King’s Cross Underground Station Pedestrian Evacuation Model

CASA Seminar – 7th March 2007

Christian J.E. Castle
Centre for Advanced Spatial Analysis,
University College London Department of Geography, UK

Overview

• Research partners
• Context & Outline
 • Research aim
 • Study area – King’s Cross
• Pedestrian Evacuation Software Applications
 • Guidelines and Evaluation
• KX Pedestrian Evacuation Model
 • Inner workings
 • Demo
• Future Work
Research Partners

Centre for Advanced Spatial Analysis (CASA, a research centre within UCL)

Project Partners:
• LUL
• ARUP
• ESRI

Research Grant

Members:
• BTP
• LBC
• HPA
• LCRSP
• LAS
• LUL
• Met Police
• National Rail
• TfL
• LFBU

King’s Cross Spatial Advisory Panel

Camden NHS

Primary Care Trust

Research Sponsors

Context

• Why (at project inception)?
 2) Civil Contingency Act 2004
 3) Credible threat - Tony Blair, Ken Livingstone, ...

• London - July 2005
 • 56 Fatalities, ~ 700 injured

• KX Redevelopment
 • Underground station
 • 2012 Olympics - 60% increase in passengers
King’s Cross Redevelopment

1) Channel Tunnel Rail Link Link (CTRL) / St Pancras Station
2) King’s Cross Central
3) Underground station

7th March 06

Aims

• Overarching
 • Quantitatively and qualitatively evaluate emergency pedestrian egress from King’s Cross Underground station for different incident scenarios, based on future passenger demand forecasts, and variance in user characteristics at different times of the day and week.

• Research Questions
 • How will the dynamic of the evacuation process be affected at Kings Cross Underground station, given:
 • Different very short term incident scenarios
 • Predicted longer term increases in passenger demand
 • Different times of day and week

• Potential to assist statutory responders
Pedestrian Evacuation Software Applications

- Guidelines
 - Nine topic areas
 - Application specific
 - Model specific
 - Castle (2007) – CASA working paper 115
- Evaluation (Castle & Longely 2007)
 - 27 ‘available’ building evacuation models
 - 4 potential candidates
- However
 - Proprietary, black box, validity …

KX Pedestrian Evacuation Model

- One possible solution
 - Agent-based simulation / modelling systems
 - Repast Toolkit
- Inner workings
 - Enclosure representation
 - Occupant / Enclosure Representation
 - Occupant Movement
 - Behavioural Perspective of Pedestrian
Occupant / Enclosure Representation

- Occupant Representation
 - Individual
 - Typically regular lattice or continuous space
 - Unique characteristics – movement & behaviour
 - Globally
 - Typically coarse scale network
 - Homogeneous ensemble – average density & speed

- Enclosure Representation
 - Individual
 - Bounded-rationality
 - Globally
 - Rationale-choice paradigm

Occupant Movement

- Speed of Occupant Movement
 - Flow / Hydraulic Equation
 - Pedestrian Speed of Movement Data
 - Secondary):
 - Hankin and Wright (1958)
 - Fruin (1971)
 - Predtechenskii and Milinskii (1978)
 - Ando et al. (1988)
 - Pauls (1995)
 - Nelson and Mowrer (2002),
 - Etc
Occupant Movement – Fruin (1971)

Occupant Movement – Ando (1988)
Occupant Movement

- Direction of Occupant Movement
 - Coarse scale network
 - Only movement between rooms
 - Regular lattice
 - Cell based
 - Cost surface, potential field, or flood fill map
 - Continuous Space
 - Velocity based vector
 - Functional-Analogy Approach
 - Fluid Dynamics / Gas-Kinetic Models (Henderson, 1971)
 - Social Force Model (Helbing and Molnár, 1995)
 - Magnetic Model (Okazaki and Matsushita, 1993)

Behavioural Perspective of Pedestrian

- Behavioural Perspective
 - No behaviour
 - Implicit behaviour
 - Rule-based behaviour
 - Deterministically
 - Stochastically
 - Deterministically / Stochastically Implicit behaviour
 - Artificial Intelligence (AI) behaviour
Future Work

- KX Pedestrian Evacuation Model – To do…
 - Speed as a function of:
 - Density
 - Age
 - Gender
 - Over taking
 - Pre-evacuation time
 - Cost surfaces
 - Distance transform 5x5, 10x10, 25x25… (de smith, 2004)
 - Top down vs bottom up
 - Etc..
Thank You

Christian J.E. Castle

UCL Department of Geography, Gower Street, London, WC1E 6BT
Email: c.castle@ucl.ac.uk
Tel No.: + 44 (0)20 7679 0510
Fax No.: + 44 (0)20 7679 0565
Personal Website: http://www.casa.ucl.ac.uk/cjec/phd
Research Project Website: http://www.casa.ucl.ac.uk/kxsdsses