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ABSTRACT: Information visualization is an interdisciplinary research area in which cartographic 
efforts have mostly addressed the handling of geographic information. Some cartographers have 
recently become involved in attempts to extend geographic principles and cartographic techniques 
to the visualization of non-geographic information. This paper reports on current progress and future 
opportunities in this emerging research field commonly known as spatialization. The discussion is 
mainly devoted to the computational techniques that turn high-dimensional data into visualizations via 
processes of projection and transformation. It is argued that cartographically informed engagement 
of computationally intensive techniques can help to provide richer and less opaque information visu-
alizations. The discussion of spatialization methods is linked to another priority area of cartographic 
involvement, the development of theory and principles for cognitively plausible spatialization. The 
paper distinguishes two equally important sets of challenges for cartographic success in spatialization 
research. One is the recognition that there are distinct advantages to applying a cartographic perspective 
in information visualization. This requires our community to more thoroughly understand the essence 
of cartographic activity and to explore the implications of its metaphoric transfer to non-geographic 
domains. Another challenge lies in cartographers becoming a more integral part of the information 
visualization community and actively engaging its constituent research fields.
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Introduction

A number of principal approaches have 
been put forward during recent years 
to give people the means for making 

sense of large, complex, and often unstructured 
data repositories. The problems encountered are 
shared across many knowledge domains. This has 
led to the development of distinct cross-disciplin-
ary approaches, which draw on the accumulated 
knowledge of different academic traditions. For 
example, it would be hard to discuss current data-
mining efforts without considering the role of tra-
ditional statistical inference. Likewise, one cannot 
ignore the influence of the vector–space model 
(Salton 1968) on modern knowledge discovery 
tools. It is surprising then that while mapping 
metaphors have long been popular in information 
visualization, decades of cartographic research—
not to mention the broader cartographic tradi-
tion—have often been all but ignored (Card et al. 
1999). Arguably, cartographers and geographers 
should be faulted more than anyone else for failing 
to engage the interdisciplinary information visual-

André Skupin, Department of Geography, University of New 
Orleans New Orleans, LA 70148. Tel: (504) 280-7157; Fax: (504) 
280-1123. E-mail: <askupin@uno.edu>. Sara Irina Fabrikant, 
Department of Geography, University of California, Santa Barbara, 
CA 93106. Tel: (805) 893-5305.  Fax: (805) 893-3146. E-mail: 
<sara@geog.ucsb.edu>.

Cartography and Geographic Information Science, Vol. 30, No .2, 2003, pp. 95-115

ization community by demonstrating the relevance 
of their accumulated expertise. While computer 
scientists have been the most active contributors 
to information visualization research, and the 
institutional infrastructure is dominated by IEEE 
and ACM1 activities, information visualization 
has remained an open, inclusive, interdisciplinary 
research activity. 

Among cartographic research into non-geographic 
information visualization one can distinguish two 
strands of activities. Some cartographers are engaged 
in the interpretation and transformation of specific 
computational approaches in the light of cartographic 
tradition and informed by geographic information 
science (Skupin 2000, 2002a; Skupin and Buttenfield 
1996). In contrast to this computational perspective, 
the cognitive approach emphasizes the user side of 

 IEEE = Institute of Electrical and Electronics Engineers; ACM = Association for Computing Machinery.
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spatialization. It aims at providing visualizations that 
function in accordance with what we know, or would 
like to know, about human perception and cognition 
of geographic space and its visual representations 
(Fabrikant 2001a; Fabrikant and Buttenfield 2001). 
The two perspectives are complementary, with geo-
graphic information science providing for a synthesis 
that matches geometric primitives against the cogni-
tive categories that underlie our understanding and 
representation of space (Couclelis 1998; Fabrikant 
and Buttenfield 2001; Skupin 2002b). 

Some of the influences behind cartographic spatial-
ization are distinctly geographic; others are shared 
with a number of fields, such as cognitive science, 
linguistics, information science, and human–computer 
interaction (HCI). Within geographic information 
science, spatialization is most closely associated with 
the geographic visualization rubric (Buckley et al. 
2000), but it also shares some common interests and 
methods with geographic data mining and knowledge 
discovery (Miller and Han 2001). Among specific 
geographic influences, the First Law of Geography 
(Tobler 1970) is particularly noteworthy. It boils 
down to the observation that everything is related 
to everything else, but closer things are more closely 
related than distant things. This principle played 
a role in the choice of multidimensional scaling for 
text visualization (Skupin and Buttenfield 1996), and 
it inspired ongoing efforts to uncover the cogni-
tive underpinnings of spatialization (Fabrikant et al. 
2002). Apart from visual depictions that one would 
now rightfully call spatializations (Goodchild and 
Janelle 1988; Li 1998) there are related efforts by 
geographers dealing with the mapping of cyberspace 
(Dodge and Kitchin 2001), investigation of specific 
methods commonly used for spatialization (Lloyd 
2000), and use of spatialization as an alternative 
tool for analyzing human subject tests (Mark et al. 
2001). 

This paper gives an overview of a number of issues 
relevant to a successful engagement of information 
visualization by cartographers. It argues that cartog-
raphers can contribute to spatialization efforts at all 
levels, from making an informed choice among the 
various dimensionality reduction techniques to the 
development of cognitively plausible, interactive 
visualizations. 

Data for Spatialization
Information visualization is potentially applicable 
to a large variety of data. However, depending 
on the characteristics of a data set, very differ-
ent approaches can or must be pursued in order 
to turn raw source data into a visual form. The 

degree to which structural information is explicitly 
encoded is one of the dominant aspects influenc-
ing the choice of pre-visualization manipulations. 
There are considerable differences in how struc-
tured, unstructured, and semi-structured data may 
have to be processed before visualization tech-
niques can be applied. This is significant enough 
to distinguish data types accordingly.

Structured Data
Creators of traditional cartographic maps and 
modern geographic visualizations (as well as those 
engaged in the broader area known as scientific 
visualization) are familiar with the use of structured 
data that are stored in the form of database tables. 
These contain distinct observations for a given 
number of variables. No guesswork is necessary as 
to where one observation ends and another begins, 
or which values are associated with which variables. 
Structured data are accessible to spatialization rou-
tines in a fairly direct manner. Standard statistical 
preprocessing methods can also be applied, such 
as scatter plots or multidimensional scaling (MDS) 
layouts. Even geographic data (for example, mul-
tivariate census data) can be spatialized in order 
to explore characteristics of geographic objects in 
high-dimensional attribute space rather than geo-
graphic space.

