of 14,541 Danish production companies with ten or
more employees: X: ln(size), Y: ln(rank).



some industries. And as noted by Sutton, there has been a long-stand-
ing concern about the theoretical basis of statistical growth models.
According to Sutton (1999: 245), most authors now claim only that the
size distribution will be skew, but do not specify the extent of the
skewness, or its particular shape.

Sutton himself develops a model which characterizes the minimum
degree of industry level inequality of firm size. He develops Ijiri and Si-
mon’s (1977) model by substituting its Gibrat law assumption with the
much weaker assumption that the probability of seizing a new market
opportunity is size-independent. By further assuming constant proba-
bility that the next market opportunity will be filled by a new entrant, as
Ijiri and Simon assumed, Sutton arrives at a benchmark case which de-
fines a limiting Lorenz curve. It is defined in two-dimensional space in
terms of the normalized rank k and the k-firm concentration ratio Ck:

(7) Ck ^ k/N (1-ln(k/N)).

The point is that this limiting Lorenz curve places a lower bound on
firm inequality (in terms of the k-firm concentration ratio). Based on a
game-theoretic “island model,” assuming strictly independent sub-
markets, Sutton shows that this result also holds in the presence of stra-
tegic effects. That is, the effect of independence between submarkets is
strong enough to override any strategic effects within submarkets so a
minimal degree of inequality emerges in the limit. The size distribution
obtained from the game-theoretic analysis is at least as unequal as the
limiting Lorenz curve. So how does the present paper’s very clean re-
sult obtained for the size distribution of Danish firms relate to the criti-
cism of the empirical and theoretical failure of statistical models raised
by Sutton and others? And how does the obtained evidence for Danish
firms compare to Sutton’s benchmark case, the limiting Lorenz curve?

The first thing to note is that our findings are consistent with, but
much stronger than, the prediction offered by Sutton’s model. If we
compute the Lorenz curve of the size-distribution of Danish firms in
the two-dimensional space used by Sutton, we find that the Lorenz
curve bends much further away from the diagonal than predicted. In
other words, the inequality of the firms in our distribution is much
greater than indicated by Sutton’s model. The next thing to note is that
the part of the size distribution reported in the present paper, which
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excludes very small firms, clearly follows a rank-size distribution with
exponent 0.741. As can be seen from Figure 2 and the R2 of 0.985, this
is a very clean result. Against widespread claims to the contrary, there
is no doubt that, apart from the extreme lower tail, the size distribu-
tion of Danish production companies can adequately be summarized
by a rank-size distribution. Moreover, the result is obtained on a com-
plete sample of firms with 10 or more employees. A crucial reason for
our result may well lie in the breadth of our sample. Previous studies
have predominantly used more narrow samples focused on the indus-
try level, which may explain why these studies have failed to obtained
similar results. But how can we make sense of the obtained result?
And what about the deviation in the lower tail and the slight deviation
in the upper tail? Armed with insights provided by Gabaix, some an-
swers to these question can be given.

The failure of statistical models to provide a satisfactory description of size
distributions for some industries.

As Ijiri and Simon (1977) note, the observed regularities in business
firm size distributions usually fit closely to the Pareto distribution, an
outcome that follows from the Gibrat assumption that expected
growth is proportional to size. Given the observed regularity, the
Gibrat assumption then works as a criterion of admissibility for the
class of models that aspire to explain firm growth. It is therefore of
great importance if we dismiss the Gibrat assumption. As noted by
Schmalensee (1989), statistical models (most based on the Gibrat as-
sumption) have encountered persistent difficulties in providing an ad-
equate description of the size distribution of some industries. Com-
bined with the search for sound economic explanations of size
distributions, this led to a widespread dismissal of the Gibrat assump-
tion. The data presented in the present paper, however, suggests that
the dismissal of Gibrat’s law may have been premature—previous
studies have analysed more narrow samples, typically defined in
terms of industry. If we accept the reasonable assumption that entry
fees vary greatly between industries, the left tail of the distribution,
which consists of small even-sized firms, will be unevenly distributed
across industries. Accordingly, an industry-level analysis will always
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fail to confirm Gibrat’s law for some industries. The reason for the fail-
ure of previous studies may well be due to the fact that popula-
tion-wide samples have not been used.

Explaining the observed size distribution.

