Design, Complexity and Abstraction

John R. Woodward

School of Computer Science, University of Birmingham, B15 2TT, UK Email:
J.R.Woodward@Qcs.bham.ac.uk

1 Introduction

The process of design can be considered a searching for the solution to a design
problem. One approach we may use in design is to decompose the overall design
down into simpler component parts which can each be designed in isolation,
and reassembled into complete design solution at a later stage. For example,
we may design a car by designing the shape of the body, the braking system,
the dashboard layout and the engine in isolation, and the individual parts are
assembled at a later stage into a complete car.

There are a number of different ways of representing the description of the
design. We point out that representations which are capable of expressing reuse
of component parts have an interesting property; the complexity of an object
with respect to that type of representation is independent of the primitives used
in the representation. These types of representation can express the operation
of composition and we equate this with the process of abstraction.

One possible approach to the design of a system with reusable components
is to use cooperative co-evolution. The parts of the system are evolved, and
the overall product is tested and assignened a fitness score. We mention two
papers. The first examines a number of different methods to tackle the credit
assignment problem. The second evolves specifications for component parts and
once a suitable decomposition is evolved, solutions to the subcomponents are
found.

2 Primitives

We begin with a set of 'primitives’. A set of primitives is a collection of objects
which are taken as given. These are considered to be atomic and can be taken as
our starting point in the design process (i.e anything we design consists of these
primitives). A design space consists of all the designs that can be constructed
using these primitives (called the search space [1]). Primitives are treated as black
boxes, and we may claim ignorance of any internal workings of the primitives.
We give examples of primitives in the following section.

Children’s toys of the construction variety (e.g. Lego or Meccano) consist
of parts which maybe connected together to build more complex parts. These
initial parts (plastic blocks or strips of metal) are considered as atomic units.
New constructions can, once constructed, be considered as units (i.e. they can



physically be moved around as if it were a single part and can be plugged together
with other parts).

Straight lines and a method of constructing angles could be used to construct
more complicated drawing which consist of straight lines (see [2] for examples of
what can and cannot be drawn with a unit line and a compass). For example we
could construct a square with sides of a certain length, and squares could now
be considered as a unit to be used in further drawings. We could supplement
this with a method of drawing curves (e.g. arcs of a circle or arcs of an ellipse)
and with this we could draw new pictures we could not draw before. Again new
shapes can be constructed, and once constructed can be thought of as primitives
for further drawings (i.e. we do not have to go back to the basic description of
straight lines and edges each time).

In Genetic Programming [1], a set of primitives are supplied (the function set
and the terminal set), and new functions are synthesises by taking the output of
one primitive and feeding it into the input of another primitive. In this way new
functions are created and are represented as tree structures, where the output of
a subtree feeds into nodes further up the tree. Solutions to the design problem
are specified using the primitive set. In the representation permits modules (i.e.
the ability to construct a function once and refer to it when needed), we can
in effect add new primitives to our given primitive set. The best know of these
modular methods is Automatically Defined Functions [1].

In each of the systems above, new objects can be constructed and these can
be treated as units themselves (i.e. new primitives can be created on the fly).

3 Complexity

The complexity of an object is often identified with Kolmogorov complexity [3]
which is defined as the size of the shortest program (where is size is measured in
the number of bits to express the program) with reference to a given universal
machine (which could be a specific Universal Turing Machine or a programming
language e.g Java). Other definitions of complexity exist, but what makes this
definition particularly useful is that it is invariant (up to an additive constant).
However it does have the drawback that it is incomputable. Generally, we can
define complexity as the size of the shortest description with reference to some
description method. Note that different definitions of size will typically change
the measure of size a multiplicative amount (i.e. the number of instruction in
a computer program will be a multiple of the size of the program expressed in
bits).

Let us consider the partial recursive functions (PRFs) which is the set of com-
putable functions. PRF's are generated from simple functions (the zero, successor
and projection functions) and three other functions (recursion, composition and
minimisation). Primitive recursive functions are a subset of PRFs and are de-
fined without minimisation (i.e. can be defined in terms of the zero, successor
and projection functions with recursion and composition). Automatically De-
fined Functions [1] can be thought of as a set of functions using composition



alone to construct new functions. In [4] we proved that the complexity of a
function is independent of the primitive set (up to an additive constant) if our
method of description allows the expression of composition. In a forthcoming
paper we prove a similar result for description methods of primitive recursive
functions. This leads to a general result; given two equally expressive represen-
tations, provided the representations are capable of expressing composition (i.e.
reuse of component parts), then the complexity of an object is independent of
the actual representation within an additive constant.