Unstructured Data
Many data that are of particular interest to infor-
mation visualization have for the longest time 
only existed in an unstructured form, making 
their computational analysis a difficult proposi-
tion. Free-form text is a prime example of this. 
Most Web page content falls into this category. 
Hypertext can be analyzed and ultimately visual-
ized according to its link structure (Girardin 1995), 
and similar analysis can be performed whenever 
explicit or quasi-explicit links between documents 
are encountered, for example in co-citation analy-
sis (Chen and Paul 2001). However, content analysis 
depends on being able to further dissect elements 
within documents. Dealing with Web page con-
tent one faces the same hurdles as with most text 
content published in electronic form, such as con-
ference proceedings. Much preprocessing is neces-
sary before such data are suitable for computation 
of distance measures and the like. One needs to 
extract meaning-bearing elements from the text 
as well as assemble document metadata for fur-
ther analysis. The necessary analytical approaches 
range from long-established information retrieval 
principles (Salton 1968) to methods for automatic 
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concept extraction (Chen et al. 1994). Much of 
the spatialization work done by cartographers 
has focused on using text data (Fabrikant 2000; 
Fabrikant and Buttenfield 2001; Skupin 2002a; 
Skupin and Buttenfield 1996, 1997).

Semistructured Data
In recent years, an approach has emerged that 
provides mechanisms for making data self-descrip-
tive in order to better support data exchange and 
automated analysis (Suciu 1998). Known as semis-
tructured data, this approach employs schemas that 
act as models describing how data are structured. For 
example, in the semistructured storage of conference 
abstracts, one could divide individual abstracts into 
such components as the title, author information, 
abstract text, and keywords. The resulting data set 
would include information about its structure. In the 
spatialization context, this makes it easier to extract 
data from which high-dimensional distance models 
can be computed. The extensible markup language 
(XML) is by far the most prominent medium for 
implementing such data.

In the future, semistructured data will become the 
main form of source data when dealing with such 
diverse inputs as conference abstracts, news articles, 
or bibliographic entries. Legacy unstructured data will 
have to be converted into semistructured form, but 
capture of new data will be increasingly streamlined. 
For example, visualizing the geographic knowledge 
domain on the basis of conference abstracts is easier 
when participants of the annual AAG meeting submit 
papers through a form-based interface, as has recently 
been the case. Upon filling in the online submission 
form, its content can immediately be channeled into 
the appropriate structural elements, in accordance 
with a given schema.

Methods for Dimensionality
 Reduction and Spatial Layout

Dimensionality reduction represents one of the 
most challenging tasks in any spatialization pro-
cedure. Cartographers are keenly aware of some 
of the issues that arise in this process, as reduc-
tion from a curved two-dimensional surface to a 
2D plane is the basis of most cartographic depic-
tions. They have developed guidelines for match-
ing user requirements with projection types and 
devised numerous methods for communicating 
the inevitable distortions (Mulcahy and Clarke 
2001). Deriving a suitable low-dimensional geo-
metric configuration from a high-dimensional 
data set is likely to increase in difficulty with the 

increase of dimensions involved in the transforma-
tion process. Database candidates for spatializa-
tion may contain just a handful of dimensions, for 
instance data containing the results of cognitive 
experiments (see Mark et al. 2001 for an example), 
or several hundred dimensions when dealing with 
large archives of indexed text documents. All map 
projections can in principle be reduced to a com-
putation involving a function of latitude (φ) and 
longitude (λ), some assumption made about the 
Earth’s size (R), and the desired scale (S):

  X = S * R* f(φ, λ)

  Y = S * R* f(φ, λ)

The principles and algorithmic implementations 
for dimensionality reduction in spatialization are 
far more varied than this. In-depth understanding 
of one particular projection technique, e.g., mul-
tidimensional scaling, does not equip a researcher 
with the necessary understanding of the workings 
of another technique, e.g., self-organizing maps. 
Another major difference of spatialization compared 
to map-projection methods is that a feature’s geo-
graphic dimensions (e.g. longitude, latitude and 
altitude, or width, length and depth) are physical 
properties established by a chosen frame of reference. 
These intrinsic dimensions have a meaningful order 
(e.g., altitude cannot be substituted by longitude), 
thus determining explicitly any feature’s absolute 
position on the Earth’s surface. In spatialization, 
however, dimensions are rarely intrinsically linked 
to objects, but are extrinsically assigned to establish 
relative locational relationships to other objects in 
the spatialization.

The task of choosing a spatialization technique 
is made harder by the fact that each method 
requires preparatory computations specific to the 
chosen technique in order to deal with its own set 
of peculiarities. Techniques can differ dramatically 
in terms of such desirable properties as scalability, 
incrementality, and robustness. For example, the 
self-organizing map (SOM) method is applicable to 
data sets containing very large numbers of observa-
tions and/or dimensions, while multidimensional 
scaling (MDS) is of little use for such data. All this 
makes it challenging to objectively compare differ-
ent spatialization methodologies.

What follows is a discussion of some of the more 
popular methods employed in spatialization. While 
dimensionality reduction is an appropriate collective 
term for such methods as multidimensional scal-
ing or self-organizing maps, some of the discussed 
methods should rather be referred to as spatial layout 
techniques. Such techniques are less concerned with 
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the preservation of high-dimensional proximities 
and more with an optimal use of available display 
space towards interactive use and reduced graphic 
complexity. Tree maps and some spring model 
implementations fall into this category.

Multidimensional Scaling
Multidimensional scaling (MDS) has histori-
cally been among the most popular methods for 
dimensionality reduction. A large number of varia-
tions have been proposed over the years, includ-
ing metric and non-metric approaches (Kruskal 
and Wish 1978). The most commonly used MDS 
implementation is ALSCAL (Alternating Least 
Squares Scaling), which is the underlying method 
for MDS encountered in some statistical packages, 
such as SPSS.

Immediate input to MDS is always a dissimilar-
ity matrix computed from a set of observations. 
Depending on the proximity measure chosen for 
the computation of this matrix, very different MDS 
solutions will result (Skupin and Buttenfield 1996). 
Throughout the preprocessing and scaling stages, 
input observations are treated as discrete objects 
existing in an n-dimensional vector space, where n 
represents the number of the perceived or existing 
attributes of all objects in this space. An MDS solution 
is a geometric configuration with low-dimensional 
coordinates for each individual object. In other words, 
an MDS point configuration is a spatial projection of 
the object’s attributes, and when depicted, it can be 
called a map. Almost without exception, the derived 
point configurations are displayed with point symbols 
and associated labels (Figure 1). 

It is rare to find solutions that process a configuration 
of MDS points further into interpolated surfaces or 
other derived forms. Rooted in psychometric research, 
and typically comprising input data of fewer than 
a couple dozen dimensions, MDS solutions have 
traditionally been derived in two dimensions for 
easy graphic depiction. However, technically, the 
method can be used to create solutions of higher 
dimensionality. For example, ALSCAL will allow 
a choice of one to six dimensions for the output 
configuration. 

