

Spatial Interaction Models for Higher Education

-

Oliver O'Brien Alex Singleton UCL Geography

UCL

Contents

- Theory
 - Spatial Interaction Models
 - Geodemographics
- The Project
 - Putting them together
 - Simplifications
- Results
 - Interesting Anomalous Cases
 - Refinements

Spatial Interaction Models

- Modelling the flows from specific origin(s) to destination(s)
 - Commuting to work
 - Shopping at retail centres
 - Exploring urban retail phase transitions (Dearden & Wilson)
 - NHS G.P. Provision
 - Summer holidays

Spatial Interaction Modelling

- A classic gravity model
 - Analogous to Newton's
 Law of Universal
 Gravitation

$$F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}$$

- Distance (or cost) decay is always a key component
 - Tobler's "first law of geography"

Spatial Interaction Modelling

• $F_{12} = G m_1 m_2 r_{12}^{-2}$

- $\mathbf{S}_{ij} = \mathbf{k} \mathbf{O}_i \mathbf{D}_j \mathbf{d}_{ij}^{-\beta}$ "unconstrained"
- $S_{ij} = A_i B_j O_i D_j e^{-\beta c i j}$ "doubly constrained"
 - Can also derive it from entropy-maximising theory
 - $-A_i$ depends on B_i which depends on A
 - Solve iteratively

Constraining the Model

- Doubly constrained model
 - A fully closed system
 - e.g World Travel
- Singly constrained model

- A finite origin population or destination population
 - e.g. Retail finite number of shoppers, but shopping centre will never want to be "full" and turning them away – particular if capacity is measured in \$\$\$.
- Partially constrained model
 - A combination of the two
 - Some destinations full, others have spare capacity.
 - e.g. NHS doctor's surgeries in a local authority.

Spatial Interaction Modelling for Higher Education

- The flows are from schools and F.E. colleges to universities
- Timescales are "different"
 - Flow is normally termly or one-way rather than daily or weekly
- Distances are "different"
 - Often intercity rather than intracity
- Distance is less important
 - Going to the "right" university is important for most people

Partially Constrained Model

- Appropriate for modelling flows to higher education
 - More school pupils than university places but not every course at every university is fully subscribed
 - Have both "Selective" and "Recruiting" universities
 - Universities have quotas rather than operating in a fully unconstrained market
 - Many more universities have become selective recently
- Can treat singly-constrained and doubly-constrained flows separately
 - mark each flow appropriately in each iteration during the model run as the destinations "fill up"

Geodemographics

- Demographic characteristics (age, ethnicity, housing type, occupation, marital status, facilities)
- Interested in how geodemographics affect the patterns of university choice
- Using the Output Area Classification (Vickers)
 - Generalised (not education specific)
 - Available for each output area (typically 10 postcodes)
- Other UK geodemographic classifications
 - Mosaic (by Experian), Acorn

DEPARTMENT OF GEOGRAPHY

The OAC Map: Output Area Classifications for the U.K.

Output Area Classification 2A1 "City Living – Settled in the City 1"

- v1 Age 0-4
- v2 Age 5-14
- v3 Age 25-44
- v4 Age 45-64
- v5 Age 65+
- v6 Indian, Pakistani or Bangladeshi
- v7 Black african, Black Caribbean or Other Black
- v8 Born Outside the UK
- v9 Population Density
- v10 Divorced
- v11 Single person household (not pensioner)
- v12 Single pensioner household
- v13 Lone Parent household
- v14 Two adults no children
- v15 Households with non-dependant children
- v16 Rent (Public)
- v17 Rent (Private)
- v18 Terraced Housing
- v19 Detached Housing
- v20 All Flats
- v21 No central heating

The Data – Origin Side

- National Pupil Database (NPD)
 - Home OAs (state only)
 - Used school OA for private schools
 - Includes attainment
- Individual Learning Records (ILR)
 - For sixth-form colleges
 - Home postcodes
 - Includes attainment
- OAC

The Data – Destination Side

- HESA Individual Student Records
 - Subjects
 - Home postcodes
 - A-Level point score
 - Nearly everything needed for modelling the flows, but excludes those who didn't go to university
 - Crucially, no theoretical capacity information

A Great Model – Modelling Reality

- Paper by Wilson (2002)
- $S_{ij} = A_i^{km} e_i^{km} P_i^{k} (W_j^{mh})^{\alpha^{km}} exp(-\beta^{km} c_{ij}^{k})$
- This is the singly-constrained form
 - Finite number of school students go to university
 - No restriction on places at university
 - Doubly-constrained version is quite similar to look at
- W is the "attractiveness" of the institution

A Great Model – Modelling Reality

- 150 universities
- 3000 secondary schools + 500 F.E. Institutions
- 10 UCAS principal subject topics
 e.g. Axxx Medicine & Dentistry
- Multitude of possible attainments
 - A Level points scores, vocational qualifications, IB
 - Attainments are a useful additional factor for attractiveness