Strictly, it is meaningless to talk about the complexity of an object without
referring to a representation. The complexity of an object can be high using
one representation, but using powerful enough primitives the complexity can
be made arbitrarily small (i.e. 1 as the primitive expresses the object). In some
situations we may have access to the raw complexity. For example, with a system
of drawing a point is the smallest unit that we can mark a page with, and lines
are simply sets of points. We could also define complexity with respect to the
smallest Universal Turing Machine. In systems like those described in [4] we can
define raw complexity with respect to the smallest minimal primitive set (e.g.
NAND is the smallest logically complete function set). If we are talking about
physical objects, we actually cannot get down to the lowest level of description
(as we do not know what it is, i.e. are quarks atomic). The point is that we only
need to describe an object in sufficient detail with the tools we have for the job
at hand.

4 Abstraction

The word abstraction comes from the Latin, abs meaning ’away from’ and tra-
here, meaning ’to draw’. Abstraction is the ability to hide unnecessary com-
plexity in the form of new primitives. Thus its utility is in the fact that we
do not need to concern ourselves with unnecessary detail and can focus on the
important issues with appropriate level of description. Thus when we abstract
away from a description we can absorb any unnecessary detail into a primitive
and ignore it. Hence abstraction can be thought of as the ability to define new
primitives (in terms of currently existing ones) and talk about an object at a
new level of less detail. We may therefore talk about systems being equivalent
(or similar) at some abstract level.

5 Design and co-evolution

Design is the problem of describing a system to achieve a target task, which
may be thought of as an optimisation problem. Evolution is often used to tackle
design problems [5,6]. Given the results above concerning complexity, it would
advantageous to have a design system, which, once it has found a solution to a
component part of the overall design task, and be reused and thus avoids the
problem of having to reinvent the wheel. One approach to evolving component
parts is cooperative co-evolution (as opposed to competitive co-evolution), but



one problem is credit assignment (i.e how can credit be given to individual
components of the system?). For example, consider a car with a good engine but
square wheels. It would be advantageous to be able to recognise that while the
overall design is poor (i.e. the car will not move), there are useful component
parts (i.e the engine is fine) which may be used in other designs.

It is not easy to see how a reward can be directly assignet to a component.
Typically a fitness score can be given to a whole design, but it can be difficult
to see how individual parts contribute to the overall design. In [7] a number of
different methods to this problem are described. They empirically examine selec-
tion pressure, pool size and credit assignment. and conclude that an optimistic
approach is generally the best mechanism for collaboration credit assignment.
There are of course many other methods of attempting this.

In [8] we use a novel approach to producing components part of an overall
solution. All other methods represent component parts (i.e. modules) in terms of
the primitives at all times in the evolution ([1] section 10.2). Our method differs
fundamentally in that initially component parts are represented by specifications
which are not represented in terms of primitives, but just as a description. Once
a suitable description for a component part (called a module in [8]) is found, it
can then be isolated and solved separately from the overall system. The methods
outlined in [7] could be used together with the ideas in [8].

6 Summary

A method of representing our proposed designs in needed in the design process.
We point out that if the representation is capable of expressing composition
then there are interesting results concerning the complexity of the description
of a design. The reader may identify composition with modules used in some
work on evolutionary computation. Composition can also avoid the problem of
reinventing the wheel (as a design solution can be expressed once and referred
to when needed). We equate the process of abstraction with composition, which
can allow us to concentrate on the more interesting aspects of the design rather
that being preoccupied with unnecessary detail which may be packaged into the
primitives of the description language.

Given that we have a system capable of expressing modules for our design
process, the question then is how do we go about constructing candidate designs.
One approach is cooperative co-evolution where component parts are evolved
together. We mentioned that there are a number of different approaches to the
evaluation of the component parts of designs [7]. We also mentioned a novel
way of evolving specifications for modules rather than implementations (which
is easier to do) and later producing designs for the component parts (which
reflects the design process).

References

1. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming — An
Introduction; On the Automatic Evolution of Computer Programs and its Applica-



tions. Morgan Kaufmann, dpunkt.verlag (1998)

. Fraleigh, J.B.: A First Course in Abstract Algebra. 5 edn. Addison Wesley (1994)
. Li, M., Vitanyi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Ap-
plications. Springer-Verlag, Berlin (1993)

. Woodward, J.R.: Modularity in genetic programming. In: Genetic Programming,
Proceedings of EuroGP 2003, Essex, UK, Springer-Verlag (2003)

. Bentley, P.J., Corne, D.W., eds.: Creative evolutionary systems. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2002)

. Bentley, P.J.: Evolutionary Design by Computers with CDrom. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1999)

. Wiegand, R.P., Liles, W.C., Jong, K.A.D.: An empirical analysis of collabora-
tion methods in cooperative coevolutionary algorithms. In: Genetic and Evolution-
ary Computation Conference (GECCO) 2001, Morgan Kaufmann Publishers (2001)
1235-1245

. Woodward, J.R.: Function set independent genetic programming. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2004), Workshop
on Modularity, Regularity, and Hierarchy in Evolutionary Computation, Seattle,
USA, Morgan Kaufmann (2004)