The empirical size distribution of the population of Danish production
companies with ten or more employees reported in Figure 2 has three
parts. Part 1 consists of small even-sized firms with attained size
ln(9.5) or less. This part contains 7% of the population. Part 2 consists
of the 93% medium- and large-sized firms with a degree of inequality
that shows a very clean fit with the Gibrat assumption— a rank-size
distribution with exponent 0.741. Concerning this part of the distribu-
tion, Figure 2 shows some deviation from the almost perfect linear fit
for the extreme upper tail of the distribution where size is ln(16) or
more. We shall refer to this extreme upper tail as part 3 of the distribu-
tion and note that it contains the 30 largest Danish production compa-
nies. These 30 firms comprise 0.2% of the population in terms of num-
ber but in terms of their combined asset mass they account for 73.14%
of the population’s assets. Now to the outline of an explanation for the
observed size distribution. We start with part 2 of the distribution.
Since this part has an almost perfect fit with the rank-size distribution,
it follows the Gibrat assumption. Hence, the expected growth and the
variance of the growth process is size-invariant. In other words this
93% of firms experience the same shocks to the growth process.

(8) q2(S) = q2
international + q2

national+ q2
regional +

q2
industry/S, + q2

strategy(Sk)

In line with the explanation given for size-independent variance of
the growth process, we can break down the total variance into its
components. For simplicity, we assume independent variance; how-
ever, this assumption is not essential since specifying the relevant in-
teraction terms is straightforward. We may reasonably assume that in-
ternational, national and regional shocks to the growth process will be
experienced independent of firm size. By contrast, since we may
adopt the quite reasonable assumption that large firms can hedge
against industry-specific risk, we find that the effect of industry spe-
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cific shocks decrease in size. Finally, we assume that for the m very
large firms (rank 1, 2, ..., k-m), firm-specific strategic effects will intro-
duce idiosyncratic variance into the growth process.

Thus, the proposed explanation for the observed size distribution is
that the variance of the growth process for very small firms depends
on industry-specific effects. With increasing size, these effects gradu-
ally trail off. This proposition is consistent with the curve observed in
Figure 2 in the size range between ln(7.0) and ln(9.5). For part 2 of the
size distribution, it is thus proposed that industry-specific shocks to
the growth process have a minor effect compared to international, na-
tional and regional shocks. That is, excluding the largest 30 firms in
the extreme right tail of the distribution, the mean and the variance of
the growth process is size-independent. The size distribution ob-
served in part 2 of the distribution is thus consistent with an underly-
ing stochastic process which can be described in terms of equation
(5c) as a random walk with a lower barrier, i.e., reflected Brownian
motion.5 Regarding the 30 largest firms found in the extreme right tail
of the distribution, we suggest that firm-specific strategic effects of the
sort typically studied in theories of industrial organization (see, for ex-
ample, Tirole 1988) influence the variance of the growth process.
Therefore for about 93% of the Danish production companies, their
growth process may almost perfectly be described in terms of an un-
derlying dynamic stochastic process which is consistent with the
Gibrat assumption.

As observed by Ijiri and Simon (1977), the Gibrat assumption can be
derived from the postulate that access to internal and external invest-
ment funds is proportional to size, without assuming rational choice
as part of the causal mechanism. As we have seen, it is also consistent
with a breakdown of variance approach.

According to Gabaix’s argument, the exponent of 1 predicted by
Zipf’s law should emerge as the steady state distribution of Gibrat’s
law. So, why the deviation from the expected exponent of 1 pre-
dicted by Zipf’s law? Perhaps the steady state has not been reached
yet. Although it is possible that the process is not in a steady state
due to ongoing pertubations, the difference beween part 1 and 2 of
the observed distribution suggests an alternative explanation. As
demonstrated by Gabaix, deviations from a Zipf exponent of 1 can be
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due to deviation in the expected growth rate and in the variance of
the growth process for some range of firms. Both effects will result in
an exponent less than 1. If a range of firms has a high growth rate, its
distribution will be flatter. This is because the distribution will decay
less quickly than in the pure Zipf case since small firms feed the
stock of big firms (Gabaix 1999). It is reasonable to assume that the
smallest Danish production companies (the 7% contained in part 1 of
the observed distribution shown in Figure 2) have a very high ex-
pected growth rate, so it is not surprising to observe an exponent of
0.741. A second reason that could explain the observed deviation
from the Zipf case, would be that a range of firms had high variance,
which, due to the higher mixing of small and large firms, also results
in a flatter distribution. Since this effect may well be present in the
range of small firms at the extreme left tail of the distribution, there is
an additional reason why we observed an exponent that was signifi-
cantly less than the Zipf case.