A Good Model – Simplifications

- In order to produce meaningful data on (relatively) small numbers (~300,000 annually) of students
 - use coarse categories
 - streamline the variables used
- Otherwise, the results would be a massive matrix with almost every value a fraction of a single person

A Good Model – Spatial Simplifications

- Assume universities are single-site
 - Generally using the "administrative HQ"
 - Some universities are fairly equally split
 - e.g. Angla Ruskin in Cambridge, Chelmsford
 - Ignore the Open University
- Assume English closed system
 - English schools and English universities only
- Make distance proportional to travel cost
- Assume schools and F.E. Institutions are a single institution at their LA's centroid
- 149 "super schools"

A Good Model – Origin Simplifications

- Ignore school types
- For pupils without postcode information assume the pupil's geodemographic is the same as the school's
- Assume pupils don't go to schools in a different local authority to that they live in
- Binary classification of attainment "good"/"bad"
 Based on A-level or equivalent points
- 2 attainment types

A Good Model – Origin Simplifications

- Use the seven geodemographic "supergroups" from the Output Area Classification
 - Be aware of possible correlations between geodemographic and other factors included seperately in the model, such as attainment
 - Very different overall numbers (and proportions) of each demographic go to universities
- 7 demographics

A Good Model – Destination Simplifications

- Ignore subjects
 - Assume all universities offer all subjects and admissions criteria does not differ
 - But some universities are selective for some subjects (e.g. Medicine) and recruiting for some subjects (e.g. Physics)
 - The nearest few universities to someone may not offer the subjects that the person wants to study
- Ignore universities with a specialist subject focus
 - University for the Creative Arts
 - London School of Economics
 - These are also generally "small" universities
- 89 universities, 1 "subject"

A Good Model – Destination Simplifications

- Binary classification of attainment requirement
 - "good only"
 - "any"

- Account for students not going to university by a special catch-all "university of last resort"
 - No "distance" element
 - Adjust attractiveness of this university to see the relative popularity of the other universities in the model

A Good Model – Destination Simplifications

- Attractiveness
 - Very subjective different people like different things
 - Was originally modelled as a university "type"
 - Ancient, 19th century, Red brick, Plate glass, Post-1992
 - Funding type: Big research-focused institution & hospital, big research-focused, big teaching-based, small teaching
 - But difficult to categorise type and its relative effect on each of the origin geodemographics
 - Using Times Higher Education Score (range 200-1000)
 - Factor to modify its influence if necessary
- Attractiveness becomes less important and location more important, as more of the flows become doubly constrained (i.e. more universities fill to capacity)

Simplified Form

• From: $S_{ij} = A_i^{km} e_i^{km} P_i^k (W_j^{mh})^{\alpha^{km}} exp(-\beta^{km} c_{ij}^k)$

• To: $S_{ij} = A_i^k P_i^k (W_j^h)^{\alpha} \exp(-\beta^k d_{ij})$

- No subject consideration
- No "demand" factor
- Cost is replaced by distance
- Numbers of i, j locations greatly reduced
- Attractiveness is not dependent on geodemographic
- Similar for the doubly-constrained version

Calibrating the Model

- Find values for the constants in the equations
- A_i & B_j values are "balancing constants"
 they converge on the correct values during iteration
- Calculate the β^k distance-decay with known flows
 - Overall distance decay for all pupils
 - Break down by geodemographic
 - Very unequal numbers within each geodemographic
 - Compare distance decay functions

Calibrating the Model – Beta Decay

Legend

Multicultural

Calibrating the Model – Beta Decay

- London to Birmingham: 160 km
- London to Manchester: 260 km
- Distinctive pattern seen for the City Living & Multicultural demographics

Modelling

Java

- Iterative process to calculate the normalising constants which depend on each other
 - Typically takes a minute to calculate the results

