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The selection of class intervals

IAN S. EVANS
Lecturer in Geography, University of Durham

MS received 23 June 1976

AssTRACT. The selection of class intervals, which can strongly affect the visual impression given by a map, is currently a
totally anarchic branch of cartography. While practising cartographers have barely accustomed themselves to the routine
techniques of class selection, recent work has widened the choice available and extended the opportunity to produce a
desired bias.

Systems of class intervals, apart from those fixed exogenously or in arbitrary fashion, are classified into idiographic
or serial types, the latter being recommended here. Scale transformations leading towards symmetrical frequency distribu-
tions are important and are required for proportional as well as graded symbolization. It is suggested that class intervals
should not be optimized in relation to details of the statistical frequency distribution, but should be selected according to the
overall shape of this distribution. For rectangular distributions, equal division of the range is appropriate: for dominantly
unimodal distributions, intervals related to the standard deviation (on a scale which makes the distribution symmetrical):
and for J-shaped distributions, geometric progressions to bases which are greater as skewness increases. Techniques are
given for calibrating geometric progressions relative to the median, and for dealing with the special characteristics of
percentages.

An analysis of maps prepared by authors in various academic disciplines fails to show any
rational or standardized procedures for the selection of class intervals. Evidently intuition,
inspiration, revelation, mystical hunches, prejudices, legerdemain and predetermined ideas
of what the class intervals should be have characterized the work of most map-makers. . . .
Apparently many authors believe that maps are an art-form which allow liberties not
admissible in verbal or tabular presentation. (Jenks and Coulson, 1963, p. 120)

TO GROUP OR NOT TO GROUP?

THE impression conveyed by a map is a function not only of reality, but also of data quality,
definition of variables mapped, class intervals or grouping of data, map scale, graphic design,
and map perception by the reader. The effects of most of these factors are poorly understood, but
the present article concentrates upon the selection of class intervals, a topic on which there is a
singular lack of agreement among cartographers. In the first place, although most cartographers
treat quantitative data by grouping them into a small number of classes, some ‘heretics’ such as
Tobler (1973) do not even agree that such grouping is desirable.

The resulting debate takes us to the heart of the philosophy of cartography, a subject in
which philosophy is implicit more often than it is explicit. Dobson (1973), in an attempt to
prevent the spread of Tobler’s heresy, provided a useful summary of the rationale of grouping.
This starts from the fact that in absolute terms the human eye can confidently identify only a
small number of shadings or sizes of symbol. How small this number is must depend upon the
constraints on range of symbols available, upon the spatial context of the symbols and the smooth-
ness of variability portrayed, and upon human factors. Generally it is taken as seven or eight
(Jenks and Knos, 1961); certainly it would rarely exceed ten or fall below four. This is but one
manifestation of the phenomenon of ‘channel capacity’ in the perception of a single univariate
stimulus (Miller, 1956). Hunt (1968) used a series of eight very distinct shadings, and by varying
pattern as well as darkness Geddes (1942) presented twelve shadings which are distinct, yet in
unambiguous sequence.
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Clearly, then, it may be desirable to limit the number of classes to that number which users
can confidently discriminate. Dobson assumed that this must a/ways be desirable, because he
made a further, unstated assumption that every map should permit its readers to identify exactly
the class to which each individual symbol belongs. Dobson’s views on the desirability of limiting
the number of classes were firmly supported by Monmonier (1973), and similar views, which
were expressed by Robinson and Sale (1969) and by Jenks and Caspall (1971), appear to be
those of the majority of cartographers. Yet looking at each symbol individually and comparing it
with the legend implies usage of the map principally as a data storage medium, as a ‘spatial
table’; if this is the aim, it is much more efficient to write the actual numbers on the face of the
map (Dickinson, 1973). As Dobson (1974, p. 46) himself stated in another context, ‘The carto-
grapher does not expect the dot-map viewer to count dots (Heaven forbid), but to see general
intensities.’

More important map uses (see Bertin’s (1975) ‘maps to be seen’ as opposed to ‘maps to be
read’) include (i) perception of the overall spatial pattern of a map; (ii) comparing patterns of
different maps; and (iii) assessing contrasts between adjacent places. For the latter, in particular,
the psychological theory for absolute levels is inappropriate. Instead, we should consider the
‘just perceptible differences’ between contiguous stimuli; in this case, the number of relative
levels which can be discriminated is much greater (Haber and Hershenson, 1973, p. 106). It is
unlikely that comparing individual symbols with the legend is an efficient method for any of
these aims, or that it is the method actually used by the map reader. Hence we should perhaps
give more weight to the general fidelity of symbolization, rather than to identifying individual
symbol classes. In any case, a legend for well-designed symbolism should be almost redundant:
like the state in Marx’s theoretical view, it should wither away.

If a map is intended to convey information on spatial structures, on situations rather than
on sites, why should it not have the near-infinite gradations of a photograph, as Tobler (1973)
suggested ? Dobson (1973) did not reply to this point, but presumably he felt that simplification
and highlighting are necessary. In other words, we have a replay of the orthophotomaps versus
symbolized maps debate (Radlinski, 1968; Hill, 1974). The conclusion of that debate seems to be
that while precise classification, symbolization and emphasis are useful for some features, such
as roads, the infinite gradations of the photograph should be retained for complex areas of vegeta-
tion and different densities of built-up area.

Graded symbolism is most clearly appropriate where the distribution to be mapped falls
into ‘natural’ classes separated by clear breaks, and less so where there is a gradation from one
level to another. It is important, then, to establish whether the statistical frequency distribution
is continuous or significantly multimodal. In most cases (e.g. Pringle, 1976) it is continuous.
Therefore, the grouping of data into a small number of classes is undesirable except in the rare
cases where it is important for the reader to discern reliably into which class each individual
symbol falls. Reducing the number of classes achieves simplification at the expense of loss of
useful detail, especially local contrasts. Generalization of a map in this way is crude and uneven
compared with weighted spatial smoothing (Tobler, 1969); it increases grouping error and
distorts differences. On the whole, proportional symbolization should be preferred to graded.

The reason why cartographers have almost always used a small number of classes may,
however, have been technical rather than philosophical or perceptual. With manual cartography
it is easier to draw, for example, eight graded sizes of circle, so that the compass need be set only
eight times, than to reset the compass for every symbol (Dickinson, 1973, p. 45). For line shading,
it is easiest manually to use a small number of line spacings coinciding with divisions marked on
a ruler. Pre-printed stick-down symbols also come in a small number of sizes.

Tobler (1973) pointed out that in automated cartography this constraint is almost removed,
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for it is very easy for a computer program to fix a density of shading or a size for each symbol,
according to some rule of proportionality. This change is important, but constraints remain
because most plotting devices work in fixed increments. For many graph plotters, the increment
is o-o1 in. Hence if the smallest square to be drawn has a side of 0-03 in, and the largest, 0-20 in,
only eighteen sizes are available. (This is doubled where the increment is 0-005 in, which is
now becoming common.) The Dresser laser plotter has 16 intensities of grey available for shading
(Rhind, 1974): although adjacent levels cannot usually be discriminated by the human eye,
especially on a complex map where the context varies, the number available is sufficiently small
that the class-interval system is very important. In fact, even where very many gradations are
possible (1024 on the HRD-1 laser plotter), it is still necessary to decide the appropriate scale
for proportionality. It is the selection of the appropriate scale which is most important, whatever
the number of classes required.

NUMBER OF CLASSES

If we decide not to represent a surface by continuous gradations, we must decide how many
classes are to be used and on what criteria class boundaries are to be selected. The common
situation involves representing a surface by a series of graded shadings, from light to dark, but
similar considerations apply to other types of quantitative symbolization, such as thickness of
line or area of square.

Deciding on the number of classes is a subjective stage, suffering from a spill-over of the
emotional ‘graded versus proportional symbol’ debate discussed above. With more than ten
classes it is difficult for the reader to be sure to which class a particular symbol belongs, hence
one might as well use as many classes as is technically feasible and approach proportional
symbolization. With five classes or fewer, class identification should be unambiguous, but the
information communicated thereby may be less than an approximate identification on a sixteen-
level scale can provide.

Within the range four to ten classes, a decision should be influenced by the intended
audience, the technical means available, and the spatial pattern of the distribution. A simple,
clear-cut map with four or five classes may be better for an unsophisticated audience, inexperi-
enced at reading graphics. Trained eyes may appreciate the extra information which seven or
eight classes portray (Schultz, 1961). Poor mapping tools (e.g. the-standard set of line printer
characters) or poor reproduction facilities may degrade a complex image, and these constraints
suggest use of relatively few classes. A smooth surface with highly positive spatial autocorrelation
facilitates sub-division into more classes, each of which occupies a band wide enough for it to be
identified and to be followed for some distance. Likewise, in patterns of point or line symbols
where nearby symbols are similar in value, nearly similar symbols are likely to be either close to
each other, or close to comparable symbols forming a continuous band; this facilitates visual
discrimination. Finally, data accuracy should not be allowed to influence the decision, for
inaccuracy can be used as an argument either for few classes, reducing the chance of being in the
wrong class, or for many classes, reducing the portrayed magnitude of error when a measurement
does fall in the wrong class.

A CLASSIFICATION OF CLASS-INTERVAL SYSTEMS

So many systems of class intervals have been proposed that it is useful to propose a new two-level
classification, which distinguishes four distinct approaches.

1. 1 EXOGENOUS, fixed in relation to meaningful threshold values relevant to but not derived
from the data to be mapped, e.g. a sex ratio of 1 or a critical population density threshold.
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ARBITRARY, usually round numbers of no particular significance. Often the step size is
constant in one part of the scale and then changes, e.g. 5, 10, 20, 30, 40, 80, 120, thus
completely distorting the underlying ‘statistical surface’. Sometimes such intervals may be
roughly rounded approximations to true serial progressions (Mackay, 1963).

IDIOGRAPHIC, affected by specific details of the data set mapped. This can be subdivided
into:

Multimodal, separated by ‘natural breaks’ where frequency is lower.