In sum, we have presented data for the size distribution of the en-
tire population of Danish production companies with ten or more em-
ployees and found a striking fit with the rank-size distribution with ex-
ponent 0.741 when the extreme left tail of the distribution was
excluded. We presented the data for 1997 but also posess data for the
four previous years. The data for the four years prior to 1997 do not
show any deviation from the results reported here. Thus for about
93% of the Danish production companies, the growth process may al-
most perfectly be described in terms of an underlying dynamic sto-
chastic process consistent with the Gibrat assumption. Inspired by
Gabaix, we have further provided the outline of an explanation for
this result. We propose that the growth process for very small firms
depends strongly on industry-specific effects. With increasing size,
these effects gradually trail off and what remains is international, na-
tional and regional shocks that hit all firms with equal force. There-
fore, the variance of the growth process will be size-independent for
all but the smallest firms. The few Big Players will, however, show
firm-specific deviations due to strategic effects of the sort studied in
the theory of industrial organization.

The obtained empirical result is very clean and quite surprising in
view of the widespread scepticism towards statistical explanations, in
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part fed by the failure of previous studies to support the Gibrat as-
sumption for some industries. As already mentioned, the present
study suggests that this may well be due to sampling bias. Since the
ratio of small firms to each industry is likely to vary due to the costs
associated with entry, industry-level sampling and analysis is likely
to face some inexplicable cases. To remedy this problem, it is rec-
ommended to use population-wide samples, as in the present study,
or at the very least to use unbiased cross-industry samples.

Conclusion

THE PRESENT PAPER HAS EXAMINED one of the outstanding empirical regu-
larities of the social sciences, Zipf’s law for cities. The empirical data
presented for Danish cities for year 2000 showed a Zipf exponent
close to 1. This fact, combined with a sufficiently good fit, led to the
conclusion that yet again we have encountered a case that is consis-
tent with the prediction of Zipf’s law.

We have further conveyed the most important explanations offered
for the puzzling fact that city growth follows Zipf’s law. According to
Gabaix (1999), Zipf’s law can be explained as the steady state distribu-
tion arising from Gibrat’s law. Thus, when a stochastic process follows
the Gibrat assumption, it will eventually converge to Zipf’s law. And,
as Gabaix showed, all that is needed to ensure that convergence will
happen sufficiently quickly to make the emergence of Zipf’s law plau-
sible is that some impurity be introduced into the process, e.g., in
terms of an infinitesimal lower barrier to city size. This result not only
holds when city growth is modelled as reflected Brownian motion but
also holds for a much more general class of models, namely any
Markov process with repelling force. Alternatively, one may side with
Brakman et al. (1999) and attempt to account for the expression of
power law rank-size distributions as the outcome of specific structural
economic changes. Even if this approach is attractive due to its at-
tempt to align theory with actual historical data, such structural mod-
els may, as theirs does, suffer from arbitrary parameter settings due to
the inclusion of unobservable variables. In sum, the two approaches
may best be seen as complementary, each contributing an important
facet of explanation.
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Nevertheless, there is a crucial difference between Gabaix’s stochas-
tic model with its general prediction that city growth will converge to
Zipf’s law and Brakman et al.’s model devised to mimic the structural
changes observed in a specific country. According to Brakman et al.
the time-distribution of the Zipf exponent will be n-shaped with a
peak value of 1 or more. By contrast, Gabaix’s model implies that the
exponent will converge to 1 unless there is deviation in the mean or
variance of the growth process for some range of the distribution. This
indicates that one of the most important implications for future re-
search is to obtain better estimates of the time-distribution of the Zipf
exponent in order to substantiate the veracity of the competing claims
made by Gabaix and Brakman et al.

Inspired by Gabaix’s result that Zipf’s law can be viewed as the out-
come of the Gibrat assumption, we went beyond city growth and ex-
amined the empirical size distribution of firms. Our sample included
the entire population of Danish production companies with ten or
more employees. Excluding the 7% smallest firms, the size distribution
(assets) showed a striking fit with the rank-size distribution with expo-
nent 0.741. This result indicates that the growth process of 93% of the
Danish production companies can almost perfectly be described in
terms of an underlying dynamic stochastic process consistent with the
Gibrat assumption.

