DIGITAL GEOGRAPHY in a WEB 2.0 WORLD

WEDNESDAY 20 FEBRUARY 2008
GEOGRAPHICAL STATISTICS & THE GRID

Rich Harris, Chris Brunsdon and Daniel Grose
(Universities of Bristol, Leicester & Lancaster)
http://rose.bris.ac.uk
OUTLINE

- About Geographically Weighted Regression (GWR)
 - Chris Brunsdon, Department of Geography, University of Leicester
 - cb179@le.ac.uk

- An example to illustrate a problem of using GWR with large datasets

- ‘The solution’
 - Rich Harris, School of Geographical Sciences, University of Bristol
 - rich.harris@bris.ac.uk
LOCAL VS GLOBAL STATISTICS

- **Global**
 - similarities across space
 - single-valued statistics
 - non-mappable
 - GIS “unfriendly”
 - search for regularities
 - aspatial

- **Local**
 - differences across space
 - multi-valued statistics
 - mappable
 - GIS “friendly”
 - search for exceptions
 - spatial

- Local statistics are spatial disaggregations of global statistics
WHY MIGHT RELATIONSHIPS VARY SPATIALLY?

- Sampling variation
- Relationships intrinsically different across space e.g. differences in attitudes, preferences or different administrative, political or other contextual effects produce different responses to the same stimuli.
- Model misspecification - suppose a global statement can ultimately be made but models not properly specified to allow us to make it. Local models good indicator of how model is misspecified.
GEOGRAPHICALLY WEIGHTED REGRESSION (GWR)

- What is it?
 - Extension of regression model
 - Allows model to vary over space

- How it works...
IN GWR WE CAN ALSO...

- estimate local standard errors
- calculate local leverage measures
- perform tests to assess the significance of the spatial variation in the local parameter estimates
- perform tests to determine if the local model performs better than the global one
BUT

- Computationally very demanding
- Need to fit weighted regression models in several places
- Sometimes not viable on a single computer
- How do we address this problem?
EXAMPLE

- Y: Proportion of households without a car
- X_1: Proportion of persons of working age unemployed
- X_2: Proportion of households in public housing
- X_3: Proportion of households that are lone parent households
- X_4: Proportion of persons 16 or above that are single
- X_5: Proportion of persons that are “white British”

n = 165,665
SPATIAL VARIATION IN THE LONE PARENT COEFFICIENT (WEST MIDLANDS)
SPATIAL VARIATION IN THE LONE PARENT COEFFICIENT (LONDON)
SCALING PROBLEMS

- There are \(n \) regression models
- But actually there are many more:
 - \(n \times g \)
 - \(g \) is the number of iterations to optimize the bandwidth, \(b \)
- And you also need to calculate the distance matrix, \(D: (n^2) \)
TAKES A LONG TIME!

- If \(n = 100,000 \), on a single processor
 - Would take about half a day to calculate \(D \)
 - Would take about a fortnight to find \(b \)
- But GWR is intended for exploratory analysis!
- The main bottleneck is the calibration of \(b \)
 - Because the regression calculations are \(O(n^3) \), the distance calculations are \(O(n^2) \)
The regression models are fitted entirely independent of each other. The results are pooled and compared at the end.

The process is sequential but it can also be embarrassingly parallel

- For GWR, the (distance-weighted regression) function stays the same, only the data are changing.
- Each spatial subset is handled separately from the next.