Multidimensional scaling was also an early favor-
ite in spatializations done by cartographers and 
geographers. Tobler (1973) made early comments 
regarding the relationship between MDS and survey 
approaches to trilateration. Goodchild and Janelle 
(1988) used MDS in their extensive analysis of aca-
demic geography to map out research areas within 
the discipline. Skupin and Buttenfield (1996, 1997) 
used MDS to visualize news articles and noted the 
affinity of similarity- based mapping to the First Law 

of Geography (Tobler 1970). Cartographers have 
also used MDS to visualize the content of Web pages 
(Skupin 1998) and online catalog entries (Fabrikant 
and Buttenfield 2001). Outside of geography, the 
SPIRE (Spatial Paradigm for Information Retrieval 
and Exploration) project at the Pacific Northwest 
National Laboratory, and particularly its ThemeScapes 
product, received a great deal of attention (Wise et 
al. 1995). The core of its approach to dimensionality 
reduction is a variation on the MDS theme called the 
Anchored Least Stress (ALS) method, which aims at 
reducing the computational complexity of traditional 
MDS-based text visualizations (Wise 1999).

Multidimensional scaling remains a viable method 
for many data sets that have a limited number of 
objects and attributes. A number of issues could be 
further investigated using a cartographic approach. 
For example, virtually non-existent are visualizations 
of the distortions introduced by MDS. In other 
words, it is difficult to assess the degree to which 
high-dimensional proximities are preserved in a 
low-dimensional, geometric configuration. This is 
also the case for most of the other spatialization 
methods discussed in this paper. Another worthwhile 
cartographic approach relates to the visualization of 
locational object uncertainty due to input parameter 
modifications during the pre-processing stages and 
for alternative MDS computations. In dealing with 
uncertainty inherent in MDS and other methods, 
valuable inspiration may be derived from previous 
work in GIScience and geovisualization on uncer-

Figure 1. Typical visualization based on multidimensional 
scaling. Thirty-one terms elicited from human subjects 
during an investigation of geographic categories are 
visualized as a point configuration. The input data set 
contained five variables. (Mark et al. 2001).
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tainty modeling (e.g., Zhang and Goodchild 2002) 
and uncertainty portrayal (e.g., Van der Wel et al. 
1994; Clarke and Teague 2000). 

Spring Models
Underlying the spring model is a conceptualiza-
tion of objects as nodes in a planar graph, with 
relationships between objects manifested as spring-
like forces (Eades 1984; Kamada and Kawai 1989). 
As the method attempts to arrange nodes in a two- 
or three-dimensional space, the strength of springs 
gets adjusted through an iterative process, leading 
to an oscillation of nodes towards a minimum-
energy configuration. In its simplest form, a spring 
model configuration can be constructed by map-
ping n-dimensional observations with respect to n 
fixed origins as shown in schematic form in Figure 
2. However, the term spring model is collectively 
used for a heterogeneous group of techniques that 
are all based on force-directed placement.

Traditional graph drawing provided a major initial 
impetus to the development of spring models, and 
graphic drawing remains their major application. 
Graph drawing has traditionally been employed to 
depict microchip connections, software engineer-
ing diagrams, or any type of computing networks. 
Its goal is to optimize drawing criteria in order to 
develop an aesthetically pleasing, well structured 
graph with nodes and links in two dimensions. Much 
attention is paid to prevent link crossings and to 

ensure optimal use of available display space, even-
ness of edge lengths, and other quantifiable aesthetic 
layout criteria. 

Alternatively, spring models can be applied to 
proximity data, such as the semantic similarity of 
journal papers. In this case, spring forces are not 
derived from a pre-determined object topology but 
emerge from the analysis of pair-wise object simi-
larities. In this form, spring models are a valuable 
alternative to MDS, particularly when dealing with 
very large and high-dimensional databases (Chalmers 
1996), because spring models are computationally 
more efficient than multidimensional scaling. The 
resulting two-dimensional geometric configurations 
consist of individual point locations, which can be 
visualized accordingly. 

Spring models, similar to MDS, can be combined 
with other types of data reduction methods (e.g., 
clustering, network scaling) to generate richer spa-
tial representations. For example, Fabrikant (2001b) 
used a spring model to create a two-dimensional 
point configuration of Reuters news stories and 
then combined it with a pathfinder network scal-
ing solution to depict a semantic flow map with 
news stories represented as nodes in the network 
(see Figure 3).

Pathfinder Network Scaling
Pathfinder scaling, also known as pathfinder 
network scaling (PFN), is a popular method for 
depicting edges or links between nodes of a graph 
representation (Schvaneveldt 1990). Starting 
from a proximity measure between nodes, PFN 
solutions aim to uncover the most essential links 
among the nodes in a network (Chen and Paul 
2001). The method is essentially based on a mini-
mum spanning tree algorithm that aims at deriv-
ing, from input proximities, a minimum spanning 
tree (of many possible ones), preserving the most 
salient links between the nodes. The resulting 
visualizations combine the complete set of nodes 
with a limited number of links, aiming to guide 
the human eye to more easily recognize important 
node relationships (Figure 3). 

The depiction of semistructured data with node-
link representations is distinctly different from many 
MDS or spring model approaches in which point 
locations alone provide visual cues of the inherent 
data relationships. The PFN approach has been 
especially popular among information scientists 
working on knowledge domain visualizations, for 
example with author co-citation analysis (Chen and 
Paul 2001). As mentioned earlier, the network topol-
ogy created by PFNs can be projected onto existing 
two-dimensional solutions derived from other kinds 

Figure 2. In a spring model, the location of individual 
observations is established through modeling of spring-
like forces. Schematically shown here is the mapping of 
a single observation based on four variables, each with its 
own fixed origin.
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of point scaling methods. Recent empirical findings 
suggest that the provision of explicit visual links 
between point locations alters the perception and 
cognition of semantic proximities in 2D informa-
tion spaces (Fabrikant et al. 2002), but one should 
use pathfinder scaling to this end only if the source 
data and the employed distance measures warrant 
such strong visual messages.

Self-Organizing Maps
The self-organizing map (SOM) method (Kohonen 
1995) has received much attention in recent years, 

with applications as diverse as medical imaging, 
voice recognition, stock market analysis, and even 
artistic installations in museums (Legrady and 
Honkela 2002). Some uses of SOM now popular in 
cartographic spatialization, such as text document 
visualization, were first demonstrated a decade ago 
(Lin 1992). In general, geographic SOM applica-
tions tend to concentrate on data classification 
rather than information visualization tasks. This is 
somewhat surprising, given that its predominantly 
two-dimensional graphic form (as shown in Figure 
4) lends itself to easy integration and visualization 

Figure 3. Pathfinder network scaling provides explicit representation of dominant semantic proximity relationships between 
individual documents in a high-dimensional Reuters news archive (redrawn from Fabrikant 2001b).

Figure 4. A self-organizing map (SOM) is typically laid out as a two-dimensional artificial neural network. The regular spacing 
of neurons lends itself to raster visualization.
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with GIS, taking advantage of available spatial 
data structures and spatial analytical capability. 