Multi-step, subdivided by ‘natural breaks’ where the gradient of a cumulated frequency
plot changes. This is often erroneously labelled ‘clinographic’, but the cumulated area or
number plot is more analogous to the hypsometric curve, and Clarke (1966) has clearly
indicated that this does not portray real surface gradients.

Contiguity-biased, classified so as to maximize the extent and minimize the number of
regions with a given shading class.

Correlation-biased, classified so as to maximize similarity to a given map.

Percentile (quantile) classes which contain equal numbers of spatial divisions, o7 near-equal
areas. (‘Quantile’ is the more general term, but tends to be confused with ‘quartile’ and
‘quintile’.)

Nested-means class limits; a frequency distribution is balanced about its mean, which forms
the most obvious point of division to give two classes; each of these classes may be sub-
divided at its own mean; and so on, giving 2, 4, 8, 16, . . ., 2™ classes (Scripter, 1970).

SERTAL, with limits in a definite mathematical relation to each other, fixed in relation to
statistics for the overall frequency distribution such as median, mean, and standard deviation
or range, but not to individual details of the distribution. Type viii above is marginal to 3.
and 4. in that the two-class version fulfils this definition but the higher-order means calcu-
lated to permit further sub-division are increasingly affected by details, and the number of
fitted parameters is only one less than the number of classes. The other sub-types have
class widths which form equal steps on some scale, except for standard deviations which
have open-ended highest and lowest classes, and arithmetic progressions which mix equal-
interval and progressive concepts and are perhaps open to objection on that basis.
Normal percentiles, with class limits that subdivide a normal distribution of appropriate
standard deviation into classes equal in frequency (Armstrong, 1969). This is marginal to 3.
and 4. in being the only ‘serial’ system with class limits which do not form a straightforward
numerical series. Such classes vary in width in relation to their separation from the mean,
but are symmetrical on either side of the mean. This system should not be confused (as in
Chang, 1974) with the standard-deviation-based system x, which also works best for a
normal distribution. It relates to the percentile system, but i$ not idiographic since it is
calibrated only in relation to mean and standard deviation of the data; its ‘percentiles’ relate
to the theoretical normal frequency distribution. The more the observed distribution differs
from the normal, the more unequal will the frequencies of different classes become.
Standard deviation, with class width defined as a proportion of the standard deviation. A
standard deviation is simply the square root of the mean of squared deviations around the
mean: it is statistically the most useful measure of dispersion (spread) of a set of measure-
ments. As in ix, class intervals are centred on the mean, which is a class midpoint if the
number of classes is odd and a class boundary if the number is even; the highest and lowest
classes are necessarily open-ended.

Equal arithmetic intervals, with no variation in class width. These may be (a) round num-
bers, or (b) equal divisions of the arithmetic range.
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xii Equal intervals on a reciprocal scale (Jenks and Coulson, 1963). This system cannot be
applied if any zero values occur.

xiii Equal intervals on trigonometric scales (sine, cosine, tangent, their reciprocals or their
corresponding angles).

xiv Geometric progressions of class width. The width of each (higher) class is a constant factor
times the width of the preceding class.

xv Arithmetic progressions, with class width increasing by a constant amount in comparison
to the next lower class. If this amount is 2 and the first class is o to 1, the limits of N classes

c=N
are o, 1, 4, 9, 10, 25, . .., Y (1+2(c—1)).
c=1

xvi Curvilinear progressions, where a plot of logarithm of class limit against logarithm of class
number forms a smooth curve. Mackay (1963) calibrated these in terms of the upper and
lower limits of the lowest class, the lowest limit of the highest class, and the number of
classes, and he suggested that the resulting series approximated to current cartographic
practice. Class width can either increase or decrease upward, but the rate of change of width
decreases upward in all his examples. These series seem to be even more general and
flexible than geometric progressions, but they do leave very many free choices to the
cartographer, who has little guide to making precise decisions.

It is now possible to consider the relative merits of these sixteen systems, first for a single map,
and then for several maps which are to be compared. Measures of the accuracy of class interval
systems may then be reviewed.

SELECTING CLASS INTERVALS FOR A SINGLE MAP

Exogenous class limits will be used in the few instances where they are available, but arbitrary
limits forming no consistent series are indefensible and should never be used. For most maps,
then, it is necessary to choose between the various idiographic and serial alternatives. Most
systems make some use of the aspatial frequency distributions of values (but in very different
ways); different frequency distributions suggest different class interval systems. It will be seen
that there is little relation between the suitability of a system and its current popularity.

Systems iii and iv based on various sorts of ‘natural breaks’ are widely recommended in the
recent literature (Mackay, 1955; Dickinson, 1973, pp. 87-91). They are exemplified by Davis
(1974, p. 71) and detailed by Robinson and Sale (1969, p. 169). System iii has been automated
by Monmonier (1972, 1973) using principal components, and by Jenks and Caspall (1971) using
centroid linkage (see also Dickinson, 1973, fig. 125B). Early proponents of iii included Alexander
and Zahorchak (1943), who suggested that minima in the frequency distribution would provide
class limits separating clusters of similar areas. They argued that such limits would be significant
in themselves, as well as providing simpler spatial boundaries because they pass near fewer of
the areas. The force of their argument is however greatly reduced by the difficulty, which they
admitted, that a frequency distribution carries no information about spatial pattern. Hence the
areas which make a minor peak in the histogram may be scattered over the map, in which case
the boundaries based on frequency minima will be no simpler than any others. Jones (1930, p.
181) actually defined his breaks as major steps in the statistical surface, but these steps were high
enough to leave plenty of scope for subjective judgement in defining precise class limits for
isopleths.

The greatest defect of the ‘natural breaks’ approach lies in attributing ‘significance’ to very
minor troughs in the histogram. Usually—as in Alexander and Zahorchak’s example of county
population density—these are just the minor oscillations to be expected in any finely divided
histogram. They are unlikely to be replicated either in different regions or at different times, hence
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they are ‘significant’ neither in the statistical nor in the everyday sense of the word. If a distribu-
tion were demonstrated to be significantly multimodal, that is to consist of a mixture of samples
from qualitatively different populations, this approach would be justified, but I know of no
cartographic example where this has been demonstrated. Jenks and Coulson (1963, p. 125) found
that ‘more often than not, clear natural break classes do not occur, and subjective judgements
based on frequency graphs vary greatly from cartographer to cartographer’. It is usually possible
to find apparent breaks, but these are often the result of small sample size and their significance
should not be exaggerated.

System iv involves pairs of contours on either side of minima or maxima in the frequency
distribution, or at breaks in cumulated frequency curves. This supposedly divides the cumulated
distribution into a series of ‘treads’ and ‘risers’. Again, breaks in the frequency distribution are
emphasized, but with the added disadvantage that twice as many contours, or levels of symboliza-
tion, are required. In theory, this ‘doubling up’ of the class boundaries emphasizes the stepped
nature of the frequency distribution—:f the spatial distribution is also stepped. Neither of these
two ultra-idiographic approaches, 1ii and iv, should ever be used in quantitative mapping, unless
significant multimodality has been demonstrated statistically.

The scope for increasing the contiguity effect in shading (system v) is limited unless regional
classes with overlapping statistical intervals are admitted. It seems better not to distort the map
in this way, but to let the degree of contiguity speak for itself. Monmonier’s (1972) pioneer
results gave very little improvement in contiguity, at the expense of considerable declines in
intra-class homogeneity. An alternative and better way of achieving a simpler spatial pattern is
to apply weighted spatial averaging (Tobler, 1969). Monmonier’s more recent innovation (1975)
of automating the selection of class intervals so as to maximize the apparent correlation between
maps (system vi) is a more dangerous and indeed sinister weapon to place in the hands of
geographers and politicians who know what results they want.

Percentile systems of subdividing frequency distributions are very useful in ensuring equal
representation for each class. Of course, if the spatial divisions which provide the units of the
histograms vary much in area, as in Hunt (1968), the actual areas shaded, and hence their
visual impacts, will vary considerably from class to class. This can be avoided if the histogram is
weighted by area (Mackay, 1955) and percentiles are chosen which, as closely as the size of
spatial divisions allows, provide an equal map area in each class. When percentiles of data points
are chosen prior to isopleth or isarithm mapping by interpolation (e.g. with SYMAP), the areas
within each class often vary considerably. In this case, equality of class areas can be achieved by
iteration.

It can be argued that an areal percentile map makes maximum use of the number of distinct
symbols available. On the other hand, the map reader may wish to compare maps not on the
basis of equal divisions of area or of numbers of the irregular divisions for which data are avail-
able, but perhaps of equal divisions of the population.

Percentile-based classes are independent of monotonic transformations (e.g. logarithmic or
reciprocal, where applicable) of the measurement scale and so they may be preferred when we
are unsure of the quantitative basis of the scale (not of the accuracy of its measurement, but
of its status as an interval or ratio scale). Their main disadvantage is that class intervals vary
irregularly in different parts of the measurement scale and between maps of the same variable
for different areas or times. This degrades ratio or interval scales to ordinal scales, and hinders
comparison between areas or between times. Furthermore, a percentile-based map provides no
information whatsoever about the frequency distribution: this could equally well be peaked,
rectangular or bimodal. Hence it becomes absolutely incumbent on the cartographer to present
a histogram alongside such a map, and to mark the class boundaries upon it. This removes the
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latter objection and facilitates interpretation in relation to the measurement scale, but it does
nothing to aid map comparison. Furthermore, percentile classes necessitate very careful reading
of the map legend (Schultz, 1961).

Unlike systems ii to vi, percentile classes are replicable between cartographers. Scripter’s
(1970) recent innovation of the nested-mean system viii is equally objective, and more attractive
in that it balances the desirable property of equal numbers per class against another desirable
property, that of equal class widths. Since means minimize second moments (sums of squared
deviations), they are the balancing points of the part of the scale which they subdivide, with
respect to both magnitude and frequency. Class intervals thus defined are narrow in the modal
parts of a frequency distribution and broad in the tails. Extreme values are not allowed to
dominate, but they do influence the positions of means of various orders so that the less closely
spaced the values in a given magnitude range, the broader the classes. For a rectangular frequency
distribution, nested means approximate the equal-interval or percentile solutions; for a normal
one, they approximate a standard deviation basis; and for a J-shaped, a geometric progression.
Hence nested means provide the most robust, generally applicable, replicable yet inflexible class
interval system. Compared with the three systems just mentioned, nested means have the dis-
advantage of not forming a numerical series independent of the data, and not permitting numbers
of classes other than 2™.

