
ZIPF’S LAW FOR CITIES: AN EXPLANATION*

XAVIER GABAIX

Zipf ’s law is a very tight constraint on the class of admissible models of local
growth. It says that for most countries the size distribution of cities strikingly �ts a
power law: the number of cities with populations greater than S is proportional to
1/S. Suppose that, at least in the upper tail, all cities follow some proportional
growth process (this appears to be veri�ed empirically). This automatically leads
their distribution to converge to Zipf ’s law.

I. INTRODUCTION

Zipf ’s law for cities is one of the most conspicuous empirical
facts in economics, or in the social sciences generally. The
importance of this law is that, given very strong empirical
support, it constitutes a minimum criterion of admissibility for
any model of local growth, or any model of cities. Since George
Zipf ’s1 original explanation [1949], many explanations have been
proposed, but all pose considerable difficulties. The present paper
proposes a simple and robust account for the regularity.

To visualize Zipf ’s law, we take a country (for instance, the
United States), and order the cities2 by population: No. 1 is New
York, No. 2 is Los Angeles, etc. We then draw a graph; on the y-axis
we place the log of the rank (N.Y. has log rank ln 1, L.A. log rank ln
2), and on the x-axis the log of the population of the corresponding
city (which will be called the ‘‘size’’ of the city). We take, like
Krugman [1996a, p. 40], the 135 American metropolitan areas
listed in the Statistical Abstract of the United States for 1991.

We see a straight line, which is rather surprising (there is no
tautology causing the data to generate automatically a straight
line). Furthermore, we �nd its slope is 2 1. We can run the
regression,
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arg, William Wheaton, two anonymous referees, and seminar participants at
several universities for their helpful comments. I also thank Jonathan Eaton and
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1. The original discoverer of Zipf ’s law, however, seems to be Auerbach [1913].
2. The term ‘‘city’’ is, strictly speaking, a misnomer; ‘‘agglomeration’’ would be

a better term. So, the ‘‘city’’ of Boston should include Cambridge. Indeed Rosen and
Resnick [1980] show that Zipf ’s law holds better the more carefully agglomerations
are constructed.
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(1) ln Rank 5 10.53 2 1.005 ln Size,
(.010)

where the standard deviation is in parentheses, and the R2 is .986.
The slope of the curve is very close to 2 1. This is an expression of
Zipf ’s law: when we draw log-rank against log-size, we get a
straight line, with a slope, which we shall call z , that is very close3

to 1. In terms of the distribution, this means that the probability
that the size of a city is greater than some S is proportional to 1/S:
P(Size . S) 5 a /S z , with z . 1. This is the statement of Zipf ’s law.4

3. In fact, the regression above is not quite appropriate. Indeed, Monte-Carlo
simulations show that it understates the true z by .05 on average, and understates
the standard deviation on the estimate, which is around .1. But even given those
minor corrections, the estimates of z all remain around 1. See Dokkins and
Ioannides [1998a] for state-of-the-art measurement of z .

4. There are slight variations on the expression of Zipf ’s law. The most
common one is the ‘‘rank-size rule,’’ which subsection III.4 discusses. Its expression
is less convenient than the above probabilistic representation. Also, Gell-Mann
[1994, p. 95] proposes the modi�cation P(Size . S) 5 a/ (S 1 c) z , where c is some
constant. This paper sticks to the traditional representation (with c 5 0) of Zipf ’s
law, for two reasons. First, there is an immense empirical literature that studies
this representation. Second, theory turns out to say that the representation with
the constant c 5 0 is the one we should expect to hold.

FIGURE I
Log Size versus Log Rank of the 135 largest U. S. Metropolitan Areas in 1991
Source: Statistical Abstract of the United States [1993].
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We can repeat the exercise, with similar, though less clean
results, for other periods in U. S. history [Dobkins and Ioannides
1998a; Krugman 1996a, p. 41; 1996b; Zipf 1949, p. 420], for most
countries in the modern period [Rosen and Resnick 1980]—and
for even India in 1911 [Zipf 1949, p. 432], and China in the
mid-nineteenth century [Rozman 1990, p. 68].

The striking �t of Zipf ’s law has generated many attempts at
an explanation. Section IV will review the various theories that
have been proposed, showing that each of them presents consider-
able difficulties. This paper will provide a very simple reason for
the emergence of Zipf ’s law. It draws on the insights introduced in
economics by Champernowne [1953]. Indeed, it has long been
noted, in economics since at least Champernowne [1953], in
physics before that (see Section VI), and then repeatedly in the
literature on Zipf ’s law (e.g., Richardson’s survey [1973]) that
random growth processes could generate power laws.5 But these
studies stopped short of explaining why the Zipf exponent should
be 1. This paper shows that the most natural conditions on the
Markov chain (identical growth process across sizes) necessarily
lead to this exponent of 1.

Consider a situation where there are a �xed number of cities
(we will see that nothing changes with varying number), and that,
over time, their sizes grow (and possibly shrink) stochastically.
Assume only that, at least for a certain range of (normalized)
sizes, the cities follow similar processes; i.e., their growth pro-
cesses6 have a common mean (equal to the mean city growth rate)
and a common variance. This homogeneity of growth processes is
often referred to as Gibrat’s law,7 after Gibrat8 [1931]. Then,
automatically, in the steady state, the distribution of cities in that
range will follow Zipf ’s law with a power exponent of 1.

This necessary emergence of Zipf ’s law may sound surprising.
An analogy for it would be the central limit theorem:9 if we take a
variable of arbitrary distribution (of �nite variance) and calculate

5. These random growth processes have been recently rediscovered by the
physicists Levy and Solomon [1996].

6. In percentage, not absolute, terms, of course.
7. Hence, the formal de�nition of Gibrat’s law is that the probability

distribution of the growth process g t 1 1 5 St 1 1 /St does not depend on the initial size
St. Note that it can depend on things other than the size St, e.g., on the main
industrial activity of the city. The requirement is that conditioning only on the size
of the city does not bring information about the growth process.

8. For a review of the recent literature that started with Gibrat’s work, see
Sutton [1997].

9. I borrow this analogy from Casti [1995].
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the mean of its successive realizations, normalized appropriately,
this mean will always have (asymptotically) a normal distribu-
tion, independently of the characteristic of the initial process.
Likewise, whatever the particulars driving the growth of cities,
their economic role etc., as soon as they satisfy (at least over a
certain range) Gibrat’s law, their distribution will converge to
Zipf.

More work is needed to establish this entirely, but it appears
that empirical analyses seem to support Gibrat’s law. The equality
of the average growth rate across sizes has already been studied
in the literature: see, Glaeser, Scheinkman, and Shleifer [1995]
for the United States in the postwar period, and Eaton and
Eckstein [1997] for France and Japan in the twentieth century.
For the variance of the growth rate, using Eaton and Eckstein’s
data, it does not seem different across sizes.10 This is reassuring,
because there is also a sense, analyzed in Section V, in which Zipf
exponents allow us to get information about the archeology of the
growth processes, and Zipf exponents of 1 suggest that the process
followed was close to Gibrat’s law.

The proposed interpretation transforms a quite puzzling
regularity—Zipf ’s law—into a pattern much easier to explain,
Gibrat’s law. On the other hand, the strength of these laws gives
guidance to the theorist of city growth: models of city growth
should deliver Gibrat’s law in the upper tail.11 In this light, more
empirical work lies ahead to explain why Gibrat’s law works so
well, i.e., why traditional economic forces (e.g., as described in
Henderson [1974]) seem to have so little power to statistically

10. Speci�cally, for each of the countries in their studies, we eliminate the
capital to avoid problems that result from its speci�city, and divide their sample
into two, the upper half of the distribution in the initial period and its lower half,
and calculate the growth rates of each half over the sample. To avoid Galton’s
fallacy problems, the starting date is the year at which the size criterion for the
selection of cities has been chosen. An F-test evaluates the equality of the
variances (see Hoel [1974, p. 140]). For both countries, actually, the variances of
the log-growth rates are slightly higher for large cities than for small cities, though
this difference is not statistically signi�cant. For Japan 1965–1985, the variances
are, respectively, 2.91 and 2.34 percent, and the F-statistic is F 5 1.03, much below
the critical value at the 5 percent level, F .05(19, 18) 5 2.20. For France 1911–1990,
the variances are, respectively, 9.53 and 9.19 percent, F 5 1.04, when the critical
value is F .05(118, 18) 5 2.17.

