

Spatio-Temporal Analysis of Network Data And Road Developments

Outline

- Introduction
 - Background and aim
- Methodology integrated ST Data Mining
 - Statistical approach
 - Machining learning
 - Visualization
 - Simulation
- Programme and Progress

Background

- Large cities are increasingly crowded - population & mobility
- Traffic congestion affects both the economy and daily life.
- It is difficult and expensive to increase the capacity of the road network.

City of London

- Traffic levels in the Congestion Charging Zone are falling but congestion levels are rising.
- cost of congestion
 - £3 billion per year
- Mayor's traffic priorities
 - reduce congestion and smooth traffic flow
- Removal of western extension of CC (27/11/2008)
- Olympic Games 2012
 travel time to London Olympic sites

UCI

Spatio-Temporal Analysis of Network Data And Road Developments

Why is this?

- •Reduction in network capacity?
- •Reallocations of capacity to other uses? •Reduced resilience of the network?

Aim - To understand the traffic congestion in central London

- To quantitatively measure road network performance
- To understand causes of traffic congestion
 - association between traffic and interventions
 - traffic flow, speed/journey time
 - incidents, road works, signal changes and bus lane changes
- Case study London

STANDARD Spatio-Temporal Analysis of Network Data And Road Developments

AUCI

Challenge (1) Network Complexity

- 1) Dynamics
- 2) Spatial dependence
- 3) Spatio-temporal interactions
- 4) Heterogeneity

STANDARD Spatio-Temporal Analysis of Network Data And Road Developments

Challenge (2) - Data issues

- massive 20GB monthly
- multi-sourced related to 5 different networks
- different scales (density & frequency)
- variable data quality
- contain conflicts, errors, mistakes and gaps

[±]UCL

Traffic Flow Surveys

- NMC (National manual count annual data)
- ATC (Automatic Count) 20 MB
- different time periods, intervals and accuracy

Spatio-Temporal Analysis of Network Data And Road Developments

LUCI

Traffic speed (and hence journey time) data

- MCOS (Moving Car Observer Surveys)
 - Centre, Inner, and Outer
 - least accurate of the datasets
- ITIS (GPS vehicle tracking system) 2GB
 - major A roads and bus routes in town with 2000 probes
 - medium accuracy
- ANPR (Automatic Number Plate Reading) 6 GB
 - main roads in the central and west extensions of CCZs
 - 5-minute intervals, 5 vehicle groups,
 - high accuracy
 - available since March 2008
- At least 5 networks
 - boundaries do not fully align

LTIS incident and event data - 20MB

- works, hazards, accidents, signal faults, special events, breakdowns, security, and other causes
- DfT have all these data as map or as text files

 Minimal, Moderate, Serious or Severe subjective ? unrecorded? not geocoded? not broadcast on the traffic Link website, creating problems in analysis and reporting.

There are uncertainties and gaps in the intervention data

Methodology - ISTDM

UCL

What's new - (1) data-driven, top-down Transition in data availability

- Data scarcity:
 - High cost
 - Low volume
 - Intensive validation
- Data abundance:
 - High volume
 - Multiple kinds and sources
 - Extensive application

Transition in modelling approach

- Bottom-up:
 - Mechanistic
 - Explicit representation of behaviour (Origin, destⁿ, model, time ...)
 - System properties by aggregation

- Top-down:
 - Phenomenological
 - Describe system gross of all behavioural responses
 - Direct to objectives

Spatio-Temporal Analysis of Network Data And Road Developments

What's new: (2) integrated space and time

Existing ST analysis methods

- time series analysis + spatial correlation
- spatial statistics + the time dimension
- time series analysis + artificial neural networks

ST dependence ≠ space + time

Integrated modelling of ST is needed -

- seamless & simultaneous
- ST-association/autocorrelation

What's new: (3) hybrid/quantitative approach

combine regression analysis with machine learning

 improve the sensitivity and explanatory power
 study the heterogeneity and scale of road performance

- optimal scale for monitoring
- Quantitative assessment of network performance

- Sensible decision making & policy evaluation

Spatio-Temporal Analysis of Network Data And Road Developments

Spatio-Temporal Analysis of Network Data And Road Developments

Spatio-Temporal Analysis of Network Data And Road Developments

Principle of ST Modelling

Space-time data = global (deterministic) space-time trends + local (stochastic) space-time variations

- $z_i(t)$ the observation of the data series at spatial location *i* and at time *t*;
- $\mu_i(t)$ space-time patterns that explain large-scale deterministic space-time trends and can be expressed as a nonlinear function in space and time.
- $e_i(t)$ the residual term, a zero mean space-time correlated error that explains small-scale stochastic space-time variations.

Cheng, Wang, Li (forthcoming, Geographical Analysis)

Model 1 - STARIMA - Spatio-Temporal Auto-Regressive Integrated Moving Average

Autoregressive part			Moving average part				
Time lag Space lag	k=1	k=2	k=p	Time lag Space lag	I=1	I=2	I=q
h=0	x	x	· · · X	h=0	x	x	· · · 🛛 🕱
h=1	x	x	· · · X	h=1	x	x	· · ·
h=2	X	X	· · · · · · · · · · · · · · · · · · ·	h=2			· · · · X
h=m _k	X .	X	X .	h=n _i	X .		
	t-1	t-2	t-k		t-1	t-2	t-I
		(a)				(b)	d Road Analysis of
				(5)		Notwork Data	d Post Anmonte