Few examples are as yet available of Armstrong’s (1969) standardized class intervals (system
ix), based on percentiles of the normal probability distribution. For data which follow this
distribution, normal percentiles are preferable to true percentiles in being uninfluenced by minor
details of the frequency distribution. Hence they escape the label ‘idiographic’; although the
numerical series which they form is a complex one. Like the standard deviation system, this
system is unsuitable for markedly non-normal frequency distributions, which it makes apparent
through unequal class frequencies. Unlike Scripter, Armstrong failed to mention the desirability
of transforming the measurement scale to give a more nearly normal distribution (Evans,
Catterall and Rhind, 1975), but such transformation is much more necessary here and for system
x than for nested means.

The particular examples mapped by Armstrong (1969) are mortality ratios, for which there
is no theoretical expectation of a normal distribution. His figures 4 and 5 confuse the issue in
being ‘light’ and ‘dark’ respectively, not because of positive and negative skewness, but because
they are based on an overall, weighted mean rate, rather than the more appropriate mean of the
ratios mapped. The standard deviation of these ratios is used, and clearly the frequency distribu-
tion of the same ratios is the relevant one for such a map (on which the insignificant ratios should
not be mapped; Choynowski, 1959).

For frequency distributions which are approximately normal, or fairly symmetrical with a
pronounced mode near the mean, the standard-deviation system x is best. It has the edge over
system ix in that its internal intervals are equal. It should be applied also to skewed unimodal
distributions which can be transformed to symmetrical form, for example by taking logarithms,
cosines or reciprocals. In addition to reference to the mean, a standard deviation basis has the
advantage, compared with a range basis, of an open-ended class for each tail of the frequency
distribution. The extension of these classes permits greater discrimination near the mode.

Use of a standard deviation basis does not imply a class interval of one standard deviation,
which is too coarse if more than four classes are employed. Table I shows the proportions of a
normal distribution which fall into each of 5, 6 or 7 classes, for different widths of class. For a
s-class division, classes o-5 to 0-6 standard-deviations wide are occupied almost equally, and the
result approaches a percentile-based solution. This excessive pooling in the broad, open-ended
tail classes tends to suppress the bell-shaped nature of the frequency distribution. On the other
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TABLE I

Percentage of values in a normal distribution falling into each class, for different class widths expressed as proportions of
standard deviation. Class limits are shown in brackets in units of standard deviation from the mean. Based on tables of the
normal distribution

Class width
(standard Class
deviations) 1 2 3 4 5 6 7
(a) Four classes
1 136 (—11) 364 (00) 364 (+11) 136
10 159 (—10) 341 (00) 341 (+10) 159
09 184 (—o09) 316 (00) 316 (+o09) 184
o8 212 (—o08) 288 (00) 288 (4-08) 212
07 242 (—o07) 258 (00) 258 (407) 242
06 274 (—06) 226 (00) 226 (+06) 274
o5 309 (—o05) 191 (00) 19T (+405) 309
(b) Five classes
I 50 (—165) 242 (—0'55) 418 (+0'55) 242 (+1:65) 50
1o 67 (-15) 241 (—o5) 383 (+05) 241 (+15) 67
09 88 (—135) 238 (—045) 347 (+045)238 (+135) 88
o8 15 (—12) 229 (—o4) 311 (404) 229 (+12) 11§
07 147 (—105) 216 (—035) 2774 (+035) 216 (+1°05) 147
06 184 (—09) 198 (—-03) 236 (+03) 1908 (+09) 184
0’5 227 (=075 1779 (—025) 197 (+025) 179 (+075) 227
(c) Six classes
I'1 14 (—22) 122 (—11) 364 (000) 364 (+11) 122 (F22) 14
10 23 (—=20) 136 (—10) 341 (00) 341 (+10) 136 (+20) 23
09 36 (—18) 148 (—o09) 316 (00) 316 (+o9) 148 (+1:8) 36
o8 55 (—16) 157 (—0'8) 288 (00) 288 (+08) 157 (+16) 55
07 81 (—14) 161 (—07) 258 (00) 258 (+07) 161 (+14) 81
06 s (—r12) 159 (—o06) 2206 (00) 226 (+06) 159 (+12) 115
o5 159 (—10) 150 (—0'5) 191 (00) 191 (+05) 150 (+710) 159
(d) Seven classes
I'I 005 (—33) 134 (—22) 12218 (—11) 7285 (+11) 12718 (+22) 134 (+33) o005
10 013 (—30) 215 (—20) 1350 (—1°0) 6826 (+10) 1359 (+20) 215 (+30) 013
09 035 (—27) 324 (—18) 1482 (—09) 6318 (+09) 1482 (+18) 324 (+27) 035
o8 082 (—24) 466 (—16) 1571 (—08) 5762 (+08) 1571 (+16) 466 (+24) o082
07 179 (—21) 629 (—14) 1612 (—0'7) 5160 (407) 1612 (+14) 629 (+2:1) 179
06 359 (—18) 792 (—12) 1502 (~06) 4514 (+06) 1592 (+12) 792 (+18) 359
o5 6:68 (—15) 919 (—10) 1498 (—0'5) 3830 (4+05) 1498 (+10) 919 (+1'5) 668

o4 1151 (—12) 968 (—08) 1327 (—04) 3108 (+04) 1327 (+08) 968 (+12) 1151

hand, classes larger than one standard deviation leave few measurements to the tail classes, which
are thus under-utilized. Hence an intermediate value, say 0-7 or 0-8 standard deviations, will
usually be preferable. It may eventually be possible to standardize this factor, for a given number
of classes.

The standard deviation system is less suitable for large numbers of classes (say twenty)
because frequencies may then be low in classes near the tails.

For a rectangular frequency distribution equal divisions of the range (system xi (b)) give
excellent results, comparable to the use of percentiles but without the minor perturbations of
class width. (Minor perturbations of class frequency are less objectionable.) Rectangular distribu-
tions are, however, rarely encountered, and occasions where range sub-division is the best
method are correspondingly rare. For normal or skewed distributions, most of the measuremenis
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fall into one or two of the range sub-divisions, while classes covering tails of the distribution are
hardly used. The range-based technique is easily operationalized, and hence it is the ‘default’
option used by many computer programs, unless the user intervenes. The adverse results of such
cartographic carelessness have been noted by Hsu and Porter (1971). Furthermore, the example
they quote gives class limits to five significant digits! In the rare cases where system xi is appro-
priate, it might be better (Schultz, 1961) to use rounded numbers (system xi (a)), at the expense
of incomplete use of the highest and perhaps the lowest class.

Equal-interval classes on the various scales mentioned in systems xii and xiii are rarely used,
but would be appropriate to frequency distributions approximately rectangular on the scale in
question. If they were unimodal and near-symmetric on the same scale, system x would make
more economic use of the classes available. Standard-deviation class limits are also equally spaced,
but the open-ended extreme classes are useful for the tails of a distribution.

Geometric progressions of class widths (system xiv) are extremely useful for distributions
where frequency declines continuously with increasing magnitude (‘J-shaped’ distributions). They
are also very flexible in that different-sized lowest classes and different bases of the progression
can be used. Since they have not received detailed cartographic attention before, they are
considered at length below. In view of the flexibility of geometric progressions, with class width
changing slowly or rapidly depending on the base of the geometric progression, arithmetic
progressions appear superfluous: they seem to have no particular rationale. Mackay’s (1963)
system xvi seems unnecessarily complex, at least until geometric progressions have been fully
explored and found wanting.

Implicit in the above discussion is the principle that if serial class-interval systems are
selected carefully to suit the overall shape of a frequency distribution, there is no need to forgo
their advantages for the irregularity of idiographic systems. Any irregular system of class limits
distorts the form of the statistical surface (Robinson and Sale, 1969, p. 166). Idiographic systems
(especially iii) take quantitative data and degrade them into grouped ordinal data, emphasizing
differences between groups rather than quantitative differences on a continuous scale.

Table II compares the suitability of six important class-interval systems, including two
idiographic ones. It is suggested on the basis of the preceding discussion that intervals based on
standard deviation are best for normal frequency distributions, equal-intervals for rectangular,
and geometric progressions for J-shaped. Most distributions which do not approximate to any
of these forms can be transformed to one of them. Significantly multimodal distributions are
an exception: class limits must be located in the intervening breaks and if there are more than
two modes this makes the use of serial intervals fraught with difficulty.

Nested means are attractive because of their robustness and because the relative frequency
of each class provides the map reader with clues to the shape of frequency distribution. There is,
however, no particular advantage in using a single system when the limits are irregular and non-
serial; the combination proposed above seems preferable to nested means alone. Percentiles have
been selected by cartographers wishing to play safe and make sure that some spatial differentia-
tion was portrayed. With the use of computers there is no excuse for ignoring the frequency
distribution and Hunt’s (1968, p. 3) practical reasons for using percentiles, rather than the
standard deviation basis which he would have preferred, no longer apply.

CLASS INTERVALS AND MAP COMPARISON

A number of class-interval systems can be claimed to provide comparison between maps of the
same variable for different areas or times, or between maps of different variables for the same
area. Percentile classes permit us to compare equal divisions of the frequency distribution.
Nested means provide comparably defined benchmarks in each distribution. Standard-deviation
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classes permit us to compare dispersion-standardized deviations from respective means. ‘Natural
break’ class limits would fall in comparable positions, in the unlikely event of their having any
broad significance. Arbitrary round-number class limits can be repeated for different maps of any
variable in the same units, although some classes may be vacant on some maps.