11. Hence, economic models that explain city size distribution by relying on
characteristics of hierarchies between cities, demand, supply curves, technological
considerations, and the like (see, for instance, Henderson [1974, 1988]) are at best
incomplete if they fail to satisfy Gibrat’s law in the end, at least approximately.
Equation (13) below explains quantitatively the sense in which they have to satisfy
some approximation of Gibrat’s law. Its simplest interpretation is that the
averages and variances of growth rates have to be roughly independent of the size
of the city. Subsection V.2 will allow us to make this more quantitative.
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shape the city size distributions, as compared with the mechanical
inertial forces emphasized in subsection II.2.

Section II shows the basic idea in a simple way. Section III
states some propositions, and shows how the assumptions can be
somewhat relaxed. Section IV contrasts this paper with the
related literature. Section V discusses empirical variations around
the base line Zipf exponent of 1, and shows how simple deviations
from Gibrat’s law (the small to medium cities have larger vari-
ance) allow us to explain them.

II. THE BASIC INSIGHT: ZIPF ’S LAW AS THE STEADY STATE

DISTRIBUTION ARISING FROM GIBRAT’S LAW

II.1. The Basic Idea

First, let us establish some notation. If S̃ is the size of a city,
Zipf ’s law can be expressed as P(S̃ . S) 5 aS 2 z for some a (and
over a large range of sizes S), where z denotes the exponent in
Zipf ’s law. Zipf ’s law corresponds to the assertion that z 5 1. The
corresponding density is p(S) 5 bS 2 z 2 1, for b 5 z a. It will be useful
to use the local Zipf exponent: z (S) :5 2 Sp8(S)/p(S), where p(S) is
the probability distribution12 of S.

In the basic model, there will be a �xed number of cities (the
next section will show that new cities do not change anything), say
N. Consider the following baseline situation: start with an initial,
arbitrary distribution of cities. Let each city grow at an arbitrary
mean rate, say 2 percent (it does not matter if this mean rate is
time varying13), but around this mean growth cities have year-to-
year (decade-to-decade ) shocks in their growth: so, their growth is
2 percent, plus or minus .2 percent, say, each year (the standard
deviation can also vary with time). Let us allow the cities to evolve
freely, and study their limit distribution. To get some normaliza-
tion, let us note their normalized size, Si(i 5 1, . . . , N ). That is, Si

is the population of city i divided by the total urban population.14

So S i 5 1
N St

i 5 1 at each date t.

12. An exponent of z for the tail distribution is equivalent to an exponent of
z 1 1 for the density.

13. This is a conjecture that we �rmly believe to be true. The reason is that
the Zipf distribution, with an exponent of 1, is still a solution of the steady state
equation (4), even when f ( g ) is time-varying, i.e., f ( g ,t): it still satis�es e 0

`

g f ( g ,t) dg 5 1. However, we could not �nd any argument in the mathematical
literature—here we deal with Markov chains with time-varying transition matri-
ces—to help us establish this rigorously.

14. More rigorously, St
t should be de�ned as St

i 5 Pit/(Total expected urban
population), i.e., St

i :5 Pit/(P0e gt), if g is the expected growth rate of the population
( g should be understood as continuously compounded). This way we get rid of
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Consider that, at least in the upper tail, the process is of the
form, St1 1

i 5 g t 1 1
i St

i, where the g t1 1
i ’s are independent and identi-

cally distributed random variables with a distribution f ( g ). g t 1 1
i 2

1 is the growth rate of city i. The average normalized size must
stay constant ( S i 5 1

N St
i 5 1), which requires that E[ g ] 5 1 (the mean

normalized growth rate is 0), or

(2) e 0

`
g f ( g ) d g 5 1.

Let us call Gt(S) : 5 P(St . S) the tail distribution of city sizes
as time t. The equation of motion for Gt is15

(3)

Gt1 1(S) 5 P(St 1 1 . S) 5 P(g t1 1St . S) 5 E[1St. S/ g t1 1
]

5 E[E[1St . S/ g t 1 1
g t1 1]] 5 E[Gt(S/ g t 1 1)]

5 e 0

`
Gt

S

g
f (g ) dg .

Suppose (Section III will give conditions for this to hold) that
there is a steady state process Gt 5 G. It veri�es that

(4) G(S) 5 e 0

`
G

S

g
f ( g ) dg .

Compare this with (2). A distribution of the type G(S) 5 a/S
satis�es the steady state equation (4). So Zipf ’s law is a very good
candidate for steady state distribution. In fact, one can prove (in
Section III) that this candidate is the only steady state distribu-
tion. This is the proposed explanation for Zipf ’s law. If cities grow
randomly, with the same expected growth rate and the same
standard deviation, the limit distribution will converge to Zipf ’s
law.

It is possible to make the result more intuitive. There are two
parts to it: �rst, the existence of a power law; then the existence of
a power law of 2 1. The existence of a power law can be thought of
as due to a simple physical principle: scale invariance. Because
the growth process is the same at all scales, the �nal distribution
process should be scale-invariant. This forces it to follow a power
law. To see why the exponent of the power law is 1, a concrete

border effects for very large cities (i.e., S close to 1). The next equation would then
read E[ S i 5 1

N St
i] 5 1.

15. Here 1A is the indicator function for set A. The expectations are over all
random variables St, St 1 1 , g t 1 1 .
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situation might help. Suppose that cities are on a discrete grid,
and that at each point in time a city might double, or halve in size.
Because we must satisfy the constraint that the average size
(understood as share of the total population) be constant, the
probability of doubling has to be 1�3, and the probability of halving
2�3 (the expected growth is 1�3 · 2 1 2�3 · 1�2 2 1 5 0). To see how the
number of cities of a given size can be constant, take a size S. One
can quickly convince oneself that the number of cities of size 2S
should be half the number of cities of size S, and the number of
cities of size S/2 should be double. This is precisely an expression
of Zipf ’s law.16

For this explanation to be correct, city size processes must
have the time to converage to Zipf ’s law. Indeed, Krugman [1996a,
pp. 96–97] shows that an important problem with Simon’s [1995]
explanation is that his process takes too much time (at the limit,
an in�nite time) to converage to Zif ’s law. It is qualitatively clear
that there needs to be enough variance in the city growth rates;
indeed, if the variance s 2 is zero, there is no convergence at all. In
fact, the proposed approach passes this test, without difficulties.
Empirical estimations17 put the decennial variances on the order
of .1. Monte-Carlo simulations18 show that, starting from a large
range of fairly spread distributions, one is quite close to z 5 1 in
less than a century. Indeed, as soon as the total variance since the
initial distribution reaches the order of s 2T 5 .7, the distribution
is very close to the power law, with an exponent of z 5 1.05; hence
seven decades are enough to reach this value of z . In twice that
time, the Zipf exponent reaches z 5 1.001.19 This explains why
even very young (but dynamic) urban systems satisfy Zipf ’s law
(with reasonable precision) quickly: for instance, the United

16. The reasoning is made in terms of the tail distribution, which should have
an exponent of 1.

17. Dobkins and Ioannides [1998a] give s 2 5 20 percent/decade for U. S. cities
in the twentieth century. For U. K. cities, 1800–1850, one can calculate, from
Bairoch, Batou, and Che‘ vre (1988): s 2 5 5 percent/decade. France and Japan in
the twentieth century seem to be relatively ossi�ed—the theme of Eaton and
Eckstein [1997]: their s 2 are 1.26 and 1.32 percent/decade, respectively. Taking
into account the positive autocorrelation in growth rates shown by Glaeser,
Scheinksman, and Shleifer [1995] would increase these estimates.

18. They use the re�ected geometric Brownian motion of the next section. The
Mathematica program is available from the author upon request.