For example, interactive side-by-side display of 
census data in geographic space and SOM attribute 
space has been demonstrated (Li 1998). Integration 
of large SOMs (i.e., at least several hundred neu-
rons) into GIS is possible (Skupin 2000, 2002a) but 
tends to rely on very loose coupling of GIS and SOM 
components, which hinders efficient implementation. 
Closer integration of geographic software and SOM 
components has long remained elusive, but this may 
become easier with the availability of such visualiza-
tion environments as GeoVISTA Studio (Gahegan 
et al. 2002), which provides JavaBeans for SOM 
training and display. Compared to other methods, 
SOMs scale up far better for very large and/or very 
high-dimensional data sets. While training times of 
up to six weeks on a six-processor system may, at 
first glance, seem excessive (and certainly preclude 
interactive use), one would be hard pressed to find 
other methods able to deal with data sets of several 
million documents (Kohonen et al. 1999).

The SOM method is likely to remain an important 
projection method in the future, providing cartogra-
phers with interesting representational challenges. A 
number of SOM visualization techniques have been 
proposed. One can distinguish between two major 
visualization categories. First, the trained SOM itself 
can be shown. Examples for this are visualizations of 
component layers, high-dimensional neuron clusters, 
and visual depictions of the distortions caused by 
SOM training. Commercial off-the-shelf GIS software 
is suitable for visualizing a trained, two-dimensional 
SOM. The regular lattice of neurons suggests the use 
of a raster data structure (Skupin 2002b). However, 

hexagonal neighborhoods, in which each neuron is 
connected to six neighbors, have traditionally been 
used more frequently than square neighborhoods. 
Lacking support for hexagonal pixels means that 
individual neurons are best represented as polygons 
in GIS, as shown in Figure 4. 

The second principal approach, and one that is 
more akin to typical neural network applications, 
uses a trained SOM as the basis for visualizing a 
set of observations that may or may not have been 
part of the original training data set. This typically 
takes the form of point visualizations, since indi-
vidual input observations become associated with 
individual neurons from which coordinate pairs 
can be derived.  

The relevance of GIScience expertise is not 
restricted to visualization issues. There are several 
interesting research questions to pursue in the area 
of spatial data models, generalization, and error 
assessment.

Tree Maps
Among the techniques discussed here, the tree map 
method (Johnson and Shneiderman 1991) is argu-
ably the one that is most widely known and popular 
outside the scientific community. Variations of the 
tree map method appear, typically under colorful 
names, in various commercial information visualiza-
tion applications on the Internet. Popular examples 
are the mapping of Web space at “antarcti.ca” or the 
daily updated stock market map at “money.com.”

The success of the tree map method can largely 
be explained by its ability to express hierarchically 
organized data through map-like visual structures, 

Figure 5. The treemap method takes a tree structure as input to tessellate a given display area. Area sizes are frequently 
varied in accordance with numeric attributes.
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leading to depictions that combine the visual attrac-
tiveness of maps with the cognitively useful orga-
nization provided by a nested hierarchy. Another 
important factor for the success of tree maps is 
that they are technically less difficult to implement 
than the other techniques discussed in this paper. 
Human subject evaluations of tree maps have not 
yet provided sufficient empirical evidence on how 
people understand the invoked metaphorical dis-
tance-similarity mapping. As with other methods, 
insights into the usability of spatialized displays from 
a human–computer interaction perspective are only 
slowly emerging (Chen and Czerwinski 2000). 

Tree maps are generally not used to visually 
uncover high-dimensional structures and relation-
ships. Instead, existing tree structures are the input to 
tree-map algorithms, depicted in 2D. The tree map 
method is thus only applicable when a hierarchical 
structure has already been established. Examples 
are the directory structure of computer operating 
systems or the Web hierarchy established through the 
Open Directory Project (ODP). Tree maps tessellate 
a given display space, such that individual tree nodes 
occupy a certain proportion of the space based on 
their position and/or importance in the data hier-
archy. Tree maps behave similar to area cartograms 
in that polygon size is often scaled to the magnitude 
of quantitative node attributes (Figure 5). 

In an interactive setting, “scale change” is initiated 
by clicking on a particular polygon representing an 
information node in the tree. The tree portion below 
the selected node is visualized, and so forth. While 

this sounds like a reasonable form of interaction, dif-
ferent tree-map implementations vary significantly 
in how scale changes are computationally imple-
mented and visually conveyed. In particular, the 
relationship between different zoom levels is often 
implemented in surprisingly un-cartographic ways, 
as seen with the WebMap system (www.webmap.com). 
In that implementation, the tree map consists of 
the usual tessellation into a number of polygons, 
plus a terrain-like interpolation visualized through 
hypsometric tinting. Clicking on a polygon leads to 
an expanded view, which again consists of polygons 
and terrain interpolation. However, each of the nodes 
in the tree is visualized in isolation from all the 
other nodes. Each terrain view is based on its own 
isolated interpolation, which leads to the curious 
effect that clicking on neighboring polygons will 
result in terrain views that do not transition fluidly 
at their imaginary common boundary.

Other Techniques
The list of techniques used for dimensionality 
reduction and spatial layout is too extensive to 
be comprehensively discussed in this paper. For 
example, one could easily include such traditional 
methods as principal components analysis (PCA), 
principal coordinate analysis (PCoA), correspon-
dence analysis (CA), projection pursuit, or such 
newer developments as Isomap (Tenenbaum et 
al. 2000). Most of these techniques (as well as 
those discussed earlier) have evolved from dis-

Figure 6. Illustrating the effects of neural network training through cartographic means. Locations outside of the landmasses 
were deliberately excluded from training, which leads to a contraction of the corresponding space portions. Areas near the 
edge of this SOM are also significantly distorted.
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tinct academic traditions. For example, MDS has 
an unmistakable psychometric lineage, while the 
closely related technique known as Sammon map-
ping (Sammon 1969) is more associated with an 
engineering tradition. As a result, terminological 
and methodological distinctions between Sammon 
mapping and MDS are not always clear. Such 
difficulty of comparing and classifying different 
methods is common when one is working in an 
evolving, interdisciplinary field such as informa-
tion visualization. 

Through the Eyes of GIScience
A GIScience-based approach can add a new 
dimension to the discussion of different scaling 
techniques. One could distinguish projection 
methods according to their underlying concep-
tualizations (e.g., discrete objects vs. continuous 
fields) and employed geometric primitives (e.g., 
points vs. polygons) (Skupin 2002b). This helps 
to explain why certain scaling techniques tend to 
be associated with particular visualization forms. 
For example, MDS employs a conceptualization 
of high-dimensional space as being mostly empty, 
except for the existence of a finite number of 

discrete information objects. This object concep-
tualization is felt throughout the stages of typical 
MDS analyses. In contrast, the SOM method con-
ceptualizes input observations as samples from a 
high-dimensional, continuous, information field. 
The implications of this conceptualization propagate 
through SOM-based information processing and are 
manifested as raster-like visualizations to the user.