The vital question is why are the maps being compared. It may be impossible to optimize
the classification on each map and at the same time facilitate all possible modes of map compari-
son. If maps of different times are to be compared to reveal changes in absolute terms, or if maps
of different variables in the same units are to be compared for differences in absolute terms, then
it is essential that exactly the same class limits should be used, and each individual class must be
symbolized identically on all maps. In this case, none of the data-calibrated systems can be used
directly, and there are two alternatives: (a) use round-number class limits equally spaced on an
appropriate scale or perhaps a geometric progression; or (b) apply a data-calibrated system to the
combined data of the two or more periods or variables. In either case one must tolerate the fact
that individual maps are in no way optimized for the data portrayed. Optimum use is not made of
the number of classes available, and, in fact, the number of classes may vary from map to map:
this is preferable to varying the class limits.

However, there are further motives for map comparison: a major one is, for a given area, to
see how far the spatial pattern of one variable has changed over time, or how similar are the
spatial patterns of different variables. Here the use of identical class limits would actually be a
hindrance, because these would interact with differences in mean and in standard deviation
so as to produce apparent differences even when the spatial patterns were identical. Hence, such
comparison requires that class intervals should be related to the data in a standard way, and
equal numbers of classes should be used. The above reasons justifying the use of a percentile,
nested-mean, standard-deviation, or natural-break basis are applicable. Equal division of the
observed range would be inefficient because the range is an unstable statistic, and inappropriate
because it is unrelated to the three principal measures of central tendency.

Whether variables with different-shaped frequency distributions are best compared through
percentiles, nested means or appropriate data-calibrated serial systems is a debatable question;
experimentation would be useful. Although Olson (1971, 1972a) suggested that percentile classes
were best in preserving the rank correlation between pairs of maps (compared with correlation
between the data sets), her only reasonable comparison was for four-class maps. The results
shown on her (1972a) figure 3 indicate that sampling variation of rank correlation is least with
nested means, slightly worse for standard deviations (limits at —1,0and + 1 S.D.), and consider-
ably worse for quantiles. Three-class and five-class standard-deviation systems appeared worse
than corresponding percentile divisions because Olson selected very inefficient class limits:
—2, —1, +1 and +2 standard deviations. The central class, where observations are most
closely spaced, was thus twice as wide as those adjacent to it, and contained some 68 per cent of
the observations: it should never be wider than the adjacent classes, for unimodal frequency
distributions.

Olson (1972b) then compared similar class-interval systems for goo pairs of real demographic
variables which were presumed to cover a range of deviations from normality in frequency distri-
bution. Errors were greater than for simulated normal data, and percentile techniques were
so bad that even two standard-deviation classes were better than (five) quintiles! For equal
numbers of classes, standard-deviation systems (even as defined by Olson) were much better,
nested means were intermediate. The use of deviations from expected rank correlation, rather
than deviations from average rank correlation, reduced the apparent merit of nested means for
simulated data also; this suggests that their portrayed correlations are biased as well as imprecise.
Truer comparisons might be obtained by using systems from Table I with more nearly equal
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class frequencies: Olson’s existing results argue against percentiles, rather than for them. As
yet, considerations of map comparison provide no basis for modification of the recommendations
made at the end of the last section.

THE ACCURACY OF GRADED SYMBOLIZATION

Measures of the classification accuracy of maps have been proposed as means of selecting the
best class-interval system. Jenks and Caspall (1971) have made a serious attempt to measure the
accuracy of graded choropleth maps, following the pioneer work of Jenks and Coulson (1963).
The latter measured error as

p-3
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where R, is the theoretical (complete) range of class j, M, is its midpoint, and Z; is the mean of
the observations which fall into it. Thus the greater the difference between the reciprocals of
M; and Z;, the greater the class error: the summation of these errors is weighted by the class
range. Broad classes thus dominate the calculation, for no obvious reason. Though the results
do have some relation to map accuracy, they are peculiar in ignoring the dispersion of observa-
tions (around Z;) within each class. Unfortunately, D is the measure used by Chang (1974) in
his class-interval selection program; it should now be apparent that it is not a suitable measure
of accuracy.

Jenks and Caspall (1971) distinguished accuracy in three map functions; tabular (place-by-
place), overview (volumetric) and boundary.

The tabular accuracy index (TAI) seems an interesting and readily operated measure. It is
based on Jenks’s (1963) concept that a choropleth map implicitly represents each place in a given
class by the average value for all places in that class.
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where Z is the mean of all  observations, Z; is the mean of the #; observations in class j, Z;; is an
individual observation in class 7, and N is the number of classes.

Unfortunately, as Jenks and Caspall pointed out (1971, p. 220), the map reader is not
usually given Z;. Despite their own recommendation, Jenks and Caspall did not even give Z; for
the numerous maps in the same article. The mean of observations in a class is therefore irrelevant
to the value which a map reader is likely to put on a class. The reader, since he is usually given
the class limits, is presumably most likely to visualize the class mid-point, M;, though even this
involves him in a small mental calculation. Alternatively, he might envisage the places mapped
in a particular class as being spread evenly through the class, though he would not know in what
order they came. Use of M; in place of Z; in the TAI would reduce the apparent accuracy of
classes where the observations clustered together but not around the class midpoint. This
presumably has implications for the apparent merits of different class-interval systems. All such
indices have been based on the original measurement scale; if it is appropriate to give less weight
to large differences in the tail of a skewed distribution, the index should be applied only after a
transformation toward symmetry.

The overview accuracy index is simply an area-weighted version of the tabular; it relates
to the volumetric mismatch between the true three-dimensional model and the apparent one.
This does not seem to be a full solution to its authors’ apparent aim of measuring success in
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portraying a synoptic view of the pattern, form or structure of the spatial distribution: indeed,
it seems unlikely that such a measure can be derived outside the context of map perception
studies.

The third index asks the reasonable question, to what extent do true contrasts between
neighbours remain apparent in a choropleth map. Unlike the TAI, the boundary accuracy index
(BAI) would be difficult to apply to point symbols, and impossible for isopleth maps. Like the
TAI, the BAI is based on mean values of observations per class, and the apparent difference
between neighbours is taken as the difference between these means for the two classes into
which they fall, despite the fact that the map reader is unaware of such means. The sum of the
p such differences is divided by the sum of the p largest true differences, giving the BAI. Again,
this could be improved by replacing Z by A, in calculating apparent differences. Also, the BAI
ignores error due to very different neighbouring values being placed in the same class. So that
solutions with different numbers of classes, and even different numbers of contrasting con-
tiguities, could be compared more readily, it would be better to divide by the sum of all true
differences between neighbours, not just the p largest. This would give:

z I Mxi —M, 2] | 3
*| zy—z )
y
where M, ; is the class midpoint appropriate to x, M, ; that appropriate to y, and the summations
T* are over values of x and y which give contiguous pairs of symbols or spatial divisions.

Even after such improvements, however, the BAI is misleading, because cases where the
apparent contrast exceeds the true contrast increase the accuracy index; surely they should
progressively decrease it. Hence we arrive at a rather different ‘neighbour difference error
index’ (NDEI) which compares the apparent contrast with the true contrast, and standardizes
the sum of differences (positive or negative) by the sum of true contrasts;

z* | (ij—Myj)_(Zx—Zy)I

NDEI = 1727,

4)

Such a boundary index is quite useful in assessing the faithfulness of the map in portraying
spatial trends, as well as more localized contrasts. The NDEI cannot be negative: it varies from
zero for a perfect map (which would need an infinite number of classes) to one for a one-class
map, where the (4, ;— M, ;) term vanishes.

Alternatively, a cross-product model could be employed in place of the difference model,
giving a ‘neighbour cross-product error index’:

2* (ij_Myj)(Zx—Zy)

NCEI =
2* (Zx - Zy)

©)

Further improvements can be made by using root-mean-square measures in place of mean-
deviation measures. If such accuracy indices are carefully defined, they are essential components
of the idiographic approach. They are almost irrelevant to the choice of serial or exogenous
intervals, except as checks on the degree of ‘suboptimality’ which has been accepted. They might
also help decide on the number of classes to be shown.

A final recommendation is that a combination of different accuracy indices, as used in Jenks
and Caspall’s (1971) map accuracy index, is of no general value. Rather, each map designer
must decide what weight to give to each index—if he feels that idiographic optimization of this
type is appropriate.
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FIGURE 1 Six alternative legends representing a geometric progression of class widths, each class being twice as wide
as the next lower class

PRESENTATION OF LEGENDS TO CLASSES

To select a good class-interval system is not enough; the intervals must be communicated to the
reader. Since a map should be able to convey its message rapidly, the legend should be almost
redundant, serving to provide at a glance (if the information is quantitative) a calibration of the
absolute levels involved. (The relative levels should be obvious from the symbolism selected.)
Hence the class limits should be indicated as simply as possible, and so that their progression is
readily perceived.

Figure 1 legend (a) is clumsy in repeating each internal class limit, thus increasing visual
clutter, and not indicating whether values of exactly 2, 6 and 14 are assigned to the class above
or to that below. For data with a resolution of two decimal places, legend (b) meets the latter
problem, but not the former: in fact it takes considerably longer to read (Schultz, 1961, p. 228).
The preferred form is legend (c), which indicates the limits at the bottom of the classes to which
they are assigned. A reader has to scan vertically to find the two limits defining a class interval,
but this is desirable, since it leads him on to consider the complete series and to envisage its serial
nature and the continuity of the quantitative scale. An addition which could be made to any of
these legends is the indication of number of observations (f) per class on the left-hand side:
unlike the class limits on the right-hand side, these numbers are centred on each class box.
The name of the variable is best placed to the right of the class limits. Below the legend the
nature of the class-interval system may be indicated: if the map is for a specialist audience, the
fact that the progression is ‘to the base 2’ can be added.

Version (d) shows the average Jf the observed values in each class, while (¢) shows the class
midpoints, which in this case are the extra boundaries needed for an eight-class division of the
same 0-30 range, with base 29'5. The latter might be the more useful way of indicating central
values for each class. If class frequencies are also to be shown, they should be located to the right
of the class limits as in (e) and printed in a thinner, distinct typeface so that they do not obscure
the vertical progression of class limits. Finally, legend (f) is a variant which obscures the con-
tinuity of the scale and seems inefficient for a quantitative map, but might be appropriate for
a map of nominal-scale data.