19. This appears to be right for initial distributions that have from very large
tails—e.g., power law up to a Zipf exponent of 1, as we want to a �nite mean—to
quite thin tails, e.g., initial distributions that are power law with a Zipf exponent
much larger than 1 (say of 20), and even that are Gaussian. Finally, by Proposition
1 we know that the mechanism is stable; the relatively quick convergence seen
here means that the mechanism will have commensurately high stability.
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States as early as 1790 [Zipf 1949, p. 420], and Argentina in 1860
[Smith 1990, p. 23].

II.2. An Economic Model that Predicts Gibrat’s Law

Let us turn to a possible model in which the process described
arises. It is a very simplistic model, and its only function is to
make the point that the process that generated Zipf ’s law could
very well be the product of simple neoclassical economic forces. No
doubt it could be enriched in many directions.

Our objective is to have a model where cities’ growths have
the same mean and same variance (Gibrat’s law). To have a
common variance, we need to have citywide shocks.20 Here these
citywide shocks will be amenity shocks21 (the end of this section
considers other shocks). These shocks increase the utility derived
from consumption in a multiplicative way. If city i has amenities
of level ait, an agent with consumption c living in it will receive a
utility u(c) 5 aitc. One should think of these amenity shocks as
policy shocks (shocks to the level of taxes, to pollution, to the
quality of the police, schools, or roads22) or natural shocks
(earthquakes, diseases, or variations in harvests in less developed
economies). The ait’s are independent and identically distributed.

Population growth comes about by migration (this is histori-
cally the dominant factor). We have overlapping generation
agents, or agents with probability d of death.23 The timing is the
following: once they are born, the agents migrate to the city of
their choice. Once they have chosen the city, and thus have paid
the big cost of migration, they do not move any more until they die.
In equilibrium the bene�t of moving to a city with better ameni-
ties at time t 1 1 would be much lower than the moving cost. Let
us see what city an agent will choose when she is born, at time t.
The wage in city i is wit, and there is no capital and no social

20. Otherwise, if shocks are industry-speci�c, large, well-diversi�ed cities
will have a much lower variance than smaller cities. This is counterfactual (maybe
in the same way that Luxembourg, whose size is one hundred times smaller than
the United States, does not have a variance in growth rate 100 times that of the
United States).

21. City-speci�c but not industry-speci�c ‘‘productivity shocks’’ would pro-
duce the same result, but would have a correspondence to reality somewhat more
difficult to identify.

22. For instance, the city selects a commissioner for the police department.
The technology imposes a unique commissioner per city (otherwise coordination
problems are too high). The competence of the commissioner is only revealed after
his election. This competence determines that of the police, hence, part of the ait of
the city.

23. See Blanchard [1985].
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insurance policy. So, if the levels of amenities ait are independent
and identically distributed, the decision problem is simply one of
short horizon: maxi,aitw it. Hence, in equilibrium all ‘‘utility-
adjusted’’ wages will be the same: for all cities i we have

(5) aitwit 5 ut,

where ut is the common value of the utility. This is the �rst
condition of the equilibrium.

Let N i
y be the number of youngsters who decide to migrate to

city i, and N i
o the population of seasoned agents already in city i.

We assume the production technology to be constant return to
scale: F(N i

o,N i
y) 5 N i

of (N i
y/N i

o ). Hence, the wages of the young will
be wi 5 w i

y 5 f 8(N i
y/N i

o). Combining this with the equalization of
utilities (5), we get N i

y 5 N i
of 8 2 1(ut/ait). Given that the increase in

population of city i is then D Nit 5 N it
y 2 d N i

o, we get our equation
for the growth of city i:

(6) g it :5 D Nit/Nit 5 f 8 2 1(ut/ait) 2 d .

We have reached our goal: because the ait’s distribution is
independent of the initial size Nit of city i, the city-growth
processes are identical across sizes (Gibrat’s law).24

Some comments might help align this very stylized model
with reality. In the model above, the variance of growth rate does
not decrease with the size of a city. As mentioned in the introduc-
tion, this appears to be empirically the case in the upper tail. This
fact might run counter to the economic intuition that, because
large cities contain more industries, this allows them to diversify
the shocks they receive, and their variance should be smaller than
for small cities. The explanation for the constant variance in the
upper tail is most probably the following. Consider that the shocks
to the growth rate are the sum of different shocks, as in

(7) g it 5 g 1 g policy
it 1 g region

it 1 g industries
it ,

(these quantities will be de�ned shortly) so that, assuming for
simplicity independence, the variance of the growth rate of g it of a

24. Incidently, if total population growth is constant, ut will be constant: ut 5
u. Indeed, if Nt 5 S iNit is the total urban population, the total growth rates is D Nt 5
S iNit

o ( f 8 2 1(ut/ait) 2 d ), so that in the limit of a very large number of cities, the law
of large numbers give that ut is the solution of D Nt/Nt 5 E[ f 8 2 1(ut /a)] 2 d , which
by strict concavity of f admit a unique solution in ut, which is independent of t if the
growth rate of the total urban population D Nit/Nt is constant with time.
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typical city of size S is then

(8) s 2(S) 5 s policy
2 (S) 1 s region

2 (S) 1 s industries
2 (S).

The component g is just the mean growth rate in the country.
g policy(i)

it represents the shocks due to the quality of the public goods
offered by the city, to the level of the taxes, etc. It might be
reasonable to think that its variance does not depend on the size of
the city: s policy

2 (S) 5 s policy
2 . g region

it is the shock due to the ‘‘macroeco-
nomic’’ performance of the region in which city i is located (for
instance, California is in recession when the rest of the United
States booms, or the mining regions of Europe receive negative
shocks that affect all their cities). It is plausible that the regional
shocks affect all cities of the region equally, so that it is scale
independent: s region

2 (S) 5 s region
2 . Finally, the term g industries

it repre-
sents the shocks to city i’s population growth due to the shocks
experienced by i’s industries. It is the one whose variance may
very well decrease with the size S of the city. In the extreme case,
assume that the variation is of the form given by the central limit
theorem, so that we have s industries

2 (S) 5 s industries
2 /S. Then the total

variance of a city of size S is

(9) s 2(S) 5 [ s policy
2 1 s region

2 ] 1 s industries
2 /S.

The assumption that the variance is independent of the size of the
city would be true in the upper tail, because the effects of
industrial diversi�cation have died out ( s policy

2 1 s region
2

s industries
2 /S ), and the variance is due only to the size-invariant

shocks,25 s policy
2 , and s region

2 . More empirical work would be welcome
to pin down the determinants of the variance of city size. But this
analysis suggests that there is nothing extravagant in the empiri-
cal �nding that variance reaches a positive �oor in the upper tail.

III. THE DETAILS OF THE MECHANISM

III.1. Models of Random Growth with Gibrat’s Law in the Upper
Tail

The previous section gave the essence of the mechanism that
generated Zipf ’s law. This section will expose this mechanism in
more detail. The substantive point to make here is that the above
mechanism needs a small grain of sand to have a steady state.

25. For instance, in the above model, s industries( i)
2 (S) 5 s region(i)

2 (S) 5 0, and
s policy(i)

2 (S) 5 s 2.
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Namely, it needs a mechanism that prevents the small cities from
becoming too small. The clearest version of such a mechanism is
given by a ‘‘random walk with (lower) barrier,’’ which will be
introduced now. A more general version of a similar idea can be
found in Appendix 1.

For analytical simplicity, the model works in continuous time.
(It will also be useful later, in Section V, to study deviations from
Gibrat’s law.) To express the size processes, start from (6), and
take the continuous limit. Along well-known lines, this gives

dPit/Pit 5 gdt 1 s dBit,

where Bit is a Brownian motion, for some g , s , which depends on
the discrete parameters of the model (u,ait,d ). Likewise, consider-
ing the normalized26 sizes Sit :5 Pit/(total urban population
expected at time t), we get

(10) dSit/Sit 5 µdt 1 s dBit,

where the expected growth in normalized size is µ 5 g (S) 2 g , the
difference between the growth rate g (S) of cities of size S and the
mean growth rate g .