Regardless of the conceptualization approach, 
any projection from a high-dimensional informa-
tion space to a low-dimensional representational 
space always leads to distortions, either through 
space contraction or expansion. Knowledge of the 
distortion characteristics of the various dimensionality 
reduction methods ought to influence the choice of a 
particular technique for a specific information need. 
However, not only are comparative analyses of the 
distortion characteristics of different methods rare, 
but graphic representation of distortions in spatial-
ization is also remarkably absent. Cartographers and 
GIScientists can take on a leading role here, by draw-
ing on cartographic approaches to the investigation 
of map distortions, inspired by Tissot indicatrices, 
displacement vectors, and other existing methods 
(Tobler and Wineberg 1971; Tobler 1976; Mulcahy 
and Clarke 2001).  

Figure 7. Results of the human subject test visualized with a 5-by-5 neuron SOM. Five component planes or layers of the 
SOM are shown. Each component plane corresponds to one input variable. Labels indicate the terms associated with each 
neuron.
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There is also place for critical reflection on existing 
distortion depiction methods, such as the popular 
U-matrix visualization method for SOMs (Ultsch 
1993). While it is billed as a cluster visualization 
technique, it actually visualizes contraction and 
expansion effects of SOM training, i.e., the distor-
tion resulting from fitting object relationships in 
high-dimensional space into only two dimensions 
using a topology-preserving approach.

Cartographic approaches can also be applied to 
graphically convey effects in the solution space, when 
choosing particular techniques or when modifying 
pre-processing parameters and input settings. For 
example, with the SOM method, one could visually 
demonstrate the importance of including represen-
tative samples in the training of an artificial neural 
network. Figure 6 shows a world map based on a 
SOM whose training data set only contained points 
inside the landmasses. Topological relationships of 
connected countries are preserved, but regions without 
training data (i.e., the oceans) undergo contraction. 
As a result, the Atlantic Ocean becomes a mere stream 
separating the Americas from Europe and Africa. 

Resolution dependency, another peculiarity associ-
ated with the SOM method, can also be illustrated 
with cartographic means. In Figure 6, SOM granu-
larity is such that land areas immediately bordering 
the Straits of Gibraltar become associated with the 
same neuron. This prevents the Mediterranean Sea 
(shaded in gray like the landmasses) from being 
connected to the Atlantic Ocean. 

On the Role of Transformation
Unless otherwise noted, all the visual examples in 
this section were derived from a human subject 
test dealing with geographic ontology. Refer to 
Mark et al. (2001) for a detailed description of the 
experiment and its implications. The empirical 
results consist of 31 terms that were elicited with 
respect to five differently formed test questions.

Design decisions during information visualization 
tend to be intimately linked to the characteristics 
of the projection technique. Thus, discrete objects 
entering an MDS procedure will usually lead to 
point visualizations (see Figure 1), while the field 
conceptualization of SOM leads to raster-type visu-
alizations (Figure 7). 

There are a number of reasons why one may want to 
further transform the prototypical displays associated 
with certain projection techniques. It may be neces-
sary to perform geometric transformations in order 
to enable certain visualization methods that may be 
required by a specific information need. For example, 
terrain-type visualization might require interpolation 

based on some carefully chosen attribute. Assuming 
that one is dealing with two-dimensional input geom-
etry, the full complement of data transformations 
in the GIScience arsenal can become relevant here. 
Once the desired geometric model is established, 
the considerations and methods of traditional car-
tographic design and contemporary geographic 
visualization are also directly applicable. 

Visualization Method
The most obvious need for transforming a geomet-
ric configuration produced by a chosen dimension-
ality reduction and spatial layout technique derives 
from the data model requirements of the visualiza-
tion environment used for data exploration. For 
example, if discrete point symbols are required 
for a particular information need, the question is 
how can one derive a point configuration from a 
trained SOM that would typically be visualized as a 
surface? In short, one has to find the neuron that 
matches a given object closest in high-dimensional 
attribute space and use that neuron’s low-dimen-
sional location for depiction. The specifics of this 
transformation procedure are dependent on the 
desired SOM resolution. With a high-resolution 
SOM, neuron locations may be directly usable. 
Figure 8 shows a point visualization derived from a 
30x30 neuron lattice comprising 900 neurons; this 

Figure 8. Results of the human subject test visualized 
on the basis of a 30-by-30 neuron SOM. Due to the large 
number of neurons, each captures not more than one term, 
allowing the creation of a unique point location for each 
of the 31 terms. This makes comparison with the MDS 
configuration easier.
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is more than enough to determine a unique loca-
tion for each of the 31 input objects.

With a different object-to-neuron ratio, further 
transformations may be necessary, since a single 
neuron might become associated with multiple 
objects. Skupin (2002a) describes the mapping of 
2220 objects using a 60x80 neuron lattice (4800 
neurons). Unique point locations are determined for 
each spatialized object and placed randomly within 
the polygon associated with the closest matching 
neurons.

These and other space transformations inspired by 
GIScience are also useful for supporting meaning-
ful visual comparison between different projection 
methods. For example, they can help to compare 
MDS solutions (Figure 1) to those created by the 
SOM method (Figure 8). Once two spatializations are 
in a common representational framework, includ-
ing geometric form and symbolization, the results 
of each procedure can be visually inspected and 
compared (Figure 9).

Some objects in the MDS solution are part of dense 
clusters, making it hard to distinguish them in both 
the labeled point map (Figure 1) and the pie chart 
map (Figure 9). Point features in the SOM-based 
solution are spread out more evenly across the dis-
play area (Figures 8 and 9). These differences can be 
explained by the fact that MDS attempts to preserve 
input proximities in output distance relationships, 
while SOM is more focused on retaining topologi-
cal relationships. As a result, empty attribute space 
portions in the SOM are contracted, potentially 
causing quite dissimilar objects to be positioned in 
close proximity, as seen near the left edge of Figure 
8 (e.g., “street” and “lake”).

Preliminary empirical results (Fabrikant et al. 2002) 
indicate that explicit linear connections (links) or 
linear separations (boundaries) help modify poten-
tially problematic human perception and cognition 
issues of straight-line (metric) distance relationships 
as implied by the First Law of Geography. Given the 
inevitable distortions encountered when projecting 
high-dimensional data into low-dimensional rep-
resentations, it then appears important to mitigate 
distortion artifacts that may lead a user to false 
conclusions, by providing additional visual cues. 

For example, as shown in Figures 10 and 11, one 
could combine a complete hierarchical clustering 
solution with a low-dimensional point configura-
tion. Point objects in Figure 11 are linked in the 
two-dimensional display space according to their 
position in a hierarchical clustering tree (Figure 
10). Line thickness corresponds to different prox-
imity levels at which objects merge to form clusters 
in high-dimensional space. Thicker lines indicate 
tighter high-dimensional clusters that are merged 
at lower levels in the clustering tree.