A further improvement would be to give a histogram as another insert, and to mark the class
limits thereon. If nested means are used, the hierarchic nature of class limits should be apparent
on the legend. If multiples of the standard deviation are used, the mean and standard deviation
should be given next to the legend. On the whole, (c) appears the clearest style of legend.

The presentation of legends to proportionally symbolized maps is more problematic. For
proportional point symbols such as circles or squares, the use of a continuous line spanning the
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FIGURE 2 Histogram of proportion of households with no indoor W.C., for 1043 1x 1 km grid squares with eight
or more households in County Durham, 1971: a mildly J-shaped frequency distribution

diameters of successive legend symbols of increasing size does suggest proportionality rather
than grading, as does presentation of the equation by which proportionality is defined. The
extreme legend values should always be close to the extreme map values. Dobson’s (1974)
application of idiographic grouping, on the other hand, is likely to mislead the reader into
treating proportional symbols as graded ones. The necessary number of circles in the legend
might be reduced by one or two, at the expense of confusing the reader with an irregular series
where a smooth progression would serve much better.

For choropleth maps, the equivalent to the continuous spanning line is perhaps the con-
tinuous shading box with convergent lines used for a legend by Tobler (1973). Two difficulties
with this are that the angular relations between shading lines are falsified, and the map reader has
no finite area of a given shading density that might be compared with such areas on the face of the
map, where shading density changes only at the boundaries of spatial divisions. If dot shading were
used in a continuous-shading box legend, the first difficulty could be overcome by placing dots
randomly but with a continuously increasing probability towards the top end of the scale. The
second difficulty could be met only by having discrete shading boxes as samples at a series of
points in the scale. These would differ from those for graded shading in havmg single magnitude
values placed next to the middle of each box, not at the lower or upper margins. Again, propor-
tionality should be emphasized by giving the equation relating shading densities to data values.

GEOMETRIC PROGRESSIONS
One awkward type of frequency distribution is ‘J-shaped’, with a mode at one end of the scale
(usually at zero) and a long tail (Fig. 2). This is extremely difficult to normalize by a monotonic
transformation, which can only be effective if there is a decline in frequency on both sides of the
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mode. The usual solution is a geometric progression of class limits, that is the use of equal inter-
vals on a logarithmic scale. J-shaped distributions often remain J-shaped on a logarithmic scale,
so that the lower classes may contain more measurements than the highest. Having rather fewer
values in the higher classes gives a suggestion of the J-shaped nature of the distribution, and
caters also for Mackay’s (1955) point that large areas of the densest shading are aesthetically dis-
pleasing. If, on the other hand, the J-shaped distribution is negatively skewed, that is piled
up against an upper limit such as 100 per cent, geometric intervals are selected by measuring
downward from the upper limit.

Many published maps are based on geometric progressions of class upper limits, but these
do not in general provide geometric progressions of class intervals (widths). The latter is essential
since each successive class must be broader to cope with the decreasing frequency found in a J-
shaped distribution. For example, limits at 2, 4, 8, 16 and 32 provide a geometric progression
only if 1 is the lowest possible measurement. If the lowest measurement is o, both the lower
classes (0—2 and 2—4) are of equal width, so there is a break in the progression of class intervals
and the lowest class is likely to contain many more measurements than any other. In fact, on a
logarithmic scale the width of the o-2 class is infinite. If the class intervals are to have the geo-
metric progression 2, 4, 8, 16, 32, the limits must then fall at o, 2, 6, 14, and 30, i.e. 2 units
below the previous values (2 units being the size of the smallest class). Geometric progressions of
class width do nor give equal divisions of a logarithmic scale. In addition to taking a different-sized
smallest class, the progression can be changed from base 2 (doubling) to base 3 (tripling, which
gives class widths of 2, 6, 18, 54 and 162) or to a fractional base such as 3-4.

If a is the size of the first class, and x is the base of the geometric progression, successive
class widths for N classes are: a, ax, ax2, ax3, ax4, . . ., ax" ™",

If the lower limit of the first class is zero, the upper limit of class j is (Armand, 1973, p. 498):

T a(l—x%)

L, ¥ =i (6)

c=j—-1
Y ax®=a
c=0 c=0

Table I11I lists a number of possible geometric progressions. It applies only to measurements
on continuous scales, such as ratios. For discrete measurements, such as counts, class width must
be expressed as the number of different measurements which can fall into the class. Hence, if
measurement was orginally to 0-5°, an initial class width of one measurement combined with a
progression to the base 2 gives the following classes: 0-0°; 0-5 and 1-0°; 1-5, 2-0, 2°5 and 3-0°;
35 to 7-0°; 7-5 to 15-0°; and so on, doubling the number of 0-5° units in each successive class.
Strictly, the class limits fall at the intermediate values 0-25° 1-25°, 3-25°, 7-25° etc., but it is
easier to think of the highest possible measurement in each class: 0-0°, 1-0°, 3-0°, 7-0°, 15-0°, etc.

A troubling aspect of the use of such geometric progressions is that even when the number
of classes is pre-ordained, two further decisions have to be made on a subjective basis; the size
of the first class, and the base of the progression. This is usually done by trial and error, to ensure
that a reasonable number of observations fall in each class. In fact, some distributions are so J-
shaped that it is convenient, if inelegant, to have an open-ended sparsely occupied upper class
which includes a few observations which would fall into an extra, uppermost class if the pro-
gression were continued.

One solution is to take the logarithmic range and divide it into as many equal parts as there
are classes (Jenks and Coulson, 1963). This is undesirable, first, because the range depends on the
maximum, which is especially capricious in a J-shaped distribution; and, second, because it
cannot be used if any zero values occur, since these make the logarithmic range infinite. The
latter prevents its use for most occurrences of J-shaped distributions, for example number or
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TABLE III

Class limits for geometric progressions of class width for bases from o1 to 40, up to ten classes, starting at zero
with a lowest class from o to 1

Base I 2 3 4 5 6 7 8 9 10
o1 100 110 I'II  I'II 1’11 I'11 111 111 111 '1I
02 100 120 I'24 125 1-25 1-25 125 1-25 125 125
03 100 130 139 142 143 1°43 1°43 1°43 1°43 143
0'4 1roo 140 156 162 1°65 166 166 1-67 1-67 1-67
o5 100 150 175 187 1°04 1-97 198 1-99 2:00 2:00
06 100 160 1096 218 2:31 2:38 2°43 2:46 2°47 2:48
07 100 170 219  2'53 277 2:04 306 314 320 324
o8 roo 18 244 295 336 369 395 416 433 446
09 1’00 1'90 271  3'44 410 469 522 570 6:13 651
10 1'00 200 300 400 5°00 6-00 7:00 8-00 9'00 10°00
8 ¢ 100 210 331 464 611 772 949 11'44 13'58 15°04
12 100 220 364 537 744 9'93 12:92 16:50 20-80 2596
13 100 230 399 619 9'04 12-76 17-58 23-86 32-01 42-62
14 100 240 436 710 1095 16-32 2385 3439 49°15 69-81

15 100 250 475 812 1319 2078 32:17 4926 74'89 113'33
16 1roo 260 516 0926 1581 26-30 4307 69:92 112:87 181°59
17 100 270 559 1050 1886 3305 57°19 08:23 167-08 286-57
1-8 1roo 280 604 1187 2237 4127 7528 136:50 24670 44506
19 1roo 290 651 1337 2640 51-16 98-21 187-60 35743 680-12
20 1'00 300 700 1500 3100 6300 127°00 25500 511'00 1023'00
2'1 100 310 751 1677 3622 7706 162:83 342°94 72116 1515'44
22 100 320 804 1869 4211 9365 20703 456'47 100522 2212°49
23 100 330 8359 2076 4874 11310 26114 601-62 138473 3185-89
24 oo 340 916 2298 56016 13579 32689 785'54  1886-29 452810
2'5 100 350 975 2538 6444 16209 40623 1016°59 254246 635716
26 roo 360 1036 2704 7363 19245 50136 130454  3392:81 8822:32
27 oo 370 10099 3067 8382 22731 61473 166076 448506 1211065
2-8 roo 380 1164 3359 9506 26716 74905 2098:34  5876:36 1645482
2'9 oo 390 1231 3670 10743 31254 90736  2632:35 763481 2214196
30 100 400 1300 4000 12100 36400 109300 328000 9841'00  29524'00
31 1'00 410 1371 4350 13585 422:14 1309:65 406091 1258982  39020'44
32 00 420 1444 4721 15207 48761 156135  4997'33 1599244 - 51176-81
33 100 430 1519 5113 16972 56107 1852'54 611439 2017847  66589°96
34 100 440 1596 5526 1838-90 64325 2188:06 744039 2520833 8601532
35 100 450 16775 5963 20060 73491 257317 Qoo7'I0 3152586  110341'49
36 100 460 1756 6422 23218 836:84 301362 1085004 3906114 140621'09
37 100 470 1839 6904 25646 949:90 351563 13008-81 4813361 17809535
38 100 480 1924 7411 28263 107498 408591 15527°47 59005'39 224221'49
39 100 490 2011 7943 31077 121302 473176 18454'86 7197495 28070331
40 100 500 2100 8500 341'00 136500 546100 2184500 8738100 34952500

TABLE IV

The progression of class widths

(1) a ax ax? ax? axt

(i) b byl/2 bx2l2 byd2 btz P byS2 badl2 by?l? byt 2 bad2
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TABLE V

Class limits for geometric progressions of class width for five classes with a median of 10,
starting at zero

Base I 2 3 4 5
o1 9'03 993 10-02 10°03 10°03
02 815 9'77 1010 1017 10-18
03 7'36 9'57 1023 10'43 1049
o4 6-68 935 1041 10-84 11°01
o5 607 9°I1 1063 11'39 1177
06 5°55 8:87 10°87 12°07 12°79
07 5°08 8-64 I1'13 12°88 1410
o8 468 842 11°41 13-81 1572
09 4’32 8-20 11'70 1485 17-68
10 400 8-00 12:00 1600 2000
I 372 780 12°30 17°25 22:69
12 3'46 7:62 12°61 1859 2577
13 324 744 1291 2002 2927
4 303 728 1322 21'54 3319
s 285 712 1353 2314 37'56
16 268 6-97 13-83 2481 4238
17 2'53 6-83 14'14 2656 47-68
18 2'39 6-69 1444 28-38 5347
19 226 656 1474 3026 5976
2'0 2°15 644 15'03 3221 66-57
2'1 2'04 6:33 1532 3422 7391
22 194 6-21 1561 3629 8179
23 1-85 6-11 15°90 3842 9023
2'4 177 6-01 16-19 4061 9923
2'5 169 5°91 16°47 4285 108-82
2:6 162 5-82 1674 4515 119-00
27 1’55 573 17-02 47°50 12979
2-8 149 564 17-29 49'89 141'19
2'9 143 556 17:56 52'34 15322
30 137 548 17-82 5484 165-88
31 132 5°41 18-08 5738 179°20
32 127 534 1834 59'97 19318
33 122 527 18-60 62-61 207-83
34 118 5°20 18-85 65-29 22316
35 114 513 19°11 68-01 23918
36 110 5'07 1935 7078 255'90
37 107 501 19-60 73'59 273'33
38 1-03 495 19'84 76°44 291°49
39 100 489 20°08 79'33 310°37
40 097 484 2032 8226 330°00

proportion of immigrants or other minority groups, per area. Finally, this solution does not
give a geometric progression of class widths, but rather of class limits.