It is instructive to see why some mechanism preventing small
cities from becoming too small is necessary.27 If such a mechanism
were not present, the city-size distribution would become degener-
ate. Indeed, in the continuous-time case,28 we would get St 5 S0

exp ( 2 s 2t/2 1 s Bt), which has no steady state distribution. The
city-size distribution would just be a log-normal, where most cities
would have in�nitesimal size.

To represent the idea that we need a force that prevents small
cities from becoming too small, introduce a lower bound Smin on
the size of cities. When the size reaches Smin, it is prevented from
going below it: its increment is dSt 5 St max (µdt 1 s dB t,0). (For
more on re�ected Brownian motion, see Harrison [1985].) We have
the following proposition.

PROPOSITION 1. Suppose that the normalized sizes S follow the
‘‘re�ected geometric Brownian motion’’ process dSt/St 5 µdt 1
s dBt for St . Smin, and dSt 5 St max (µdt 1 s dBt,0), for St #

26. The remark in footnote 14 applies.
27. Sornette and Cont [1997] discuss these issues in a physics context.
28. The discrete time case would give the same result. The equation of motion

St 1 1 5 g t 1 1St, with E[ g t 1 1] 5 1 would give by iteration ln St 5 ln S0 1 S t 5 1
t ln g t , and

the law of large numbers shows that log St/t E[log g t 1 1] , 0 (by Jensen’s
inequality) which means that log St is very close to 2 ` ; i.e., St is very close to 0.
Technically, it converges to 0 in probability.
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Smin, where µ , 0 is a negative drift, and Bt is a Brownian
motion, Smin is the barrier of the process, i.e., the minimal
normalized city size. Then, the distribution converges to a
Zipf distribution with exponent z 5 1/(1 2 Smin/S ), where S is
the mean city size. Hence, in the limit where the minimal
allowable city size Smin tends to 0, the exponent z tends to 1.

Proof. Consider the process of log-sizes s :5 ln S, which
follows ds 5 (µ 2 s 2/2)dt 1 s dBt for s . smin : 5 ln Smin, and is
re�ected at smin. The explicit calculations in Harrison [1985, p. 15]
show that the distribution of s converges to an exponential
distribution P(s . s8) 5 e 2 z (s8 2 smin) for s8 $ smin, for some z . In other
words, P(S . S8) 5 (S8/Smin) 2 z for S8 $ Smin. The normalization
condition E[S] 5 S gives the value of z : because E[S] 5 e Smin

`

z S8 2 ( z 1 1)Smin
z dS8 5 Sminz /( z 2 1), we get z 5 1/(1 2 Smin/S). h

Thus, Proposition 1 says that this lower barrier29 is enough to
induce the power law distribution of city sizes, and, more interest-
ingly, that, as the barrier become lower (Smin tends to 0, hence
becomes almost invisible), the exponent converges to 1. So, in
essence, all we need is an in�nitesimally small (low) barrier, to
ensure that the steady state distribution will be Zipf with an
exponent z very close30 to 1.

The random walk with a barrier is just the starkest idealiza-
tion of the situation where some force keeps cities from becoming
too small. Any Markov chain with a strong enough repelling force
would produce the same result, namely Zipf ’s law from Gibrat’s
law. Appendix 1 presents an alternative and analytically tractable
variant of this idea of ‘‘random growth with an in�nitesimal
barrier,’’ which is given by the ‘‘Kesten’’ processes, after the work
of the mathematician Harry Kesten [1973].

The moral of this section is that quasi-Zipf ’s law distribution
(with z . 1) can be obtained by adding some small impurity (a

29. An additional comment about the barrier may be useful. Above, the
barrier has a �xed relative size, which means that it grows at a rate g if the urban
population grows at this rate. In fact, one can readily establish from equation (4) in
Harrison [1985, p. 15], that the condition is slightly less stringent: the barrier has
to grow at some rate g 0 . g 2 s 2/2. (The reason is that the diffusion growth rate of
the population of city size s minus the barrier s0 is g 2 s 2/2 2 g 0 , and has to be
negative).

30. The reader should note that the formula z 5 1/(1 2 Smin/S ), while it helps
clarify the analytical issues, is not suitable for empirical purposes. The reason is
that, as Section V develops, the exponent z is lower than 1 for smaller cities. This
strongly in�uences the impact of smallest city size on the Zipf exponent. In
particular, with z (S) increasing in S, the z of the upper tail will satisfy z upper tail ,
1/(1 2 Smin/S).
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lower bound Smin to the size of cities, a small repelling force of
magnitude e for Kesten processes) to the Gibrat assumption. The
pure Zipf ’s law with the z 5 1 corresponds to the case where the
friction becomes in�nitesimal (the lower bound Smin tends to 0, the
repelling force of size tends to 0). The rest of this section will
assume that these frictions have become in�nitestimal, and
reason with the limit distribution with z 5 1.

III.2. Countries Formed of Heterogeneous Regions

One can relax the hypotheses leading to Zipf ’s law in another
relevant direction. Consider the hypothesis of the common growth
process. Suppose that, in the country, there are regions that
behave quite differently. The outcome will not invalidate Zipf ’s
law.

PROPOSITION 2. Suppose that the country is formed of R regions,
and that in each region the hypotheses of Proposition 1 are
satis�ed, so that Zipf ’s law with exponent z is veri�ed in each
region. In particular, the growth processes are (in the upper
tail) identical within each region, but not necessarily across
regions. Then the asymptotic national city distribution exists
and satis�es Zipf ’s law, with the same exponent z .

The proof is very simple. Consider that a region is a country,
and apply Proposition 1. In region r we have P(S . s the city is
in region r) , ar/s z . Now, note by l r the probability that a city is
in region r ( S r 5 1

R l r 5 1). Then, at the national level we have
P(S . s) 5 S r 5 1

R P(S . s and the city is in region r) 5
S r 5 1

R l rP(S . s the city is in region r) , S r 5 1
R l rar/s z 5 a/s z , with a :5

S r 5 1
R l ra r. h

Hence, Europe should follow Zipf ’s law if each European
country follows it, and likewise the United States should follow
Zipf ’s law if it can be decomposed into regions in each of which
Gibrat’s law is satis�ed.

III.3. Urban Dynamics with New Cities

We state here that the appearance of new cities does not affect
our prediction for Zipf ’s law, so long as it is not too important.
More precisely, Proposition 3 states that Zipf ’s law still holds
when the appearance rate of new cities v is lower than the growth
rate of existing cities g . It also shows how the Zipf exponent
becomes larger than 1 in the (much less relevant) case where
v . g .
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PROPOSITION 3. Assume that the number of cities increases at a
rate v that is not greater than the growth rate g of existing
cities: v # g . Then, there is still a steady state distribution
that satis�es Zipf ’s law with an exponent of 1 in the upper
tail. When v . g , in the continuous-time case, the steady-
state distribution has an exponent z which is the positive root
of z 2 2 (1 2 2 g / s 2) z 2 2v/ s 2 5 0. In particular, it is greater
than 1.