True of many methods of spatially localized analysis

Suitable for a computational grid

- The UK’s National Grid Service (NGS)
MULTIR AND PARALLEL R

- R is a free software environment for statistical computing and graphics
 - http://www.r-project.org/
- There is an implementation of GWR in R
 - The spgwr package
- In R, there is a method to invoke a function a number of times with varying argument values
 - `sapply`
- The idea is to invoke the function on different processors running on the NGS.
- multiR (thanks to Daniel Grose) is both an ‘add in’ to R and a server (currently at Lancaster) which provides middleware between desktop R and the NGS.
THE THREE TIER CLIENT/SERVER ARCHITECTURE EMPLOYED BY MULTIR

Desktop
- R user executes multiR job

Remote multiR server
- Job details transmitted to multiR server using secure connection
- Using GRID middleware and protocols
- multiR client launches batch job on GRID resource(s)

GRID resources
- GRID resources use multiple computers for calculations

Results become available in R
- User requests results from multiR server
- multiR server harvests results using GRID middleware and protocols
THIS IS R (IN WINDOWS)

- Available free from http://cran.r-project.org/
- We have a tutorial www.esrcsocietytoday.ac.uk
- type ‘Grid Enabled Spatial Regression Models’ into the Search
FITTING A GWR MODEL IN R

```r
> library(spgwr)
> load("carsmsoa.RData")
> names(car.msoa)
[1] "Name"     "Borough"  "ProfMan"  "Renting"
   "HHNoCar"  "Easting"  "Northing"
> coords = cbind(car.msoa$Easting,
                    car.msoa$Northing)
> bandwidth = gwr.sel(HHNoCar ~ Renting, data =
                         car.msoa, coords)
Bandwidth: 25571.63 CV score: 4.278767
Bandwidth: 41334.45 CV score: 4.373939
...
Bandwidth: 1467.076 CV score: 2.922873
> gwr.model1 = gwr(HHNoCar ~ Renting, data =
                   car.msoa, coords, bandwidth)
```
FITTING A GRID RUN GWR MODEL

```r
> library(spgwr.dist)
> load("D:\Data\GWR-Workshop\Data\Exercises\carmsoa.RData")
> names(car.msoa)
[1] "Name"     "Borough"  "ProfMan"  "Renting"
   "HHNoCar"  "Easting"  "Northing"
> coords = cbind(car.msoa$Easting, car.msoa$Northing)
> session = multiR.session.dlg()
> bandwidth = gwr.sel.dist(session, HHNoCar ~ Renting, data = car.msoa, coords, max.processors = 50)
> gwr.model2 = gwr.dist(session, HHNoCar ~ Renting, data = car.msoa, coords, bandwidth, max.processors = 50)
```
‘THE SESSION’

- It is loading and dealing with the various security certificates that are needed to use the NGS.
OBTAINING THE CERTIFICATES

- This is required for all NGS services
- User certificates:
 - Apply at https://ca.grid-support.ac.uk/
 - The certificate is issued for a web browser: the one you apply from needs to be the same as the one which will receive it.
 - Then need to:
 - Export the certificate from the browser
 - Use OpenSSL toolkit to convert into two files (the certificate and its key file) and to generate a proxy certificate
 - See www.grid-support.ac.uk/content/view/67/184/
 - You also need to apply for an NGS account
 - http://www.grid-support.ac.uk/content/view/221/171/
- CA certificate:
 - Download from http://www.grid-support.ac.uk/content/view/182/184/
CONCLUSIONS AND CAVEATS

- There is no point in using Grid GWR for small datasets (e.g. n < 1000)
- And you should not expect instant results with large datasets (it still takes a second or so for each regression fit and you don’t have that many processors)
- You cannot presently disconnect from R when running a Grid GWR but that should follow (and return later to collect the results)
- The software are still being tested
POTENTIAL

- multiR is more generic than GWR
- Imagine

  ```
  function1 = function(its_parameters) {
    what it does
  }
  ```
- Then

  ```
  some_results = multiR(session, function1, list=(the_data))
  ```
- In other words, the function is running in parallel on the NGS
- Applications include spatial statistics, geostatistics, ‘hot spot analysis’, simulation, etc.
ACKNOWLEDGMENTS

- The ESRC (RES-149-25-1041)
- The National Centre for e-Social Science (NCeSS)
- Particular thanks to the Centre for e-Science, Lancaster University