This result is very clean and, therefore, rather surprising in view of
the widespread scepticism towards statistical explanations of size dis-
tributions of firms. A possible reason for the failure of previous studies
to consistently obtain similar results may well be due to sampling bias.
Since the ratio of small firms to each industry is likely to vary due to
entry costs, industry-level samples will probably show apparent devia-
tions from the Gibrat assumption, at least for some industries. Since
the result obtained in the present study suggests that this problem dis-
appears at the population-level size distribution, the obvious remedy
would be to obtain population-level samples or at least unbiased
cross-industry samples. Thus, the present study suggests that examina-
tion of population-level samples should be high on the agenda of em-
pirical research on the size distributions of firms. It should also be
noted that we find assets to be better proxies for size in growth mod-
els than the sales data typically used in previous studies (Sutton 1999).
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Therefore, it is possible that the very clean empirical result reported in
the present study partly reflects this fact.

It is further proposed that the deviation from the Zipf exponent of 1,
which should be expected according to Gabaix’s model, was caused
by the strong influence of industry effects on very small firms. With in-
creasing size, it is argued, this effect gradually trails off and what re-
mains are international, national and regional shocks that hit all firms
with equal force. Therefore, the variance of the growth process will be
size-independent for all but the smallest firms. A second possible
source of deviation from Zipf’s law was the strategic interactions of
the few Big Players (only 30 firms or 0.2 % of the present sample).

In sum, the present study has raised the implication that a simple
stochastic model based on the Gibrat assumption adequately de-
scribes the underlying causes of persistent inequality of firm size for
most firms. It may thus be premature to dismiss such models despite
the scepticism raised by previous authors (see for instance Sutton
1999). Notably, this conclusion is based on empirical data sampled at
the population level. Had industry-level samples been used, some in-
dustries would have shown a relatively bad fit. The important excep-
tion to this conclusion is the growth of Big Players, which may better
be understood in terms of the standard tools of the theory of industrial
organisation (see e.g., Sutton 1999; Tirole 1988).

Regarding theory, the value of the empirical support for Zipf’s law,
which may be seen as the steady state outcome of Gibrat’s law, lies in
the strong bounds placed on the set of models that may be used to ex-
plain city and firm growth. One could formulate this condition in
terms of an impossibility theorem which states that the set of possible
models of population-level city and firm growth should be consistent
with Zipf’s law in the long run.

Notes

1. Brakman et al. (1999) reports a slope of –0.72 (R2 = 0.96).
2. There is some disagreement in terminology here. Gabaix (1999) refers

to the rank-size rule, which states an inverse linear relationship between the
actual rank and size (the size of the city of rank i varies with 1/i). For Brakman
et al. (1999), the rank-size distribution denotes the inverse linear relation be-
tween log rank and log size.

3. The standard deviation is –0.027 and the estimate is –1.056. If we
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choose significance level 0.05, it must be rejected that the true estimate is
–1.000. But if we choose significance level 0.01, we cannot reject that the true
estimate is –1.000. Therefore, I say that the estimated coefficient is reasonably
close to 1 and conclude that Denmark cannot be viewed as a refuting case.

4. The empirical regularity of Zipf’s law raises the question of how cities
are defined and why this does not seem to make a difference. In the face of
the arbitrary manner in which cities are defined, the persistent regularity of
Zipf’s law is rather perplexing. The city as a part of its overall Standard Metro-
politan Area (SMSA) differs between and within countries. As long as cities are
defined so their relative sizes are internally consistent, between-country differ-
ences can be handled by the country-specific parameter C in equation (3).
Within- country differences could in principle be handled by adding a dummy
to equation (3) if necessary, but this is not widely done. But why has this in-
consistency in the data not made a big difference in previous estimations? The
reason is probably that the estimation of Zipf’s law according to equation (3)
is very robust regarding variation in relative size if two conditions hold: (1) the
ranking of cities must be preserved; and (2) systematic bias must not be intro-
duced.

5. This requires redefining models (5a) and (5c) in terms of firms maximiz-
ing, for example, market share and quality so the equilibrium of “profit ad-
justed” market shares will be the same across industries.
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