Proof. The case v , g of the proposition is proved in Appendix
2. The idea is that new cities are born too far from the upper tail to
in�uence its distribution. To study the case v $ g , go to the
continuous-time representation. Call p(S,t) the distribution of S
at time t. The evolution of p(S,t) is given by the forward
Kolmogorov equation,31 modi�ed to accommodate the appearance
of new cities:

­

­ t
p(S,t) 5 2

­

­ S
( g Sp(S,t )) 1

1

2

­ 2

­ S2 ( s 2S2p(S,t)) 2 vp(S,t),

where the term 2 vp(S, t) re�ects the fact that there are new cities.
We get in the steady state s 2/2(S2p(S))9 2 g (Sp(S))8 2 vp(S) 5 0,
which leads z to be the positive solution of h( z ) 5 z 2 2 (1 2 2 g / s 2) z 2
2v/ s 2 5 0. In particular, it is greater than 1 (observe that h(0) , 0,
so that there is only one positive root, and h(1) , 0 when v , g ,
which implies that it is greater than 1). h

III.4. The Rank-Size Rule

Finally, we can explore the issue of the ‘‘rank-size rule,’’ a
sister of Zipf ’s law. Zipf ’s law, again, states that the probability
that a city has a size greater than S decreases as 1/S. We should
expect the size S(i) of a city of rank i to follow a power law: the size
of the city of rank i varies as 1/i, and the ratio of the second largest
city to the largest city should be 1/2, the ratio of city 3 and city 2,
2/3, and so on, which is the statement of the rank-size rule. These
size ratios are often used to compare actual urban patterns with
‘‘ideal’’ (Zipf) patterns (e.g., for a recent instance see Alperovitch
[1984] or Smith [1990]). In fact even if Zipf ’s law is veri�ed exactly,
the rank-size rule will be veri�ed only approximately, if our
probabilistic interpretation of Zipf ’s law is correct. We should not

31. See any book on stochastic calculus, e.g., Karatzas and Shreve [1991, p.
282]. For a pedagogical derivation see Dixit and Pindyck [1994, pp. 88–90].
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expect the actual values of these ratios to be very close to their
‘‘ideal’’ values. This is formalized in the following proposition (the
regularized beta function is de�ned in equation (19) of Appendix 2).

PROPOSITION 4. Order the cities by size (S(1) $ S(2) $ . . .), and
suppose that the steady-state distribution satis�es Zipf ’s law
with an exponent of 1. Then, for i , j, the mean of S(j)/S(i) is i/ j,
its standard deviation Î (1 2 i/ j) i/[ j ( j 1 1)], and its median
B 2 1(1�2,i,j 2 i), the inverse at 1�2 of the regularized beta
function. The mean of S(i)/S(j) is ( j 2 1)/(i 2 1). These results
hold even for a �nite number of cities (i.e., they are exact, not
asymptotic).

This teaches us two things. First, the formulation of the
rank-size rule is in a sense correct, but only in expected values and
then one considers ratios of the type ‘‘size of the smaller city/size of
the larger city.’’ The mean of the ratios S(j)/S(i) , 1, for a city i
larger than city j, is i/ j, but the expected ratio of the ratio S(i)/S(j) is
larger than j/i (a Jensen’s inequality effect). Second, the reader
can see in Table I that the standard deviations of these ratios are
quite high. For instance, the size ratio between city 2 and city 1,
has a mean of 1�2, but has a quite high standard deviation, namely
.2887. Even the ratio between city 100 and city 10, which has an
expected value of 1�10, has a standard deviation of .03. So, for
instance, the fact that in a given country the second and third
cities are quite close in size does not disprove Zipf ’s law.

IV. PREVIOUS ATTEMPTS AT EXPLAINING ZIPF ’S LAW FOR CITIES

Let us contrast the present proposal with the vast range of
previous explanations. We will just show the main directions, and

TABLE I
STATISTICS OF THE SIZE RATIO S( j)/S(i) BETWEEN THE jTH LARGEST CITY AND THE

iTH LARGEST CITY (i , j)

S( j)/S(i) S(2)/S(1) S(3)/S(1) S(3)/S(2) S(10)/S(5) S(100)/S(10)

Mean i/ j .5 .333 .6667 .5 .1

Standard
deviation Î (1 2 i/j)i/ j

j 1 1 .2887 .2357 .2357 .1508 .0299
Mediana B 2 1(1/2, i, j 2 i) .5 .2929 .7071 .5 .0973

a. B 2 1(1/2, i, j 2 i) denotes the inverse at 1/2 of the regularized beta function with parameters i and i 2 j.
(See Appendix 2 for a de�nition.)
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their limitations here. The reader interested in this massive
literature can consult Carroll [1982], a fairly comprehensive
review of the literature. Suarez-Villa [1988] contains an update,
and Krugman [1996b] describes the principal models. Economic
models32 have been inadequate. Arguably, the two most successful
models have been Steindl’s and Simon’s.

Steindl’s growth model. In Steindl’s model [1965, 1968] new
cities are born at a rate v, and existing cities grow at a rate of g .
The result is that the distribution of new cities will be in the form
of a power law, with an exponent z 5 v/ g , as a quick derivation
shows.33 However, this is quite problematic. It does not deliver the
result we want, namely the exponent of 1. It delivers it only by
assuming that historically v 5 g . This is quite implausible
empirically, especially for mature urban systems, for which v , g .

Stochastic growth models. The most successful model of
stochastic growth is Simon’s34 [1955]. But it has quite a few
daunting problems. (For an exposition of Simon’s model, see
Krugman [1996a, 1996b].) In this model new migrants arrive at
each period, and with a probability p they will form a new city,
while with probability 1 2 p they will go to an existing city. The
probability that they choose to locate in a given city is propor-
tional to its population. Then this model generates a power law,
with exponent z 5 1/(1 2 p ). Thus, the exponent of 1 has a very
natural explanation: the probability p of new cities is small. This
seems quite successful. However, this approach has at least two
major drawbacks. First, as Krugman [1996a, pp. 96–97; 1996b]
shows, there is a degeneracy at p 5 0. To get an exponent z 5 1,
one needs p very close to 0, and then the process converges
in�nitely slowly. A second problem is that it is essential to this
model that the rate of growth of the number of cities has to be

32. These economic models [Losch 1954; Hoover 1954; Beckman 1958] rely on
the idea of urban hierarchy. Imagine a pyramidal system of the functions of cities,
with small cities containing only the most basic services, cities of the next level
containing a few more (a doctor for example), and larger ones having yet further
services (specialized doctors), etc. Under mild conditions, this will imply that small
cities are more numerous than big ones. However, one does not see how this could
lead to a power law, much less one with the slope of 2 1. The same problem arises
with Henderson’s [1974] model of the optimal size of cities.

33. The cities of size greater than S are the cities of age greater than a 5 ln
S/ g . Because of the form of the birth process, the number of these cities is
proportional to e 2 va 5 e 2 vlnS/ g 5 S 2 v/ g , which gives the exponent z 5 v/ g .

34. An ancestor of Simon’s model is Yule [1924]. This type of model has been
revived by Hill [1974] and Hill and Woodroofe [1975]. However, these models are
tailored to their original object, the distribution of biological genera and species,
and do not explain why the exponent of the distribution should be close to 1.
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greater than the rate of growth of the population of the existing
cities—a historical counterfactual.

The explanation proposed in the present paper resembles
Simon’s. But it should be emphasized that although the two
models are mathematically similar, they are economically com-
pletely different. Simon’s explanation, although stochastic in
appearance, is fundamentally deterministic, and boils down to
Steindl’s model (because of the historical importance of Simon’s
model, Appendix 3 develops this point). In Simon’s model the
exponent of Zipf ’s law is close to 1 because the growth rate of the
number of cities is close to the growth rate of existing cities.
(Another way to put this is to say that Simon’s model is unable to
account for Zipf ’s law when the growth rate of the number of cities
is lower than the growth rate of existing cities.) The present
paper’s model does not suppose (directly or as a consequence) this
counterfactual. Here the source of Zipf ’s law is Gibrat’s law, not
assumptions on the emergence rate of new cities.35 Besides, most
readings of the Simon models had (mistakenly, as we see from
Proposition 3) inferred that, to get the Zipf exponent of 1, the
appearance rate of cities had to be close to 0. The present
explanation does not have to make this assumption. This appear-
ance rate so long as it is below the growth rate of existing cities,
does not affect the Zipf exponent.

