The research frontier in urban modelling

Alan Wilson and Joel Dearden Centre for Advanced Spatial Analysis University College London

⁺UCL

- will illustrate the ideas with two examples, one of them subdivided to show different approaches:
 - retail systems London and South Yorkshire
 - · BLV models
 - ABM models
 - a large urban system over a long period
 - the US from 1790-1870

Evolving to equilibrium during a single time step

Using a results grid to identify discontinuous change

- Use an **order parameter** to summarise the equilibrium structures across the grid
- Plot as surface
- Identify discontinuous change
- And potentially unstable states

Order parameter = spatial spread

≜UCL

Path dependence in urban systems

- Arthur (1988)
 - Agglomeration economies
 - Multiple system "solutions"
 - Chosen by unpredictable, apparently "insignificant" events
 - Magnified by positive feedbacks
- Here we define path dependence as:
 - Sequence of initial conditions / initial DNA
 - Each influences possibilities of development
 - Basins of attraction within reach

15

			≜UCL
Examples of possible future events			
Event	Туре	Possible outcomes	Time step
Fuel price fluctuation	Unplanned	 Increase Decrease Unchanged 	Any
Shopping centre construction	Planned	 Built Not built 	1
			22

Detecting emergent retail centres

- Near = walking distance (200m)
- We detect closed groups of shops where each member is near to at least one other member of that group
- We consider each group a separate emergent retail centre
- A group of three shops showing retail centre boundary →

UC

EXPLORING THE NINETEENTH CENTURY EVOLUTION OF CHICAGO

≜UCL

Railroads can be introduced in two different ways:

(1) Endogenously

- Land link weights are dynamically adjusted based on changes in the export load flowing over that link
- We use the dynamics equation:

 $\Delta c_{ij}(t, t+1) = -\xi[S_{ij}(t+1) - S_{ij}(t)]S_{ij}(t)$

(2) Exogenously

- Link weights are reduced along the path of a real railroad at the actual date of construction
- Railway construction data from:
 - Railroads and the Making of Modern America (http://railroads.unl.edu/)
 - KML data
 - Google Maps timeline (1840 to 1870)

[±]UCL

Conclusions

- Railroad development opened up the Midwest
- Without railroads the Chicago site does not appear to be an obvious growth site – so booster marketing and self-fulfilling expectation must have played a large part