Instead, it is suggested that geometric progressions should pivot about some measure of
central tendency. Given the high skewness, the only such obvious measure is the median. The
median should be made the geometric midpoint of the middle class if there are an odd number of
classes, or the boundary between the two central classes if there are an even number.

This balancing point may be established in more general terms by considering the geometric
progression to the base x* which has twice as many classes and utilizes the same class boundaries
as for base x, plus the geometric midpoint of each class (Table IV).
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TABLE VI

Class limits for geometric progressions of class width for six classes with a median of 10, starting at zero

Base I 2 3 4 5 6
o1 9-01 9°91 10°00 1001 10°01 10°01
02 8-06 9-68 10°00 10°06 10°08 10-08
03 7'19 9'35 10°00 10'19 1025 1027
o4 6-41 897 10°00 1041 10°57 10°64
05 5-71 857 10°00 10°71 11°07 11°25
06 5'10 816 10°00 11'10 1176 12°16
07 4'57 776 10°00 11'57 12°66 13°43
o8 410 7:38 10°00 12'10 1378 1512
09 3-69 701 10°00 12:69 15°11 17°29
10 3'33 6-67 10°00 1333 16:67 20°00
I'1 3'02 634 10°00 1402 1844 2331
12 275 6-04 10°00 14°75 20°44 2728
13 2'51 576 10°00 15°51 22°66 31:97
14 229 550 10°00 16-29 25°10 3744
15 211 526 10°00 17°11 2776 4375
16 194 5'04 10°00 17°94 3064 50°96
7 179 483 10:00 1879 33'73 50'13
1-8 166 464 10°00 19:66 37°04 68-32
19 154 4’45 10-00 20°54 4055 78:59
2:0 1°43 429 1000 21°43 4429 90-00
2'1 133 413 10°00 22'33 4823 102-61
22 124 398 10°00 2324 52:38 11648
23 116 3-84 10°00 2416 5674 13167
24 1°09 371 10°00 2509 61°31 14824
25 1-03 3'59 10°00 2603 66-09 166-25
26 097 347 10°00 2697 71°07 18576
27 091 337 10°00 27°91 7627 206°83
28 0-86 326 10°00 28-86 81-66 229°52
2:9 081 317 10°00 2981 8727 253-89
30 0'77 308 10°00 3077 9308 28000
31 073 2:99 1000 3173 99-09 30791
32 0-69 2:91 10°00 32°69 105°31 33768
33 0-66 283 10°00 33:66 111-73 369:37
34 063 2-76 1000 3463 118:36 40304
35 o-60 2-69 10°00 3560 125'19 43875
36 0'57 2:62 10°00 3657 132°22 47656
37 054 2'56 10°00 3754 139'46 516'53
3-8 0'52 2°49 10°00 3852 146-89 55872
39 0°50 2:44 1000 39'50 15454 603-19
40 048 2:38 10°00 4048 162-38 650-00

Two progressions are shown at approximately logarithmic scale:
(1) five classes with initial class width @, progressing to the base x
(ii) ten corresponding classes with initial class width 4, progressing to the base x*
P is the median or balancing point of the progression.
The range embraced by the progression is given by
c=4 c=9
Y ax*= Y bx"*=b(1-x")/(1-x?) O
c=0 c=0
From Table IV, it can be seen that if alternate class boundaries are to coincide, the relation-
ship
a=b(1+x?) ®
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TABLE VII

Class limits for geometric progressions of class width for seven classes with a median of 10, starting at zero

Base I 2 3 4 5 6 7
o1 9-00 9:90 9'99 10°00 1000 10°00 1000
o2 8-03 963 996 1002 10°03 10'04 10'04
03 711 924 9-88 1007 1013 1014 10°15
04 6-25 875 975 1016 1032 1038 10°40
[ 548 823 9-60 10-28 1063 1080 10-88
06 480 7:69 942 10°45 11-08 11°45 1167
07 421 715 9-21 10-66 11:67 12°37 12-87
o8 369 664 9'00 10-89 1240 13:61 14'58
09 324 6-16 879 11'15 1328 15'19 16:92
10 2-86 571 857 11°43 1429 17°14 2000
1 2'53 5:30 8:36 11'72 1542 19°'49 2396
12 2:24 493 815 1202 16-67 2224 28-93
13 199 458 795 1233 18-03 25'43 35'05
4 178 427 776 12:65 1949 29-06 42'47
1’5 1°60 399 758 12°96 21°04 3316 51°33
16 144 373 7°40 13-28 2269 3773 61-81
17 129 3'50 724 13°60 2442 4280 7406
18 1’17 328 708 1392 2622 4837 88-24
19 106 3'09 6:93 14°23 28°10 54'46 104'54
2'0 097 2:91 679 14'54 3006 61-08 123'14
2'1 0-89 2'75 665 1485 32'08 6825 144°20
2'2 081 2°60 652 15'16 3416 75°97 167-94
2'3 074 2°46 6-40 15°46 3631 8425 19452
2'4 069 2°33 6-28 15°76 3851 93°11 22416
25 0°63 221 617 1606 4077 102°57 257-05
2'6 0'59 2'11 606 16°35 43'09 112°62 293°40
2'7 054 201 596 16°64 45746 12329 33342
2-8 0'50 191 586 16°92 47°88 13458 37733
2'9 047 183 577 17:20 5036 14650 425°33
30 044 175 5°68 17:48 5288 159°07 47765
31 0°41 167 560 1775 55'45 172°30 534'52
32 038 160 5°51 18'03 58-06 186°18 5096°17
33 0°36 1'54 5°43 18-29 6072 20075 662°83
34 034 148 5'36 18:56 6343 216-00 73473
3’5 032 1°42 5°29 1882 66-18 231°94 812°12
36 030 1'37 522 19'08 68-97 248'59 89523
37 0-28 132 515 19°33 71°81 26596 984'33
3-8 026 127 508 1958 74°68 28405 107965
3'9 025 122 5:02 19-83 77:60 302-87 1181745
40 0'24 1118 496 2008 8055 322'44 1290°00

must hold. The appropriate ‘balancing point’ for the five-class series is the boundary, P, between
the fifth and sixth classes of the ten-class series: in general terms,
c=N-1 a c=N-1 a(l__xN/Z)
P= b /2 _ 7 c/2 e 4 9
c;o ¥ 14+xt c;o ¥ (1—-x) ©)
where N is the number of classes in the series of which P is the balancing point. By setting P
equal to the median of the observed frequency distribution, we can calculate the size of the
initial class:

c=0

a= P(1+x*)/<c =2N:_1x‘/2> = ?_(_IT_N%) (10)
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TABLE VIII

Class limits for geometric progressions of class width for eight classes with a median of 10, starting at zero

Base I 2 3 4 5 6 7 8
o1 9:00 9°90 9'99 10°00 10°00 10°00 10°00 10°00
o2 8-01 9-62 9'94 10°00 1001 10°02 10°02 10-02
03 7°06 917 9-81 10°00 1006 1007 10-08 10-08
04 6-16 8-62 961 10°00 1016 1022 1025 1026
05 533 8-00 9'33 10°00 10'33 10°50 10°58 10°63
06 460 7'35 9-01 10°00 10°60 1095 1117 1130
07 395 671 8-65 10°00 10°95 11-61 1208 12°40
o8 3'39 6-10 8-27 10°00 1139 12°50 1339 1410
09 2:91 552 7-88 10°00 11°91 13:62 1517 16-56
10 2'50 500 7'50 10°00 12°50 1500 17°50 20°00
11 2'15 452 713 10°00 1315 16-62 20°44 2464
12 1-86 4’10 6-78 10°00 13°86 1850 24°06 3074
13 162 372 645 10°00 1462 2062 28-42 38:56
1'4 1°41 338 6-14 10°00 15°41 22:98 3358 4842
15 1°23 308 5-85 10°00 16-23 2558 39-60 60-62
16 1-08 281 5°57 10°00 17-08 28-41 46°53 75'54
17 095 2'57 532 1000 17°05 3147 54'45 93'52
18 084 2:36 509 10°00 18:84 3476 6341 114-98
19 075 2'17 487 1000 19'75 3827 73°46 140°32
2'0 067 2:00 467 10°00 2067 4200 8467 170°00
21 o060 185 448 10°00 21-60 4595 9709 204°48
22 0'54 171 430 10°00 22'54 50°11 11078 24426
2'3 048 159 414 10°00 2348 5449 12581 289-84
2'4 0'44 148 399 10°00 2444 59-08 14222 34177
25 039 138 3-84 10°00 25°39 63'88 160-09 40062
26 036 129 371 10°00 2636 68-89 179'47 466-97
27 033 121 358 10°00 2733 7411 200°41 541°44
2-8 030 1’13 3'47 10'00 2830 7953 22298 62465
29 027 1°06 335 10°00 29°27 8516 247°24 71728
30 0°25 100 325 10°00 302§ 91-00 27325 820-00
31 023 094 315 1000 3123 97°04 301°06 933'52
32 021 089 306 10°00 32-21 10329 33074 105858
33 020 084 2'97 10-00 3320 109°74 36234 119592
34 o018 o-80 2-89 10°00 3418 116-40 39593 1346:33
35 017 075 2-81 10°00 3517 12325 431'56 1510°62
36 0’16 072 2'73 10°00 3616 130°32 46929 1689-61
37 014 068 2:66 10°00 37'14 137'58 500°19 188416
3-8 013 065 260 10°00 3813 14505 551°32 200513
39 013 062 2°53 1000 39'13 152'72 59572 2323°44
40 o'12 0'59 2'47 10°00 40°12 160°59 64247 2569°99

Hence instead of selecting two arbitrary parameters, we need only select one, the base x, in
addition to the number of classes. Tables V to VIII give such geometric progressions for five,
six, seven, and eight classes respectively, for a fixed median of 10 and for series starting at 0. Any
base between o-1 and 4-0 can be selected, and the series can be applied to any data set by multi-
plying the tabulated values by (median /10).