Space transformation approaches and subsequent 
visualization of different spatialization solutions follow 
the call by the geovisualization community to gener-
ate many graphic realizations for a single data set to 
support abductive knowledge discovery, rather than 
concentrating on communicating a message with 

“the single optimal 2D map” (MacEachren and Kraak 
2001). For example, three-dimensional landscape 
visualization methods based on raster interpola-
tion are possible transformation techniques when 
an additional (understood) attribute dimension is 
added to an existing 2D point configuration. The 
choice of a particular interpolation method may be 

Figure 9. Two visualizations based on the MDS and SOM configurations shown previously. Pie charts are constructed from 
the same five variables used to create both configurations. Visual similarity of charts corresponds to geometric proximity. 
Note how the SOM method makes full use of the available display space, at the danger of distorting relative distances.
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dependent on a set of diverging goals, 
such as fitting an appropriate visualiza-
tion to specific data characteristics (e.g., 
discrete vs. continuous data objects) to 
a chosen projection method (discrete vs. 
continuous space conceptualization), to 
user’s cognitive abilities, or to specific 
information needs. 

Figure 12 shows four different 3D 
landscape visualizations derived from 
an initial 2D spring model that treats 
input data as discrete observations and 
outputs coordinate pairs for each of them. 
Density surfaces are derived from the 
two-dimensional point configuration by 
means of spatial interpolation, where new 
data are created to fill the void between 
discrete observations. Compared to the 
stepped density surface (upper right) 
based on Voronoi polygons derived from 
the same discrete point locations, is the 
more natural looking continuous density 
surface (upper left) more adequate for 
information exploration at lower levels of 
detail? Does the stepped surface more appropriately 
convey the discreteness of the input data and the 
abrupt thematic change between cluster boundar-
ies? Does it make sense to combine the continuous-
ness of a natural landscape (thus emphasizing the 
experiential effect of the spatial metaphor) while at 
the same time preserving the discrete nature of the 
input data by means of pycnophylactic interpolation 
(Tobler 1979)?  As the lower left panel illustrates in 
Figure 12, regardless of the motivation for the use 
of the pycnophylactic transformation technique, this 
method has a smoothing effect, which may be utilized 
to depict data at different levels of detail. 

Even if conflicting depiction goals may not be 
resolved with one spatialization, current geovisual-
ization approaches and tool developments provide 
the necessary visual exploration environments to 
dynamically inspect the range of possible alterna-
tives and empower the user to proactively inspect 
the properties of diverse methods for dimensionality 
reduction and spatial layout.

Generalization
Graphic and semantic complexities are prime 
foci of information visualization research that 
lend themselves to in-depth involvement of the 
cartographic community. Cartographers have had 
to develop numerous generalization methods to 
accommodate a wide range of map scales. While 
cartographic generalization is far from being com-
pletely understood, not to mention automated, 

one would be hard pressed to find a community 
more devoted to this kind of issue, or one that has 
amassed more empirical knowledge. The carto-
graphic approach to generalization also continues 
to distinguish itself from other purely graphic 
complexity approaches, such as the popular level-
of-detail (LOD) philosophy in computer graph-
ics, by attempting to address both geometric and 
semantic aspects of map complexity. 

Recent studies demonstrate the relevance of the scale 
notion for non-geographic information visualization 
(Fabrikant 2001a; Fabrikant and Buttenfield 2001). 
This strengthens the argument for the incorpora-
tion of traditional cartographic generalization into 
scalable information visualization environments. 
Hierarchies are particularly useful vehicles for 
implementing cartographically informed visualiza-
tion. Computed hierarchies, such as those derived 
through hierarchical clustering, have been proposed 
for cartographic generalization of geographic data 
(Ormsby and Mackaness 1999). Early cartographic 
attempts at scalable information visualization through 
integration of hierarchical clustering with MDS suf-
fered from the limited applicability of MDS for large, 
high-dimensional data sets (Skupin 1998). Recent 
experiments in combining hierarchical clustering 
with SOM (Skupin 2002a) or spring-based methods 
(Fabrikant 2001b) appear more promising. Figures 
13 and 14 show how a zoom operation might be 
derived by linking spatialization geometry to a 
cluster tree. Refer to Skupin (2002a) for a detailed 
description of how this multi-scale representation is 

Figure 10. Dendrogram of a hierarchical clustering solution for 31 terms.
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derived, including the computation of scale-depen-
dent cluster labels.

Ongoing cartographic research tasks in this area 
deal with computational and cognitive issues of 
complexity. On the computational side, issues of 
graphic density and object selection (Töpfer and 
Pillewizer 1966) are of interest. On the user side, 
much remains to be known about usability and use-
fulness of multi-scale visualizations, such as those 
shown in Figure 14.

Issues of graphic complexity have plagued infor-
mation visualization researchers for many years. 
While some of the approaches put forward by the 
InfoVis research community amount to reinven-
tions of the cartographic wheel, others are quite 
different from traditional cartographic and GIS 
solutions and should be critically engaged by the 
GIScience community. This refers particularly to 
the various distortion-based techniques (Leung and 
Apperley 1994), such as hyperbolic trees (Lamping 
and Rao 1996), and dynamic variations on fisheye 
views (Sarkar and Brown 1994) that cartographers 
previously explored in static form (Tobler 1973). 
Cartographic reflection on space-scale diagrams 
and related zoomable user interfaces is also overdue 
(Bederson et al. 1996; Furnas and Bederson 1995). 
Apart from the need for cartography’s input to the 
further improvement of scale-dependent spatializa-
tions, most of the methods named above have also 
yet to be investigated by cartographers in terms of 
their suitability for geographic visualization.

Cognitive Considerations 
in the Design of Interactive 

Spatializations
Research opportunities for GIScientists and car-
tographers in spatialization are not restricted to 
computational techniques that produce mean-
ingful spatialized geometries, visualizations, and 
methods of analysis. Possible research topics 
also encompass how information seekers may 
be able to more efficiently search visually and 
extract information dynamically from interac-
tive spatialized displays, and thus make better 
sense of knowledge buried in large digital data 
archives. Spatialization visually summarizes and 
describes large data repositories and also provides 
opportunities for visual query and sense-making 
of large data collections. Improving knowledge 
discovery in data-rich environments is also a key 
concern in the GIScience community. For example, 
Geospatial Data Mining and Knowledge Discovery 
and Geographic Visualization have been identified 
as emerging research themes by the University 
Consortium of Geographic Information Science 
(Buckley et al. 2000; Buttenfield et al. 2000). 