V. DEVIATIONS FROM AN EXPONENT OF 1

V.1. Empirical Facts on the Deviations from the Exponent of 1

The bulk of the upper tail satis�es Zipf ’s law with an
exponent of 1. Otherwise, there are two deviations from this
exponent of 1. The �rst one is simple: in most countries Zipf plots
usually present an outlier, the capital, which has a bigger size

35. Another attempt by Curry [1964], works through entropy maximization.
It happens that if one carefully designs a measure of ‘‘entropy’’ of city sizes, the
distribution that maximizes it is the Zipf distribution. However, although this
emergence of power laws is a convenient result of statistical mechanics, we are
given no explanation of why the entropy should be maximized in the �rst place.
More recently, Alperovitch [1982] proposes a more economic explanation, but has
to calibrate the production functions of the model to get Zipf’s law. Likewise,
Marsili and Zhang [1998] propose a model with interactions between cities that
they calibrate to get Zipf ’s law. Finally, Krugman [1996b] proposes a ‘‘percolation’’
model, where city sizes are driven by quality of the environment (e.g., the city is a
port). The physical structure of the environment exhibits some power law features
(because of the percolation phenomena), which drives the power law for the city
distribution. However, as Krugman points out, this type of approach has difficul-
ties explaining why the exponent should be so close to 1.
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than Zipf ’s law would warrant. There is nothing surprising there,
because the capital is indeed a peculiar object, driven by unique
political forces [Ades and Glaeser 1995].

The second36 deviation is less particular. When one starts
from the upper tail and extrapolates to the middle of the tail
according to Zipf ’s law, one sees that there are too few medium-to-
small cities (100,000 inhabitants or less in the United States).
Their Zipf exponent z is lower than 1 [Dobkins and Ioannides
1998a].37

The approach developed above gives an explanation for the
lower Zipf exponent for small to medium cities. The reason is that
they do not perfectly follow Gibrat’s law: smaller cities have a
bigger variance, as will be seen shortly. It is therefore natural to
extend the theory to the case where Gibrat’s law is not satis�ed.

V.2. These Deviations Can Be Explained by a Deviation from
Gibrat’s Law

In order to preserve tractability, it is useful to use the
continuous-time representation of the growth processes intro-
duced in Section III. If µ(S) is the expected growth rate of a city of
normalized size S, and s (S) its standard deviation, the normal-
ized city size (dropping the index i of the city for convenience) will
follow a process of the form,

(11) dSt/St 5 µ(S)dt 1 s (S)dBt.

Call p(S, t) the distribution of s at time t. The forward
Kolmogorov equation (introduced in subsection III.1) gives its

36. An additional deviation rests on more uncertain historical data—hence is
more elusive. Europe prior to the sixteenth century does not seem to obey Zipf ’s
law. The distribution of cities is too �at [de Vries 1984, p. 94]. It is only
subsequently that it has shifted toward a Zipf pattern. One can conjecture many
explanations for this. It might be, for instance, that cities did not grow much above
a certain level, because diseases spread too quickly in large cities, the transporta-
tion of food was imperfect, or rulers did not want to have cities that were too large,
because they would be tempting prey. Finally, the link between the Zipf exponent
and the level of development appears to be too debated to be a �rmly established
fact. Wheaton and Shishido [1981] �nd a cross-sectional, U-shaped relationship;
whereas Parr [1985] sees such a pattern only for developed countries; he �nds a
monotonic, decreasing pattern for developing countries.

37. Dobkins and Ioannides [1998a] �nd that the Zipf exponent z seems to
have decreased slightly over a century. The fact that smaller cities have a smaller
Zipf exponent suggests a simple explanation for their �nding: because they used a
�xed cutoff (50,000 inhabitants), later decades have more cities in their sample.
Hence, they contain more ‘‘small’’ (in relative size the object that matters here)
cities, which have a lower z (a z , 1) than large ones. Mechanically, this
composition effect makes the aggregate Zipf exponent decrease over time. Of
course, more work is needed to assess the truth of this explanation.
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equation of motion:

(12)
­

­ t
p(S,t) 5 2

­

­ s
(µ(S)Sp(S,t)) 1

1

2

­ 2

­ s2 ( s 2(S)S2p(S,t)).

Consider the baseline case where µ and s are independent of
S. Because E[S] must stay constant at E[S] 5 1/N, this implies
µ 5 0. (Otherwise, we have E0[St] 5 E0 S0 eµt, which either
explodes or shrinks to 0.) Consider the steady state ( ­ / ­ t)p(S, t) 5
0, so that we can write p(S, t) 5 p(S) (in the neutral case, where
µ 5 0):

1

2

­ 2

­ s2 (s 2S2p(S,t)) 5 0.

This can be integrated p(S) 5 aS 2 2, for some a, which is Zipf ’s law
with exponent 1.

Consider now the steady state distribution p(S,t) 5 p(S) in
the more general case where µ and s can depend on the size S. The
Kolmogorov equation (12) then can be integrated into
2 µ(S)Sp(S,t) 1 ­ / ­ S( s 2(S)S2 p(S,t))/2 5 0. The Zipf exponent
z : 5 2 Sp8(S)/ p(S) is then

(13) z (S) 5 1 2 2
z (S) 2 g

s 2(S)
1

S

s 2(S)

­ s 2(S)

­ S
,

where µ was replaced with its expression g (S) 2 g .
Hence, deviations from a Zipf exponent of 1 can be due to two

causes: the means and the standard deviations. The directions are
those expected a priori. If a range of city sizes has a high growth
rate (g (s) 2 g ), its distribution will decay less quickly than in the
pure Zipf case ( z will be less than 1), because small cities
constantly feed the stock of bigger cities. If it has a high variance,
its distribution will likewise be �atter because of the higher
mixing of small and big cities.

As mentioned in Section I, studies of modern data38 support
Gibrat’s law for means: both Glaeser, Scheinkman, and Shleifer
[1995] for the United States between 1950 and 1990 and Eaton
and Eckstein [1997] for France and Japan in the twentieth
century show that there is no difference in the mean growth rate

38. Robson [1973, pp. 80–81] for England in the nineteenth century, and de
Vries [1984, p. 106] for Europe since 1500 �nd that small cities tend to grow more
slowly. However, note that their data are by necessity of lesser quality than the
data available for the modern period.
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of large and smaller cities. Hence, 0 is a fair baseline estimate for
g (s) 2 g .

From economic considerations, we would expect ( ­ / ­ s) s (S)2 ,
0 for small to medium cities (e.g., for cities of rank . 100). If the
growth of a city is driven by the performance of the industries it
hosts, smaller cities, which contain fewer industries, will have a
larger variance than bigger cities. Hence, we see why the higher
variance of small cities explains their lower Zipf exponent. A
quantitative investigation of this, i.e., measures of ( ­ / ­ S) s (S)2,
should be high on the empirical agenda.

Finally, formula (13) helps assess how far economic models
can deviate from Gibrat’s law in their predictions. Of course, it
gives only constraints on the quantities s 2(S) and g (S) together,
not on them individually. Let us examine what light it sheds on
the issues of convergence (as in Barro and Sala-i-Martin [1995]).
Say that empirically z (S) is between .8 and 1.2, and that [S/
s 2(S)][ ­ s 2 (S)/ ­ S] , .2 (a guesstimate on the deviations from
Gibrat’s law for variances, educated by the calculations men-
tioned in footnote 8). Then, taking, as in subsection II.1, an
estimate of s 2 5 .1/decade, (13) indicates that for the growth rates
g (s) 2 g , .4 · ( s 2/2) 5 2 percent per decade. This is a small
convergence. Hence, the deviations from Gibrat’s law for the mean
growth rates are quite small. Another way to put this would be to
say that the ( b 2 ) convergence process, if any, is very slow. But this
is not surprising, because the good �t of Zipf ’s law over centuries
is the indication that no s -convergence is taking place for cities, as
opposed to what happens for countries and regions.

VI. OTHER POWER LAWS IN ECONOMICS

One �nds in economics39 few other relationships as accurate
as Zipf ’s law for cities. The closest ones are the distribution of
income and the distribution of �rms, explored, respectively, by
Pareto [1896] and Gibrat [1931]. Pareto showed that distribution
of income in the upper tail has a power law distribution. Gibrat

39. In the physical or biological sciences, however, power laws are rather
common. See Gell-Mann [1994] for an exposition. After considerable effort has
been devoted to explaining them, there is no consensus. Among the leading
candidates is the recent theory of self-organized criticality (Bak, Tang, and
Wiesenfeld [1987]; see Bak [1996] for a popular exposition; Raup [1997] for a more
skeptical assessment). Some advocate chaotic processes (see, e.g., Schuster [1995,
pp. 92–97]). Processes of random multiplicative growth have also enjoyed renewed
popularity (see Sornette [1998] for a survey).
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was interested in �rms, and offered for the �rst time—in econom-
ics—a model of random growth. He observed that the distribution
of the size (as measured by sales or number of employees) of �rms
tends to be lognormal.40 He gave the simple explanation that the
growth process of �rms could be multiplicative—of the form St1 1 5
g t 1 1St—and independent of �rm size, hence, of the form of
‘‘Gibrat’s law.’’ Indeed, as we saw in subsection III.1, taking logs
and using the central limit theorem delivers asymptotically a
log-normal distribution.