For example, if a prior decision has been taken to map six classes, and a data set has a median
of 4 and a maximum of 110, a series from Table V is selected and multiplied by o0-4. Base 3-0
thus gives the limits 0-0, 0:308, 1232, 4-000, 12:308, 37-232, 112-000, which just accommodates
the range of observed values. A higher base could be employed, but the highest class would then
be under-used; and if a much lower base were used, the maximum would fall beyond the strict
limit of the highest class, which is inelegant though sometimes practical in permitting greater
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differentiation among low values. Those who wish to use the maximum, despite its capricious
nature, can set this equal to the upper limit of the highest class (after multiplication by (median
/10)) and use the appropriate base established by interpolation. Equation (6) permits recalcula-
tion of class boundaries to any desired level of resolution. It is recommended, however, that for
presentation on a map legend, class limits should be rounded to the resolution of the data, or to
three or four significant digits for ratio data.

CLOSED PERCENTAGES

A further consideration is that geometric progressions are often applied to percentages, for example
of minority groups. In this case there is an upper limit of 100 per cent as well as a lower limit of
zero. These bounds can be used, together with the median (urless the median is o per cent),
to fix a geometric progression which covers not the actual, but the potential range of the data (o to
100 per cent). For a given number of classes, the lower the median, the higher the base to be
used, as is more appropriate for an increasingly J-shaped frequency distribution.
If there are N classes in the progression to base x, and therefore 2N in the progression to
base x*, both of which go from o to 100, equation (2) gives:
c=2N-1 a ¢€=2N-1 a 1—=xN a(l—xN)

100=0»b 2 = €2 = =
cz=0 X 1+x? CZ’O x 1+x¥1—x? 1—

(11

combined with equation (7), we have:
1000 =‘£— ' x¢l?
P= =g (12)
RIS
This is equivalent (A. Young and R. Gawley, pers. commun.) to the quadratic in #"/2;
Px"—100x"2+100—P = 0 (13)

with roots of x = 1 and x = (100-P)/P
Hence the appropriate base can be calculated directly from the median as

‘= (10(;)—P)2/N (14)

This is easily calculated, but by way of exemplification Table IX gives base, «, as a function
of (observed) median and of number of classes. Given x, the size of the initial class can be calcu-
lated from equation (10), and further class limits from equation (6): For example, if the median
of a variable which cannot exceed 100 per cent is 7-8 per cent, the appropriate base which gives
five classes is 2:686 (from Table IX), the first class is 7-8(1-2-686)/(1-2:6862'5) = 1-21497 (from
equation 10), and the class boundaries are o, 1-215, 4478, 13-244, 36788, 100:028 (from equa-
tion 6).

If rounding errors give an uppermost class limit, 4, slightly different from 100 per cent, this
can be corrected by rescaling each limit by 100/4. It is best not to interpolate in this Table, but to
use the equations and carry a sufficient number of decimal places.

Alternative systems for closed percentages involve equal intervals on trigonometric trans-
formations of the percentage scale, for example the arcsin (square root). If the 100 per cent range
is covered, the latter gives limits which are symmetrical about 50 per cent; for five classes, the
limits are 0-00, 955, 34'55, 65°45, 9045, and 100-00 per cent. These must 7ot be multiplied by a
constant.



IAN S.EVANS

120

1LE.1 10b.1 Seb.x SLY.1 Yes.1 £€gS.1 859.1 €SL.x 1881 gso.z Tzt ghLl.z LES.€ 06¢.§ V1§21 b.L
LLE.x gob.1 b zgb.1 1€§.1 26S.1 Lgg.1 SgL.1 S6g-1 9lo-z Stt.z ogl.z 06S.€ L6b.S 688-z1 z.L
zg€.1 b1 L¥y.x 6gt.1 6€S.1 009.1 8L9.1 LLL.x 606.1 Y60.2 89¢.z bi1g.z S¥9.€ 609.5 9g8z.£1 o.L
LgE.x gIv.1 LOLE: 96t.1 L¥S.1 019.1 889-1 6gL.1 +z6.1 €11z £6¢.z 6¥g.z zoL.€ LzL.§ goL.€1 89
£6€.1 Veb.a ogb.1 €oS.1 §SS.1 619.1 669.1 zog-1 o¥6.1 z€1.2 61v.z 988-2 z9L.€ 158.5 zS1.¥1 9.9
g6¢€.1 oth.1 Lo¥.1 115.1 Y9S.1 6z9.1 orl.r S18-1 956.1 zS1.2 Stb.z Vz6.z Veg.€ 0g6.5 Szg.¥1 V.9
Yob.1 Leb.x bLb.1 615.1 €LS.1 6€9.1 zzl.l 6zg.1 zLl6.1 fliz tly.z ¥96.z 06g.€ L11.9 6z1.51 z-9
orb.1 ehb.a zgb.1 LzS.1 zgS.1 6¥9.1 YeL.1 £bg.1 066.1 §61.2 Z0S.z 900.£ 856.€ 19z.9 Lg9.S1 0.9
Lib.x oSt.1 6gb.1 SES.1 16S.1 099.1 o¥L.1 8S8-I 800.2 g12.2 z€S.z oSo.€ ofo.¥ f1v.9 1bz.91 8-S
tzh.a LSY.1 Lé6v.1 bhS.1 109.1 1L9.1 6SL.1 €Lg.1 920.2 1hz.z +9S.z §60.€ 9o1.¥ VLS9 LSg.91 9.5
otb.1 Sob.x SoS.1 €551 ZI19.1 £89.1 €LL.X 6gg-1 g¥o.z 99z.z L6S.z 134 83 9g1.¥ SvL.g 615.L1 b.S
LEb.1 tLb.x b1§.1 €95.1 7Z9.1 §69.1 LgL.1 906.1 990.z zbz.z z€9.z +61.¢ olz.¥ Lz6.9 1€z.81 TS
St¥.1 1gb.1 €zS.1 €LS.1 V€9.1 goL.1 z0g.1 $z6.1 8802 61€.z 8992 Lyz.t (10 4 ozr.L 000.61 0.8
€SP, 6gb.1 z€5.1 £gS.1 S¥g.1 12L.1 8181 zh6.1 oII.Z gve.z LoL.z €ot.£ €Sy Lz€.L £€8.61 g-¥
19b.1 gov.1 b1 +6S.1 859.1 S€L.x Veg-1 296.1 Ver.z gLE.z LyL.z €9€.€ VSS.y ghs.L 6¢L.07 9.¥
69¥.1 goS.1 z§8.1 909.1 olg.1 oSL.1 15¢.1 zg6.1 6512 ort.z obL.z gzb.€ 199.¥ 98L.L Lzlaz 184
glb.a LiS.x €9S.1 8I19.1 ¥89.1 99L.1 698.1 Yoo.z Sgr.z .z 9€g8.z £6v.€ 9LLY £¥o.g 01g.27 (24
ggb-1 8zS.1 SLS.1 1£9.1 869.1 zgl.1 8881 920.2 f12.2 6LY.z V882 SoS.€ 66g.+ 0z€.g 0oo.tz o.¥
got.1 6€S.1 LgS.1 hg.1 Vil.x 00g.1 806.1 150.2 the.z LiSz 9£6.z zhg.€ 1£0.§ 229.§ 91£.5¢2 8-€
g0S.1 oSS.1 66S.1 859.1 oflL.1 QIQ-I 0£6.1 9Lo.z Slz.z gsS-z 266.2 SzL.€ SL1.§ 156.¢ gLL.gz 9-£
615.1 295.1 £19.1 €Lg.1 LyL.1 8€g.1 £56.1 bor.z 60t.z 709.Z 150.€ bi1g.€ ot€.§ 11€.6 z1b.gz b€
1€5.1 9LS.1 829.1 069.1 SoL.t 6Sg-1 8L6.1 €.z SYE. 6¥9.z 911.£ 116.€ 00S§.§ goL.6 oSz.of z.t
¥¥S.1 06S.1 £hg.1 LoL.1 SgL.x 1881 Yoo.z Sgr.z Sgt.z ool.z 9g1.€ Lio¥ 989.§ 6br.or  €€€.2€ o.€
gSs.1 S09.1 099.1 9zl.1 90g.1 906.1 £€o.z 00Z.2 Lzb.z SSL.z z9z.€ z€1.¥ z6g.S zbg.or  biL.bE 8-C
ELS.x 129.1 8L9.1 g¥L.1 6zg-1 z£6.1 Y902 Lez.z Yilyz 918.Z g¥e.€ ogz.¥ 121.9 961.11  zgb.LE 9.z
6gS.1 6€9.1 869.1 89L.1 bSg.1 296.1 g6o.z glz.z SzS.z £g8-z 6¢v.€ zob. ¥ LLE.g 9zg-11  Lgg.o¥ vz
Log.1 659.1 ozl.1 €6L.1 z88-1 +66.1 9fr1.z tzt.z zgS.z LS6.z zbs.€ z9S.¥ Lgg.9 6¥S.z1  SShb z.z
Lzg.1 089.1 vhL.1 0zg8.1 €16.1 6zo.z gliz SLE.z 9¥9.z obo.€ 659.€ VLY 000.L 16€.£1  000.6% 0.z
6¥9.1 boL.1 1LL.x 0Sg.1 L¥6.1 690.2 STz zth.z gil.z S€1.¢ €6L.€ 156.% 98¢.L vgEvr  99S.¥S 81
€Lg.1 z€L.1 108.1 Sgg-1 Lg6.1 S1r.z 6Lz.z gév.z 008.z rz.€ L¥6.€ §61.5 zhg.L 185.S1  00S.19 9.1
zol.1 €oL.1 9€g8-1 +z6.1 zfo.z Lo1.z btz bLS.z L6g-z zLE.€ of1.b bgb.S z6¢€.8 $So.L1  6zh.oL V.1
9tL.1 108.1 glg-1 1L6.1 980.Z ofz.z 91t.z $99.z z10.£ 9zS.€ oS¢y g€g-S VLo.6 9z6.g1  €€E.zg z.I
9LL.1 Stg.1 826.1 820.7 1§1.2 got.z LoS.z 9LLz ¥S1.€ LiL.€ 9z9.¥ V8.9 056.6 oob.1z  000.66 0.1
Lzg.1 206.1 166.1 660.z €€z zob.z 229.2 616.2 Lee.€ +96.€ Lgb.¥ LLg.9 ofr.1r  gg9g.bz  ooo.bz1 8.0
Y6g.1 LL6.1 SLo.z S61.7 ez z€5.z 6LL.z €11.€ 88S-€ got.¥ z6b.S 1zL.L 1Lgzr  P9r.of  Lgg.S91 9.0
£66.1 Lgo.z 661.2 LEEz goS.z Lzlz S10.€ gob.€ zL6.€ geg-¥ 16z.9 880-6 ogl.S1  6LS.6€  000.6bz V.0
YLliz obz.z bzh.z 109.Z 91g8.z ¥60.€ tob.€ LL6.€ gzl.¥ 006.5 z€6.L zoo.z1  g€€.zz  z16.z9  ©000.66% z.0
91 St 144 &1 zr II or 6 8 L 9 () 4 £ z  umpoly