Recent research dealing with disseminating and 
accessing very large geographic data collections, 
including aerial photographs, satellite imagery, 
and digital and analog maps, also documents an 
increased use of content-based or semantic retrieval 
strategies (Castelli et al. 1998; Ma and Manjunath 

Figure 11. The hierarchical clustering tree shown in the previous figure is here projected onto the two point configurations 
created by MDS and SOM. Line thickness indicates the level in the clustering tree at which a merge occurred. This explicit 
indication of high-dimensional similarities may help to counteract the distortions introduced to varying degrees by either of 
the two methods.
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1996; Manjunath and Ma 1996; Sheikholeslami et al. 
1999). While retrieval systems differ in their level of 
abstraction (Chang et al. 1997), image-based query 
results are typically provided in graphic thumbnail 
form. This strategy might be effective with queries 
that return a manageable number of query results. 
However, it has been shown that users prefer to navi-
gate within a clearly defined hierarchical semantic 
space (Chang et al. 1997). Transforming visual data 
archive content into semantic ontologies of visual 
information (Chang et al. 1997) will increase in 
importance as data archives are expected to grow 
exponentially.

Spatialization is based on envisioning spatial prop-
erties and requires the user’s understanding thereof. 
Hence, it is important to study and apply cognitive 
principles for real spaces, which involve spatial rea-
soning, and communication about features, their 
spatio-temporal and thematic attributes, as well as the 
relationships among these objects in the real world. 
Preservation of geographic primitives and spatial 
principles in a spatialization allows interpretations 
about the content of the information space and places 
the transformation in a sound semantic framework. 
Figure 15 depicts an experimental spatialized user 
interface that is currently being developed and used 

Figure 12. Density surfaces derived from a single, two-dimensional, spring configuration.

Figure 13. Hierarchical clustering tree with indication of three distance levels. Several thousand text documents were used 
to train a 60-by-80 neuron SOM consisting of several hundred component planes. A hierarchical clustering solution was then 
computed for the 4800 neurons in order to support scale-dependent visualization (Skupin 2002a).
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Figure 14. Three zoom levels in a visualization of conference abstracts. The merging of individual documents into regions is 
based on the hierarchical clustering tree shown in the previous figure (Skupin 2002a).

Figure 15. Spatialized user interface for exploring a news wire archive. The map view (upper left window) is linked to the 
3D landscape view (upper right window), providing an information seeker with multiple perspectives of the same data set.  
A third window (bottom center) displays a semantic profile along a semantic transect line drawn in the 2D map and 3D 
landscape windows. The transect line is a spatialized query metaphor for identifying implicit cross-references between a 
source document (1) and several target documents (2 and 3).  A user interested in European football results (e.g., German 
Bundesliga) has selected a document (ID 329) by mouse click. This news item is located in semantic proximity to a previously 
identified ‘landmark document’ (2).  The content of the selected document (i.e., football match scores) is displayed in the 
document window (lower right).
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for usability experiments, based on the geographic 
primitives’ location, distance and scale. 

Relative and absolute location provides a sense of 
a document’s existence in the collection and of its 
semantic relationship with other documents in the 
archive. In Figure 15, semantic relationships between 
news stories are spatialized with the combination 
of a spring model and pathfinder network scaling. 
Each point in the display is linked to its original news 
story, which can be viewed and read while brows-
ing the spatialized archive. A density surface was 
interpolated from the point configuration derived 
by the spring model. The surface model gives the 
information seeker a sense of the semantic density 
in the data space. A user can navigate in synchro-
nized displays, e.g., in 2D (pan and rotate), or in 3D, 
with fly-throughs or walks. Coupling the location 
metaphor with distance, several documents may be 
cross-referenced (“brushed”) by a linear connecting 
transect, or along the computed semantic network in 
the two-dimensional case, and simultaneously viewed 
in the spatialized 3D view. When navigating in a 3D 
space, a transect line might be represented by the 
shortest path between two points along the line of 
sight, or along a semantic travel path. Items falling 
along this path may be characterized as being more 
similar to one item (e.g., a specific landmark docu-
ment used as the start of navigation) or another 
item (e.g., the destination document) (see Figure 
15 for an example). Linked views at various scales 
are provided with inset displays. Small-scale inset 
maps provide a frame of reference (absolute location) 
and act as orientation aids for information seekers, 
when zooming deep into the data space (as shown in 
the larger windows in Figure 15). Small-scale views 
give the user a sense of the extent and size of the 
information space, even when they wish to zoom into 
higher levels of detail or navigate along paths at the 
bottom of deep semantic valleys where overviews of 
the landscape may be obstructed.

Content-based visual query research increas-
ingly applies hierarchical ordering and clustering 
techniques based on functional distance or metric 
measures of semantic relatedness. Other approaches 
are intended to model perceptual similarity (e.g., 
similarity in shape, color, texture) between items in 
a large data archive (Healy and Jain 1996). In spa-
tialization, documents within a given distance of a 
point of interest may form graphic clusters of related 
information. Mountains and valleys of documents 
structure the information space and allow explora-
tion in linked windows in 2D and 3D. Information 
clusters may be nested hierarchically. Clusters can 
be explored at different levels of detail, introducing 
the concept of scale (Figure 14). 

A recent study provides empirical evidence 
supporting the usability of spatialized views. The 
research included the creation and evaluation of a 
spatialization prototype to access a large document 
collection similar to the one depicted in Figure 15 
(Fabrikant 2000; Fabrikant and Buttenfield 1997). The 
design and implementation of spatialized interface 
components were based on three spatial concepts: 
distance (similarity), arrangement (dispersion and 
concentration), and scale change (changing level of 
detail). Empirical evidence was collected on the effect 
of people’s background and training on metaphor 
association, as well as the effect of representational 
variables such as data type, dimensionality, color and 
shape. The study showed that people associate (1) 
interpoint distance with the concept of document 
similarity in a document collection; (2) graphic 
clusters representing the information content and 
structure of a digital collection with concentration 
of related documents; and (3) graphical change in 
resolution (zoom-in) with different levels of detail 
in a document collection (hierarchical order). One 
of the most striking results in this study is that 
metaphor comprehension does not appear to be 
associated with people’s background and expertise 
with spatial data, thus underlining the power of 
metaphorical mapping across user groups (see, for 
example, Fabrikant 2001a). 

Validating Spatializations
Spatializations combine intense computation with 
visual, interactive results. While a single spatializa-
tion product may involve diverse approaches, such 
as standard statistical inference, neural network 
models, and interactive visualization, these are 
associated with very different traditions for evalu-
ating their validity. Significance tests, verification 
of trained neural networks, and human subject 
tests may address these approaches individually, 
but integrated evaluations are needed in order to 
ensure that a balance is achieved between the data 
relationships that exist in high-dimensional space 
and the patterns that can be communicated in a 
cognitively accessible, low-dimensional, represen-
tational space.