This explanation has the drawback that the resulting process
does not converge to a steady state distribution: as seen in
subsection III.1, the resulting asymptotic distribution is degener-
ate with an in�nite variance for the log-size. There are two
remedies for this. One is to use some force that prevents small
sizes from becoming too small. This is the assumption used by
Champernowne [1953], who shows that this leads the distribution
to converge to a power law distribution. The other one, explored by
Rutherford [1955], is to introduce a birth and death process.41 The
present paper relies on their and Gibrat’s insight. Mandelbrot
[1960] makes the interesting observation that all these models
can be viewed as employing processes used long before in phys-
ics—to explain the exponential barometric density of the atmo-
sphere.42 This paper’s approach could help to revisit the issue of
income distribution. In particular, the formula in Proposition 3
could be used, using v as the death rate of high-income individual
instead of the birthrate of new cities. This would give the
predicted exponent of income distribution, and be useful in
calibrations.

40. Simon and coauthors [Ijiri and Simon 1977] argue that the upper tail of
the size distribution of �rms looks more like a power law than a lognormal, and
thus decreases less rapidly than a lognormal. They propose Simon’s [1955] model
as an explanation. However, more recent evidence by Stanley et al. [1995] shows
that the distribution of the �rm listed in Compustat indeed looks like a lognormal,
except that it seems to decrease more rapidly in the upper tail than a lognormal,
rather than less. So, at this stage, the stylized facts on the empirical distribution of
�rms are still a debated issue.

41. His process does not lead to a power law distribution in his assumptions,
but would lead to one if his birthrate had bounded support.

42. Namely, Laplace’s law states that the barometric density distribution in
the atmosphere varies in e 2 z s, where s is altitude. It is known from physics that
this density is the outcome of two forces. Consider that atmosphere is made of
Brownian particles that diffuse because of heat motion (the equivalent of random-
ness in our models), and the gravity that pulls them to the bottom (the negative
drift in the model of Proposition 1). The earth (altitude 0) plays the role of the lower
barrier of the process. This leads to the exponential Laplace’s law for the
atmospheric density. The log-sizes in the random growth models and the altitude
in the atmospheric model play analog roles.
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Finally, note an important difference between Pareto’s law for
the income distribution and Zipf ’s law for cities, which can be
readily explained here. For cities the z exponent is always very
close to 1 in the upper tail, whereas the z exponent for the income
distribution seems both to vary cross-sectionally and to be quite
unstable from year to year. (For instance, Feenberg and Poterba
[1993] calculate the exponent z for the United States, and �nd
that it oscillates between 1.59 and 2.46 between 1970 and 1990).
Proposition 3 can offer an explanation for this. The key is the
birthrate of new cities v, which can be reinterpreted as the death
rate of individuals in the case of incomes. For cities we have v , g ,
so that the resulting exponent does not depend on the details of
the country’s situation: it is just 1, or very close to it. For incomes
we have v . g , in which case the exponent depends �nely on the
situation’s parameters, v, g , s , which explains why z loses its
constancy across economic structures and has cross-sectional and
possibly time series variations.

VII. CONCLUSION

The present approach explains why we have Zipf ’s law across
countries with very different economic structures and histories
(China in the mid-nineteenth century, India in the early twentieth
century, the early and modern United States, and indeed most
countries for which we have data). This phenomenon is simply due
to Gibrat’s law—the fact that cities in the upper tail follow similar
growth processes, although these assumptions can be somewhat
relaxed. Thus, the task of economic analysis is reduced from
explaining the quite surprising Zipf ’s law to the investigation of
the more mundane Gibrat’s law. The simplest reason43 for the
latter, the one expressed in the minimalist model of this paper, is
that, above a certain size, most shocks stop declining with size,
such as regional shocks (shocks to the regional activity, or taste

43. Gabaix [1999] discusses this further and presents a dichotomy: either
cities behave like constant-return-to-scale economies in the upper tail (the route
pursued in the present paper), or Gibrat’s law would be due to endogenously
counterbalancing effects of unbounded differences in externalities and productivi-
ties (e.g., large cities would have unboundedly larger productivity than small
cities, but would suffer from unboundedly larger disamenities). An important
question for future empirical research is to determine in which one of those two
worlds we are. If we are in the �rst world, the consequences for local growth
modeling would be stark because they would drastically simplify existing models.
Seeing how this is compatible with the new economic geography [Fujita, Krugman,
and Venables 1999] would also be extremely interesting.
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shock to its climate), or municipal policy shocks (more efficient
police, or education, or higher taxes). The variance of city growth
reaches a positive �oor in the upper tail of the size distribution,
which makes Gibrat’s law hold in this upper tail. Both this
phenomenon (Gibrat’s law) and its causes (regional versus city-
speci�c shocks, why the diversi�cation effect seems so small)
could be fruitfully explored (for recent work see Glaeser, Scheink-
man, and Shleifer [1995], Eaton and Eckstein [1997], and Dobkins
and Ioannides [1998a, 1998b]). The same approach also proposes
a quantitative explanation of why smaller cities have a lower Zipf
exponent: these cities have a larger variance than do bigger ones.

APPENDIX 1: ALTERNATIVE DERIVATION OF THE MECHANISM WITH

‘‘KESTEN’’ PROCESSES

Consider indeed that the evolution of the normalized size St of
a city follows

(14) St 1 1 5 g t 1 1St 1 e t1 1,

where e t 1 1 is a small, positive increment, with mean E[ e t1 1] 5 : e $
0. In the limit e 5 0, we get the ‘‘pure’’ Gibrat process where city
growth is independent of city size. Consider the case e . 0. When
the city size is big, the e t 1 1 term is negligible, and we are very close
to the pure ‘‘Gibrat’’ case: St 1 1 . g t1 1St. The term in e in (14)
matters when the size of the city is small. It represents the force
that prevents cities from becoming in�nitesimally small, analo-
gous to the lower barrier in the random walk above. From Kesten
[1973], we can derive easily the following proposition.

PROPOSITION 5. Suppose that each normalized city size follows the
growth process St 1 1 5 g t1 1St 1 e t 1 1, with E[ e t 1 1] 5 e . 0. Then,
whatever the initial distribution, the city-size distribution
converges to a power law distribution with positive exponent
z such that E[ g z ] 5 1. For small e , z 5 1 1 O(e ), so that when
e 0, the city-size distribution converges to a Zipf distribu-
tion with exponent 1. When g t 1 1 is lognormally distributed
with s 2 5 var ln g t 1 1, we have the exact relation z 5 1 2 2
ln (1 2 e /S)/ s 2 for all e , where S is the mean size of a city.

Proof. Because we work with normalized sizes, the normaliza-
tion E[St] 5 S implies E[ g t 1 1] 5 1 2 e , where e : 5 e /S. By Jensen’s
inequality, this implies that E[ln g ] # ln (1 2 e ) , 0, and we can
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apply Kesten [1973], which shows that the distribution converges
to a Zipf distribution with an exponent z that is the positive root of
E[ g t1 1

z ] 5 1.

A heuristic rederivation of the value of z might be of interest;
it mimics the one given in Section II. Suppose that the steady
state distribution G(S) :5 P(St . S) is of the form, G(S) , aS 2 z .
Because St 1 1 , g t 1 1St in the upper tail, the same reasoning as
equation (3) again gives equation (4): G(S) , E[G(S/ g )], which
leads to E[ g z ] 5 1 by using this form of G(S).