(Pfeifer P E and Deutsch^a Snd, 1980)^{pmc}

Our approach – Integrated modelling of ST

Model 1 – STARIMA

$$z_{i}(t) = \sum_{k=1}^{p} \sum_{h=0}^{m_{k}} \phi_{kh} W^{(h)} z(t-k) - \sum_{l=1}^{q} \sum_{h=0}^{n_{l}} \theta_{lh} W^{(h)} \varepsilon(t-l) + \varepsilon(t)$$

- define weights based upon spatial distance and spatial adjacency
- consider anisotropy
- able to model spatially continued phenomena

Tao Cheng, Jiaqiu Wang, Xia Li, 2010 A hybrid approach for space-time series of environmental data, *Geographical Analysis (forth coming)*

Cheng, Wang (2008, TGIS) Cheng, Wang (2009, CEUS) StanDARD Network Data And Road Developments

Tao Cheng, Jiaqiu Wang, 2009, Accommodating Spatial Associations inDRNN for Space-Time Analysis, Computers, Environment and Ustran Spatio33, 409-418.

≜UCL

Model 2 - STANN

- One step implementation of ANN+ STARIMA
- Accommodate ST associations in ANN
- Deal with nonlinearity & heterogeneity in BP learning

Model 3 – SVM - Support Vector Machines

Model 3 - STSVR

• Nonlinear Spatio-Temporal Regression by SVM

$$\phi(f_{T}, f_{S}) = \sum_{I=1}^{N} (\alpha_{I}^{*} - \alpha_{I}) K((f_{T}, f_{S}), (f_{T}, f_{S}))$$

- Develop ST kernel function
- Overcome over-fitting in STANN
- Deal with errors
- Model nonlinearity & heterogeneity

Jiaqiu Wang, Tao Cheng, James Haworth, Space-Time Kernels, submitted to Spatia Data Handling (SDH) 2010, Hong Kong, May 26-28.

Other methods

- Geographically Weighted Regression (GWR)
 -> STWR?
- Permutation Scan Statistics (PSS)
 - -> STPSS? (or STC)
- Exploratory Visualization (DM) + ST+OLAP
 - -> STOEV?
- Simulation (Multi-scales)
 - -> STMSS?

Progress

Spatio-Temporal Analysis of Network Data And Road Developments

Spatio-Temporal Analysis of Network Data And Road Developments

UCI

The distribution plot of 33 Mondays journey times link 605 during 07:00 to 19:00 (2009 Jan. – Aug.)

Space-time analysis

UCL

UCL

Accuracy

Prediction Accuracy at different prediction intervals				
	Forecasting Horizon			
	5 min	10 min	15 min	20 min
Number of validate prediction	96	93	86	70
Mean relative error	0.07%	0.25%	0.44%	0.81%
Standard deviation of relative error	0.16%	0.38%	0.77%	1.27%

Prediction Accuracy at different prediction intervals

Comparison of results from extended STARIMA model and standard STARIMA model (Kamarianakis and Prastacos, 2005) at 5 min interval

	Number of validate prediction	Mean relative error	Standard deviation of relative error	
Extended STARIMA	96	0.07%	0.16%	
Standard STARIMA	95	0.11%	0.41%	

Visualization of traffic congestion in space-time

Inbound

Outbound

Figure 1. Delay at 9 am on 12th April 2009

Cheng, Emmonds, Tanaksaranond, Sonoiki (2010, GISRUK)

UCL

UCL

Figure 2. Delay at 9:15am on 12th April 2009

≜UCL

LCAP 15 January 2010 8:00-10:00 am

Inbound

Outbound

STANDARD Spatio-Temporal Analysis of Network Data And Road Developments

Isosurface

^AUCL

Links	Basic Temporal Intervals
[578,720]	[152,167,204,237,262]
[579,580]	[153,155,198,224,226,253,257,283]
[580,579]	[153,155,198,224,226,253,257,283]
[599,719]	[113,117,126,136,137,139,144,206,220,221]
[599,719,666]	139
[665,666]	[38,128,141,194,203,229]
[666,665]	[38,128,141,194,203,229]
[666,719]	[79,94,123,139,148,150,166,200,264]
[666,719,599]	139
[719,599]	[113,117,126,136,137,139,144,206,220,221]
[719,666]	[79,94,123,139,148,150,166,200,264]
[720,578]	[152,167,204,237,262]

Cheng, Anbaroglu (2010, SDH)

⁺UCL

James Haworth

Department of Civil, Environmental & Geomatic Engineering, UCL

Multi-scale analysis of road network performance

- Using spatio-temporal data mining techniques to look for patterns in congestion at varying spatial and temporal scales
- What patterns can be observed in inbound and outbound congestion...
 - Daily? Weekly? Seasonally?...
- Identification of recurrent and non-recurrent congestion in London

EP/G023212/1 STANDARD Spatio-Temporal Analysis of Network Data And Road Developments

Understanding Road Congestion as an Emergent Property of Traffic Networks

Macroscopic

Flow and economic models based on 'known' road capacity

Microscopic

Individual behaviours simplistic and route choice macroscopic-driven

STANDARD Spatio-Temporal Analysis of Picture credits^{ie} DOT California, PTV, Paramicus

UCL

Formal model of Emergence

Link level

What causes congestion to emerge at link level? What is the effect of road layout?

Junction level

Are junctions the key source of congestion? What choices are available to drivers?

Network level

How does congestion spread to the whole network?

Manley, Cheng (2010, IMCIC)

Spatio-Temporal Analysis of Network Data And Road Developments

UCL

STANDARD Website – http://standard.cege.ucl.ac.uk

STANDARD Spatio-Temporal Analysis of Network Data And Road Developments

UCL

Conclusion - Network Complexity