Results

실 Partially Constr	rained	Spati	al Inte	eractio	on Mo	del	-	1.10	-	-			-	-		-	÷	-	-	-	-	-			23
Flow Differences	Show Predicted Flows								Include Unknown OACs								Excluding Unknown OACs								
University ->	ANG	AST	BAS	BAT	BCU	BED	BIR	BOL	BOU	BRA	BRG	BRI	BRU	BUC	CAM	CAN	CHE	CHI	CIT	CLA	CMB	COV	DEM	DER	DUR
BIRM3M (Birming	0	0	-2	0	-1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0 🔺
BIRM4H (Birmingh	3	-28	2	2	-42	1	-30	2	1	-1	1	0	-1	2	-3	2	5	1	0	7	1	-8	-2	3	4
BIRM4M (Birming	1	-0	-1	-1	-77	-0	-7	-0	2	2	1	0	1	1	0	1	1	1	1	4	0	-21	1	-1	0
BIRM5H (Birmingh	1	0	1	2	6	0	16	0	-0	1	0	4	1	-0	2	0	-0	0	0	1	0	2	7	2	1
BIRM5M (Birming	2	13	1	0	28	1	-4	1	1	2	-0	0	1	1	0	0	3	0	1	4	-1	8	12	9	0
BIRM6H (Birmingh	2	-15	2	5	-38	1	-17	1	0	-0	1	5	1	1	2	-0	2	1	1	5	0	-12	5	-1	3
BIRM6M (Birming	6	13	3	0	-37	2	-9	3	6	5	3	0	3	3	0	2	9	1	2	12	1	3	24	9	0
BIRM7H (Birmingh	0	-123	0	-2	107	0	-100	0	-2	-11	-2	-4	-2	0	-6	0	-2	0	-2	0	0	-54	-51	-2	-2
BIRM7M (Birming	-5	-27	-1	-1	174	0	-30	0	-3	-4	-2	0	0	-3	0	0	-1	0	0	-1	0	-156	-45	-10	0
BLAB1H (Blackbur	0	0	0	0	0	0	-1	0	0	-2	0	0	0	0	0	0	0	0	0	-2	-1	0	0	0	-1
BLAB1M (Blackbu	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-9	0	-1	0	0	0
BLAB2H (Blackbur	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BLAB2M (Blackbu	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BLAB3H (Blackbur	0	0	0	-1	0	0	2	0	0	1	0	-1	0	0	0	0	1	0	0	-0	0	-1	1	0	3
BLAB3M (Blackbu	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	-1	0	0
BLAB4H (Blackbur	0	0	0	0	-2	0	1	0	0	-1	0	-2	0	0	-1	0	-1	0	0	-10	0	-1	-2	0	-5
BLAB4M (Blackbu	-1	0	0	0	0	0	0	-2	0	0	0	0	0	0	0	0	-2	0	0	-22	0	0	0	0	0
BLAB5H (Blackbur	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	1	0	0	6	0	0	1	1	3
				-	- 1		0	E		~					^		-		0	77			2		
						_																			

- Simple Java GUI to show the matrix of results
 - visually spot good/poor matches
 - refine model parameters
 - rerun

Results – Norfolk Schools to Universities

Results – Schools to University of Manchester

Results – Flow Maps

- FlowMapLayout Java application
 - Developed at Stanford for InfoVis 2005
- A more graphic & flexible presentation of the flows
 - Pseudo-spatial
 - Lengths and directions of the connecting lines are not meaningful

Results – Leeds Schools to Universities

Results – Hampshire Schools to Universities

Some Interesting Anomalous Results

- Flows significantly higher than expected
 - Flows from North-West London to Manchester
 - Essex to Exeter and Exeter to Essex
 - Small-distance flows to modern "metropolitan" universities, particularly paired with older institutions, such as Sheffield & Sheffield Hallam
- Flows significantly lower than expected
 - Yorkshire to/from Lancashire
 - Essex to/from Kent

Model Refinements

- Creating a genuinely <u>partially</u>-constrained model
 - University capacities are not known, instead we assume the actual enrolled numbers are all at capacity
 - This results in a completely doubly-constrained model, unless the "not at university" option is made attractive.
 - Possible solution would be to increase all capacities by a small % and adjust "not at university" attractiveness to rebalance the numbers
- The local "Metropolitan university" issue
 - Model adjusted to reduce the distances for these flows

Further Considerations

- Cost vs Distance d_{ij} vs c_{ij}
 - Not necessarily linearly related for "life changing" spatial flows as such universities
- Straight-line distance is too simple
 - Natural barriers (e.g. mountain ranges, water)
 - Fast intracity & intercity transport networks
- Subject-specific analysis may be more revealing
 e.g. flows for medicine courses only
- Including Scottish/Wales data
 - Potentially interesting with different fee requirements

References & Acknowledgements

- Wilson, A.G. (2000). The widening access debate: student flows to universities and associated performance indicators. *Environment and Planning A* 32 pp 2019-31
- Phan D. Et al (2005). Flow Map Layout. http://graphics.stanford.edu/papers/flow_map_layout/
- Dearden, J. and Wilson, A.G. (2008). An analysis system for exploring urban retail phase transitions 1: an analysis system. CASA Working Papers Series 140
- Vickers, D.W. and Rees, P.H. (2007). Creating the National Statistics 2001 Output Area Classification. *Journal of the Royal Statistical Society, Series A*
- The paper for this project is currently in review.

Graphics Acknowledgements

- Gravity model graphic: Wikipedia
- Liverpool Street Station commuters: steve_way on Flickr
- Aberystwyth University examination hall: jackhynes on Flickr

Oliver O'Brien UCL Geography Twitter: @oobr http://www.oliverobrien.co.uk/

E·S·R·C ECONOMIC & SOCIAL RESEARCH COUNCIL

ESRC Funded Project