In the case, where g t 1 1 is lognormal with s 2 5 var ln g t 1 1, we
have g t 1 1 5 exp (ln (1 2 e ) 2 s 2/2 1 s u), where u is a standard
normal of mean 0 and variance 1. So E[ g t 1 1] 5 exp ((ln (1 2 e ) 2
s 2/2) z 1 z 2 s 2/2), so the positive root z of E[ g t 1 1

z ] 5 1 is z 5 1 2
2ln(1 2 e )/ s 2.

In the general case, where g t 1 1 is not necessarily lognormal,
but with e in a neighborhood of 0, de�ne g 0 : 5 g /(1 2 e ). z is the
positive root of f ( z ,e ) 5 1 for f ( z ,e ) :5 E[ g 0

z (1 2 e ) z ] 5 1. Let us use
the implicit function theorem around ( z , e ) 5 (1, 0). We have
f (0,1) 5 1, fe (0,1) 5 2 1, and fz (0,1) 5 E[ g 0 ln g 0], which is positive
by Jensen’s inequality (x ln x is convex, and E[ g 0] 5 0). The
implicit function theorem gives z (e ) 5 1 1 e E[ g 0 ln g 0] 1 o( e ).
Because E[ g 0 ln g 0] 5 E[ g ln g ] 1 O(e ), we get a statement in fact
slightly stronger than the proposition: z ( e ) 5 1 1 a e 1 o( e ) with
a 5 1/E[ g ln g ]. h

APPENDIX 2: PROOFS

Proof of Proposition 3

Consider the limit where the time at which we count the
cities, t, tends to 1 ` . Fix a large time T, such that T 1 ` (for
instance, T 5 t/2). We will differentiate between old cities, founded
before T and new cities, founded after T. Consider a large city size
S 5 es in the upper tail. The probability of �nding a city of size
greater than S is P(S̃ . S) 5 P(S̃ . S, b , T) 1 P(S̃ . S, b $ T ),
where b represents the random variable noting the birth date,
and, as usual, the comma in the probabilities signi�es ‘‘and.’’ We
will show that the �rst term dominates the second one, so that
new cities do not matter for Zipf ’s law in the upper tail.

First, note that for cities born at a date t we have

(15) P(S̃ . S b 5 t ) , e 2 (s 2 g (t2 t ))
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because those cities have an age t 2 t . t 2 T, which tends to 1 ` ,
so that Proposition 1 on Zipf ’s law without new cities applies. The
term e 2 g (t2 t ) is the appropriate normalization factor for cities
founded at date b 5 t , for they have a mean size of e g (t2 t ) at date
t—remember that E[dSt/Ss ] 5 g ). Given the birth process of new
cities, at time t there are Nt 5 e 0

t
vevt dt 5 evt 2 1 cities, and the

density at time t of cities born at date t is vevt /Nt 5 vevt 2 nt where
nt : 5 ln Nt. By integration (15) gives

P(S̃ . S,b , T ) , e 0

T
e 2 s 1 g (t 2 t )vev t 2 nt dt 5 e 2 s 1 g t 2 ntv e 0

T
e 2 ( g 2 v) t dt ,

so that

(16) P(S̃ . S,b , T ) , e 2 s 1 g t2 ntv/( g 2 v)

as T 1 ` , because g 2 v . 0. The cities born at a date t . T did
not necessarily have the time to converge to Zipf ’s law, but it still
will be the case that

P(S̃ . S b 5 t ) # E[S̃/S b 5 t ] 5 e g (t2 t ) 2 s,

so that

(17) P(S̃ . S,b $ T ) # e T

t
e g (t 2 t ) 2 svevt 2 nt dt ,

e 2 s 1 g t 2 ( g 2 v)T2 ntv

g 2 v
.

So, combining (16) and (17), P(S̃ . S,b $ T ) 5
O(P(St . S,b , T )e 2 ( g 2 v )T ) 5 o(P(St . S,b , T )), for T large,
and P (St . S) 5 P (St . S,b , T ) 1 (St . S,b $ T ) ,
P(St . S,b , T ) , e 2 s 1 g t 2 nt v/( g 2 v), which is the form P(St . S) ,
ate 2 s 5 at/S. This is the expression of Zipf ’s law.

Proof of Proposition 4

Order the cities by size (S(1) $ S(2) $ . . .), call the correspond-
ing log-sizes s(1) $ s(2) $ . . . (s(i) :5 ln S(i)) . By normalization,
under Zipf ’s law the log sizes follow an exponential distribution:
P(s . t) 5 e 2 t for t $ 0. Then, the Rényi representation theorem
on ordered statistics (see, e.g., Reiss [1989, pp. 36–37]) gives that,
for i , j, the difference s(i) 2 s(j) can be written as

(18) s(i) 2 s(j) 5 o
k5 1

j2 1 xk

k
,

where the xk are independent draws of an exponential distribution
P(xk . x) 5 e 2 x for x $ 0. This allows us to calculate conveniently

ZIPF’S LAW FOR CITIES: AN EXPLANATION 763



the statistics we need:

E
S(j)

S(i)
5 E[exp (s(j) 2 s(i)] 5 E exp 2 o

k 5 i

j2 1 xk

k

5 p
k5 1

j 2 1

E exp 2
xk

k
5 p

k5 1

j 2 1 k

k 1 1
5

i

j
.

Note that the same procedure would give E[S(i)/S(j) ] 5 ( j 2 1)/
(i 2 1). The same type of calculation gives very simply

E
S(j)

S(i)

2

5 p
k5 i

j 2 1

E exp 2
2xk

k
5 p

k5 i

j 2 1 k

k 1 2
5

i(i 1 1)

j (j 1 1)
.

Finally, somewhat longer calculations give

(19) P
S(j)

S(i)
# µ 5 P (exp (s(i) 2 s(j)) # µ)

5
e 0

µ
ui 2 1(1 2 µ)j2 i du

e 0

1
u i 2 1(1 2 µ)j 2 i du

:5 B(µ,i, j 2 i),

which is sometimes called the regularized beta function with
parameters i, j 2 i. The median µ is then given by its inverse at the
point 1�2, B 2 1(1�2,i,j 2 i).

APPENDIX 3: SIMON’S MODEL BOILS DOWN TO STEINDL’S MODEL

Given its importance in the literature on Zipf ’s law, it might
be of interest to shed some new light on Simon’s model. This
appendix shows how Simon’s explanation of Zipf is in fact a
particular case of Steindl’s, and makes the point that its economic
nature is essentially different from the present paper’s. Call t the
time in the model,44 so that, given a new inhabitant per period, the
urban population is U t 5 t (we can start at t . 0). We seek a
correspondence between the ‘‘time of the model’’ t and the ‘‘real
time,’’ noted t. If the real time is such that the population at real
time t is Ut 5 e g 0t, the correspondence between real time t and
model time t is

(20) t 5 e g 0t.

44. For a clear exposition of Simon’s model, see Krugman [1996a, 1996b].
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In model time, the number of new cities follows:
E[Nt 1 1 2 N t ] 5 p , or by the law of large numbers: N t , p t 5 p e g 0t.
So, in real time, the rate of growth of the number of cities is

(21) v 5 g 0.

We now look for the growth rate of an individual city. Call its
size St. Because of the way the process is set up, we have
E[dS t /dt ] 5 E[S t 1 1 2 S t ] 5 (1 2 p )St /U t , or because d t 5 g 0e g 0t

dt 5 g 0Utdt,

E[dSt] 5
(1 2 p )S t

Ut
dt 5

(1 2 p )S t

U t
g 0U t dt 5 (1 2 p ) g 0Stdt,

which gives the rate of growth of an individual city: g :5 E[dSt/St]
/dt:

(22) g 5 (1 2 p ) g 0.

Hence, as in the Steindl model, we get the steady state Zipf
exponent:

(23) z 5 v/ g 5 1/(1 2 p ).

We see how stringent (indirect) assumptions on the growth
rate of the number of cities govern Simon’s explanation. They are
almost certainly counterfactual, at least in the long run, for many
urban systems, e.g., in Europe.
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