422 434 F.11 01 2.0 Wof supspaws 40f sassvps I 01 z_fo 5135 4of ‘1423 43¢ 00T 10 pus 01 PauL4su0s suoiss43o4d 4awo0ds 4of sasvg

XI 37T9dV.L



121

of class intervals

won o,

The select.

z6z.1
S6z.1
662.1
zof.1
Sof.1
60€.1
z1€.1
91€.1
oz€.1
Vz€.1
Lz€.1
1£€.1
SeC.1
6€€.1
e.a
ghve.x
z8€.1
LS€.1
z9€.1
99¢€-1

Vi€
gI1€.1
12€.1
Sz€.1

£ee.1

obt.1
Ye.a
gve.1
zSE.1
9SE.1
09€.1
t9€.1
69€.1
€LE.X
gLE.x
zgt.1
Lgt.1
z6€.1
L6€.1
zob.1
Lob.1
zib.1
gIb.1
fzh.1
6z¥.1

1LE.1
SLE.1
6LE.1
Yge.1
8gt.1
£6€.1
L6€.1
zob.1
Lob.1
zib.1
Liv.1
zeh.1
gzh.a
e
6€Y.1

oS¥.1
9St.1
zgb.1
69¥.1

Lob.1
z1b.1
Liv.a
zzh.a
Lz¥.1
zeh.a
LEb.1
zhb.a
ghb.1
€Sh.a
6SY.1
Sob.1
1Ly.x
LLY.1
£gh.1
6gb.1
96¥.1
zoS.1
60S.1
91S5.1

zSh.1
LSY.1
zg¥.1
89¥.1
YLb.1
6LY.1
Sgb.1
16b.1
L6b.1
foS.1
o1S.1
915.1
£z8.1
ofS.1
LES.1
144D
15S.1
6SS.1
LoS.1
SLS.1

LoS.1
€181
615.1
§z8.1
z€5.1
gEs.1
S¥S.1
2SS
6SS.1
9951
€LS.1
1851
885-1
96S.1
Yog.1
£19.1
129.1
of9.1
6€9.1
gr9.1

LLS.1
+gS.1
16S.1
66S.1
909.1
Y19.1
2291
6z9.1
8£9-1
9¥9.1
¥89.1
£99.1
zlg.1
189.1
169.1
10l.1
o1l.1
1zl.1
1€L.1
zhl.1

(m02) X1 4719V.L

olg.1
8L9-1
Lgg.1
§69.1
YoL.1
€1Ll.1
fzl.1
z€L.1
zhl.1
zSL.1
zgl.1
zll.1
€gL.1
$6L.1
90g.I
Lig.x
6zg.1
zhg.1
VSg.1
Log.1

L6L.1
Log.1
Lig.x
828-1
6€g.1
0§81
298-1
€Lg.1
5881
g6g-1
016.1
£26.1
LE6.1
156.1
S96.1
6L6.1
+66.1
600.2
Szo.z
zho.z

186.1
¥66.1
goo.z
120.2
9fo.z
oSo.z
Sgo.z
0g0.Z
960.z
(33 ¥
g1z
Strz
Q1.2
0gI.T
661.2
g12.2
Lfz.z
LSz.z
glz.z
66z.z

ilz.z
6gz.z
got.z
Lzf.z
g¥t.z
Lotz
LgE.z
gob.z
ofh.z
Stz
SLyv.z
66v.2
x4 %4
gvS.e
bLS.z
009.z
829.2
959.z
989-2
91l.z

88L-z
918.7
gz
Yig.z
Y06.2
§€6.2
Lob.z
000.£
V€o0.€
690.€
So1.£
(14 8
ogI.£
61z.£
09z.£
Zof.€
9¥E.€
16€.€
geh.€
Lgb.€

eSLY

L16.¥
Y00.§
§60.5
681.9
Lgz.S

z.8



122 IAN S.EVANS

200

o
o
1

N
[e]
|

@®
o
|

Number of | X lkm grid squares

S
(o]
|

{

Py — W O o

@]
-

T T T [ I T T
[0) 0-05 010 o115 0-20 0-25 0-30 035 0-40 0-45
Proportion of households with I-O to I'5 persons per room

FIGURE 3 Histogram of proportion of households with 1 to 1'5 persons per room, for 1043 grid squares with eight
or more households in County Durham, 1971: a frequency distribution with a secondary mode at zero

There are, in fact, theoretical grounds for applying the arcsin (square root), otherwise known
as the angular, transformation to closed percentages. If the denominators vary little, this trans-
formation stabilizes the variance of ratios whose numerators follow a binomial distribution.
Simultaneously it reduces the positive skew of percentages with low means and the negative
skew of closed percentages with high means (approaching 100 per cent or 9o°), while having
little effect on those with means near 50 per cent (45°), which are usually unskewed. In reality,
the variability of denominators complicates matters, as do other spatial heterogeneities, but near-
normality and fairly constant variance is achieved for the closed percentage variables of age
structure, household size and crowding taken from the 1 km grid-square census data for Great
Britain, 1971. Hence the angular transformation permits standard-deviation class intervals to be
applied to many census variables. It is not successful for birthplace variables which have very
low mean percentages and remain skewed even after transformation: for these, geometric pro-
gressions are required, even though they are not perfect and leave several classes underutilized.
Likewise, for Great Britain, the percentages of population born in England, in Wales and in
Scotland are bimodal due to mixing of squares for the country involved with squares for the
other two countries; their standard deviations are excessively high relative to their means, and
equal class intervals are therefore used, as is also the case for some tenure variables.

MODES AT ZERO
Frequency distributions often have a secondary mode at zero (Fig. 3), making them significantly
bimodal. Standard deviation or range-based classes may pick out the bimodality because the
second lowest class may occur less often than those on either side. But the most elegant solution,
if zero is a frequent occurrence, is probably to treat zero as one class, separately, and to subdivide
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the remainder according to a precise system based on their frequency distribution. This is
especially useful when the median is zero.

Truly bimodal distributions may be mapped on either a range or a standard-deviation basis,
with some loss of mapping efficiency in that several classes may be of rare occurrence. If a small
number of classes is used, it is necessary to check that the incidence of class limits does not
disguise the bimodality; in this rare case, as suggested by the proponents of ‘natural breaks’, it is
best that one or more class boundaries should fall in the trough between the two modes.

CONCLUSION

In summary, a standard-deviation-based class interval with open highest and lowest classes is of
widest applicability, for all variables which can be transformed to essentially unimodal, sym-
metrical frequency distributions. For rectangular distributions, range division is best, while for
J-shaped distributions a geometric progression of class width is chosen. This is the combination
used for the maps in Dewdney and Rhind (1976), where a class size of one standard deviation
was most often used. In each case, information about the frequency distribution should be
implicit in the map. Hence it is necessary that careful analysis of frequency distributions should
precede mapping, and indeed precede any quantitative analysis.

Percentile-based classes or nested-mean limits may perhaps facilitate comparison of maps of
variables with different types of frequency distribution, but they must be interpreted very care-
fully in relation to the frequency distribution. Excgenous class boundaries provide useful
reference points, if available, but idiographic boundaries should almost never be used. These
considerations apply most strongly when a small number of classes is to be used. For propor-
tional symbolization, the ‘intervals’ used are effectively equal, preferably on a measurement
scale which gives a symmetrical frequency distribution.

To discuss class intervals solely in the context of choropleth maps is misleading; class
intervals are required for any type of graded symbolization, based on point, line or area symbols.
Such grading or classification is necessary if the class of individual symbols is to be accurately
perceived, but not if the aim is to present a synoptic, photograph-like picture of a distribution
(Tobler, 1973). However, technical limitations in both automated and manual cartography often
necessitate definition of a finite number of classes.
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