One direction of integrated validation potentially 
attractive to cartographers is to provide visual indica-
tors of computational plausibility during the spatial-
ization process, or as part of the final visual product 
geared towards analytical use. For example, one can 
embed into a spatialization visual cues regarding the 
stability of a clustering procedure. Figure 16 shows 
a combination of SOM neuron clustering with attri-
butes of individual neurons and documents. 
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The “elevation” of individual neurons expresses 
the degree to which the three top-ranked terms 
dominate a neuron vector. The higher a neuron, 
the narrower is its topical focus. “Mountains” in 
the visualization correspond to well defined topics 
in the data set, while “pits” indicate a lack of focus. 
Clusters that incorporate extremely low-lying areas 
are to be viewed with particular suspicion. The land-
scape visualization helps to explain the apparent 
heterogeneity of some clusters, as expressed by mis-
matched cluster labels depicted in Figure 16. The 
cluster labeled “ethnic”—”production”—”new” is a 
prime example for this. The visualization also helps 
to demonstrate the cause of cluster heterogeneity, 
i.e., the pulling together of documents containing 
few index terms when using a Euclidean distance 
measure. With hierarchical clustering, this hetero-
geneity propagates as one moves to higher-level 
clusters. This is apparent with the cluster labeled 

“landscape”—”sediment”—”population” in the left 
portion of Figure 14.

Summary and Outlook
This paper has demonstrated that increasing 
involvement in non-geographic information visu-
alization can provides cartography and GIScience 
with a unique opportunity to participate in the 
development of an evolving interdisciplinary 
endeavor. What emerges from the description 
of principal approaches, specific methods, and 
implementation examples is a research agenda 
that accommodates a broad spectrum of our disci-
pline by posing a range of research challenges.

The first and foremost challenge is to acknowledge 
the relevance of cartographic expertise beyond the 
visualization of geographic phenomena. It is impor-
tant to separate the multitude of cartographic and 
GIScience methods from the geographic reality to 
which these have traditionally been applied. This 
requires a more thorough understanding of the 
essence of cartographic activity. Since the rise of 
analytic cartography we have known that cartogra-
phy is, more than anything else, about spatial data 
transformation (Tobler 1979). With current geovi-
sualization approaches we now have the necessary 
methods in hand to provide knowledge transfer into 
related research communities with highly interac-
tive tools based on solid semantic foundations 
(MacEachren 1995). 

Increased awareness of, and empirical knowledge 
about, spatial cognition, including current work by 
GIScientists on geographic ontology, needs to be 
integrated into spatialization research. Current work 
at the University of California at Santa Barbara and 

the University at Buffalo is combining an ontologi-
cal approach informed by GIScience theory with 
an empirical, experimental methodology borrowed 
from cognitive science to assess the usability of the 
spatialization methods and transformation procedures 
discussed in this paper. The goal of this research is to 
deepen our understanding of how spatializations are 
perceived and understood, and to derive practical 
design guidelines from these insights. Once these 
ground rules for cognitively plausible visualizations 
are established, the next challenge will be to ensure 
that one employs plausible computational methods. 
For example, if empirical work demonstrates that 
a given visualization method enables users to more 
easily perceive certain structures in a data set, then 
it must be ensured that this is justified by the actual 
existence of such structures in high-dimensional space, 
as opposed to being an introduced artifact of the 
particular technique. This goal is surprisingly hard 
to reach. The main role for cartographically driven 
spatialization research will thus be to attempt the 
difficult balance of three competing aspects: (a) the 
need to discover and/or convey high-dimensional 
structures; (b) the need to determine the appropriate 
use of dimensionality-reducing techniques that always 
lead to a distortion of high-dimensional relationships; 
and (c) the need to employ visualization techniques 
that are in tune with our understanding of human 
cognition of the real world and geographic maps. It 
is in this context that cartographic research has to 
critically engage the various information visualization 
methods and systems that have been put forward. 
Another promising venture lies in investigating the 
degree to which proposed information visualiza-
tion principles and techniques may be applicable 
to geographic data. Worthwhile research topics in 
this area range from specific visualization methods 
to typologies of such techniques.

A different aspect of an evolving research agenda 
relates to how cartographers and other GIScientists 
can actually make the impact of their contributions 
felt. The main thrust of information visualization 
research is happening outside of GIScience. Therefore, 
the transfer of cartographic expert knowledge is 
dependent on an intimate involvement in the relevant 
research communities. This refers particularly to the 
core information visualization community, which is 
currently dominated by computer scientists, even 
though it is still a young and evolving field (Card 
et al. 1999). Future engagement in such conference 
series as the IEEE Symposium on Information 
Visualization (InfoVis) or the annual Information 
Visualization Conference in London would be 
particularly worthwhile. With few exceptions (such 
as the geovisualization efforts at the Pennsylvania 
State University and the International Cartographic 
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Association Commission on Visualization and Virtual 
Environments), cartographic researchers are mostly 
absent from these meetings and associated publi-
cations. Leaving aside core spatialization research, 
this lack of cartographic engagement is particularly 
poignant due to the growing number of geographic 
visualizations encountered within the confines of 
the information visualization community, and which 
are appearing in widely adopted textbooks on the 
subject (e.g., Spence 2001).

Spatialization efforts are also encountered in a 
heterogeneous collection of other fields. Information 
and library scientists have a particular appreciation 
for traditional cartographic products and are quite 
supportive of cartographic involvement, specifically in 

the area of knowledge domain visualization (Börner et 
al. 2002). Relevant research and potential collabora-
tors are also found in knowledge discovery and data 
mining, and in the somewhat distinct communities 
of data engineering and discovery science. 

Finally, cartographic research on non-geographic 
information visualization should particularly ben-
efit from the emerging interdisciplinary Semantic 
Web efforts. Today, input to the most impressive 
spatializations tends to be either derived from rigid, 
subjectively formed, and rather incomplete hierar-
chies (e.g., Open Directory Project), or by making 
equally subjective choices among an array of complex 
knowledge discovery tools and procedures. In the near 
future, the Semantic Web will assist with the integra-

Figure 16. Visual support for evaluating cluster validity. The visualization is based on a 60-by-80 neuron SOM. It shows 
individual point locations for several thousand AAG conference abstracts, the 25-cluster level of a hierarchical cluster 
solution, ranked cluster labels, and an indication of how much the highest-ranked terms dominate particular regions. Low 
term dominance may indicate a lack of sharply defined themes and therefore the existence of relatively heterogeneous 
clusters.
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tion of heterogeneous information. It will ease the 
exploitation and exploration of relationships between 
information elements, leading to more complex, yet 
ultimately more meaning-bearing information spaces. 
This has intriguing consequences for cartographic 
involvement, as it may lead to a renewed interest 
among non-cartographers in how our community 
has managed to not only represent the infinitely 
complex geographic reality within a limited display 
space, but also do it in a manner that enables people 
to recognize their world within it.
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